
Conformance Test Specification
for OpenFlow Switch Specification
1.0.1
June 13, 2013

ONF TS-010

OpenFlow Switch Test Suite

2 © 2013 Open Networking Foundation

Copyright © 2013 Open Networking Foundation

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

Without limitation, ONF disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the
implementation of this specification, and ONF disclaims all liability for cost of procurement
of substitute goods or services, lost profits, loss of use, loss of data or any incidental,
consequential, direct, indirect, or special damages, whether under contract, tort, warranty or
otherwise, arising in any way out of use or reliance upon this specification or any information
herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking
Foundation or Open Networking Foundation member intellectual property rights is granted
herein.

Except that a license is hereby granted by ONF to copy and reproduce this specification
for internal use only.

Contact Open Networking Foundation at www.opennetworking.org for information on
specification licensing through membership agreements.
Any marks and brands contained herein are the property of their respective owners.

Contents
DISCLAIMER ... 2

CONTENTS .. 2
FIGURES ... 3
TABLES ... 3
TEST CASES .. 3
1 INTRODUCTION .. 8
2 GLOSSARY .. 9
3 CONFORMANCE REQUIREMENTS AND DEFINITIONS .. 10

3.1 CONFORMANCE PROFILES .. 10
3.1.1 Full Profile ... 10
3.1.2 Layer2 Profile .. 11
3.1.3 Layer3 Profile .. 11

OpenFlow Switch Test Suite

3 © 2013 Open Networking Foundation

4 TEST BED CONFIGURATION .. 11
5 TEST CASE TEMPLATE .. 12

Test Suite X: <Suite Title> .. 12
6 TEST CASES ... 12

Test Suite 10: Basic Sanity Checks .. 12
Test Suite 20: Basic OpenFlow protocol messages ... 20
Test Suite 30: Spanning Tree ... 24
Test Suite 40: Flow modification messages ... 32
Test Suite 50: Flow Matching .. 44
Test Suite 60: Counters .. 56
Test Suite 70: Actions ... 66
Test Suite 80: Messages ... 77
Test Suite 90: Async Messages .. 90
Test Suite 100: Error Messages ... 98

7 OFFICIAL RESULTS REPORTING FOR CONFORMANCE ... 113
8 APPENDIX A: REFERENCES .. 114
9 APPENDIX B: CREDITS ... 114

Figures
FIGURE 1: TEST BED DIAGRAM ... 11

Tables
TABLE 1: L2 PROFILE FIELD LENGTHS AND THE WAY THEY MUST BE APPLIED TO FLOW

ENTRIES (EXCERPT FROM OPENFLOW SWITCH SPECIFICATION 1.0 TABLE 3 P. 4) 44
TABLE 2: L3 PROFILE FIELD LENGTHS AND THE WAY THEY MUST BE APPLIED TO FLOW

ENTRIES (EXCERPT FROM OPENFLOW SWITCH SPECIFICATION 1.0 TABLE 3 P. 4) 45

Test Cases
3.1.1 FULL PROFILE .. 10
3.1.2 LAYER2 PROFILE .. 11
3.1.3 LAYER3 PROFILE .. 11
TEST SUITE X: <SUITE TITLE> ... 12

TEST CASE X.Y: <TEST CASE TITLE> .. 12
TEST SUITE 10: BASIC SANITY CHECKS .. 12

TEST CASE 10.10: STARTUP BEHAVIOR WITH ESTABLISHED CONTROL CHANNEL 13
TEST CASE 10.20: CONFIGURE AND ESTABLISH CONTROL CHANNEL .. 13
TEST CASE 10.20A: USE DEFAULT TCP PORT .. 13
TEST CASE 10.20B: USE NON-DEFAULT TCP PORT .. 14
TEST CASE 10.20C: USE TLS WITH DEFAULT TCP PORT ... 14

OpenFlow Switch Test Suite

 4 © 2013 Open Networking Foundation

TEST CASE 10.20D: USE TLS WITH NON-DEFAULT TCP PORT .. 15
TEST CASE 10.30 SUPPORTED VERSION ANNOUNCEMENT ... 15
TEST CASE 10.40: SUPPORTED VERSION NEGOTIATION ... 16
TEST CASE 10.50: NO COMMON VERSION NEGOTIATED ... 16
TEST CASE 10.60: ECHO TIMEOUT TRIGGERING CONNECTION ATTEMPT TO BACKUP-
CONTROLLER .. 16
TEST CASE 10.70: TLS SESSION TIMEOUT TRIGGERING CONNECTION ATTEMPT TO BACKUP-
CONTROLLER .. 17
TEST CASE 10.80: LOSING THE CONTROL CHANNEL TRIGGERS CONNECTION ATTEMPTS 17
TEST CASE 10.90: LOSING THE CONTROL CHANNEL TRIGGERS EMERGENCY MODE 18
TEST CASE 10.100: EMERGENCY MODE REMOVES STANDARD FLOW ENTRIES 18
TEST CASE 10.110: EMERGENCY RULES AFTER CONTROL CHANNEL RECONNECTION 19
TEST CASE 10.120: FAIL SECURE MODE ... 19

TEST SUITE 20: BASIC OPENFLOW PROTOCOL MESSAGES ... 20
TEST CASE 20.10: VERIFY FEATURES REQUEST / REPLY IS IMPLEMENTED 20
TEST CASE 20.20: VERIFY BASIC CONFIG REQUEST IS IMPLEMENTED 21
TEST CASE 20.30: VERIFY BASIC MODIFY STATE ADD MESSAGE IS IMPLEMENTED 21
TEST CASE 20.40: VERIFY BASIC MODIFY STATE DELETE MESSAGE IS IMPLEMENTED 21
TEST CASE 20.50: VERIFY BASIC MODIFY FLOW MODIFY MESSAGE IS IMPLEMENTED 22
TEST CASE 20.60: VERIFY BASIC READ STATE IS IMPLEMENTED ... 22
TEST CASE 20.70: VERIFY BASIC SEND PACKET IS IMPLEMENTED ... 22
TEST CASE 20.80: VERIFY BASIC BARRIER REQUEST-REPLY IS IMPLEMENTED 23
TEST CASE 20.90: PACKET_IN GENERATION .. 23
TEST CASE 20.100: VERIFY BASIC HELLO MESSAGES ARE IMPLEMENTED 24
TEST CASE 20.110: VERIFY ECHO REPLY MESSAGES ARE IMPLEMENTED 24

TEST SUITE 30: SPANNING TREE ... 24
TEST CASE 30.10: FLOOD CONTROL PORT MOD MESSAGE ... 25
TEST CASE 30.20: PORT CONFIG BITS ... 25
TEST CASE 30.40: PORT ADMINISTRATIVELY DOWN .. 25
TEST CASE 30.50: DISABLE 802.1D SPANNING TREE .. 26
TEST CASE 30.60: DROP ALL EXCEPT 802.1D .. 26
TEST CASE 30.70: FORWARD ALL EXCEPT 802.1D ... 27
TEST CASE 30.80: FLOOD CONTROL PORT MOD MESSAGE ... 27
TEST CASE 30.90: DROP ALL EGRESS PACKETS ON PORT ... 28
TEST CASE 30.100: NO PACKET_IN .. 28
TEST CASE 30.110: STP CLASSIFICATION ... 29
TEST CASE 30.120: STP FEATURES REPLY ... 29
TEST CASE 30.130: STP ON ALL PHYSICAL PORTS ... 29
TEST CASE 30.140: FLOOD ALONG STP TOPOLOGY ... 30
TEST CASE 30.150: STP TRIGGERS PORT_UPDATE MESSAGE ... 30
TEST CASE 30.160: OFP_ALL OR EXPLICIT OUT_PORT OVERRIDE STP 31
TEST CASE 30.170: ENABLE – DISABLE STP PER PORT .. 31

TEST SUITE 40: FLOW MODIFICATION MESSAGES .. 32
TEST CASE 40.10: OVERLAP CHECKING ... 32
TEST CASE 40.20: NO OVERLAP CHECKING .. 32
TEST CASE 40.30: IDENTICAL FLOWS ... 33
TEST CASE 40.40: NO TABLE TO ADD ... 33
TEST CASE 40.50: NEVER VALID OUTPUT PORT ... 34
TEST CASE 40.60: CURRENTLY NON-EXISTANT OUTPUT PORT .. 34

OpenFlow Switch Test Suite

 5 © 2013 Open Networking Foundation

TEST CASE 40.60A: CURRENTLY NON-EXISTANT OUTPUT PORT VERSION A 35
TEST CASE 40.60B: CURRENTLY NON-EXISTENT PORT VERSION B ... 35
TEST CASE 40.70: NO TIMEOUT FOR EMERGENCY FLOWS .. 35
TEST CASE 40.80: MODIFY NON-EXISTENT FLOW .. 36
TEST CASE 40.90: MODIFY ACTION PRESERVES COUNTERS ... 36
TEST CASE 40.100: MODIFY_STRICT OF ACTION PRESERVES COUNTERS 37
TEST CASE 40.110: DELETE NON-EXISTENT FLOW ... 37
TEST CASE 40.120: DELETE FLOWS WITH AND WITHOUT FLOW_REMOVED FLAG SET 38
TEST CASE 40.130: DELETE EMERGENCY FLOW ... 38
TEST CASE 40.140: DELETE WITHOUT WILDCARDS .. 38
TEST CASE 40.150: DELETE WITH WILDCARDS SET .. 39
TEST CASE 40.160: STRICT_DELETE WITH WILDCARDS SET .. 39
TEST CASE 40.170: TESTING THAT DELETE MESSAGE IGNORES PRIORITIES 40
TEST CASE 40.180: TESTING THAT STRICT_DELETE MESSAGE DOES NOT IGNORE PRIORITIES .. 41
TEST CASE 40.190: DELETE WITH CONSTRAINT OUT_PORT ... 41
TEST CASE 40.200: OUT_PORT IGNORED BY ADD AND MODIFY REQUESTS 42
TEST CASE 40.210: TIMEOUT WITH FLOW REMOVED MESSAGE ... 42
TEST CASE 40.220: IDLE TIMEOUT .. 43
TEST CASE 40.230: HARD TIMEOUT .. 43

TEST SUITE 50: FLOW MATCHING .. 44
TEST CASE 50.10: ALL WILDCARDS ... 45
TEST CASE 50.20: INGRESS PORT (UINT16_T IN_PORT) ... 45
TEST CASE 50.30: ETHERNET SOURCE ADDRESS (DL_SRC[OFP_ETH_ALEN]) 46
TEST CASE 50.40: ETHERNET DESTINATION ADDRESS (DL_DST[OFP_ETH_ALEN]) 46
TEST CASE 50.50: ETHERNET FRAME TYPE (UINT16_T DL_TYPE) .. 47
TEST CASE 50.60: INPUT VLAN ID (UINT16_T DL_VLAN) ... 48
TEST CASE 50.70: INPUT VLAN PRIORITY (UINT8_T DL_VLAN_PCP) .. 48
TEST CASE 50.80: IP SOURCE ADDRESS (UINT32_T NW_SRC) .. 49
TEST CASE 50.90: IP DESTINATION ADDRESS (UINT32_T NW_DST) ... 49
TEST CASE 50.100: IP PROTOCOL (UINT8_T NW_PROTO) ... 50
TEST CASE 50.110: IP TOS BITS (UINT8_T NW_TOS) ... 50
TEST CASE 50.120: TCP/UDP SOURCE PORT (UINT16_T TP_SRC) ... 51
TEST CASE 50.130: TCP/UDP DESTINATION PORT (UINT16_T TP_DST) 51
TEST CASE 50.140: L2 .. 52
TEST CASE 50.150: L3 .. 52
TEST CASE 50.160: L4 .. 53
TEST CASE 50.170: EXACT MATCH ... 53
TEST CASE 50.180: EXACT MATCH PRIORITY ... 54
TEST CASE 50.190: MATCH PRIORITIES .. 54
TEST CASE 50.200: FRAGMENTS WILDCARD TCP PORT ... 55
TEST CASE 50.210: IP SOURCE ADDRESS OF ARP PACKETS(UINT32_T NW_SRC) 55
TEST CASE 50.220: IP DESTINATION ADDRESS OF ARP PACKETS(UINT32_T NW_SRC) 56

TEST SUITE 60: COUNTERS .. 56
TEST CASE 60.10: RECEIVED PACKETS .. 57
TEST CASE 60.20: RECEIVED BYTES .. 57
TEST CASE 60.30: DURATION (SECS) .. 58
TEST CASE 60.40: DURATION (NSECS) ... 58
TEST CASE 60.50: RECEIVED PACKETS .. 58
TEST CASE 60.60: TRANSMITTED PACKETS ... 59
TEST CASE 60.70: RECEIVED BYTES ... 59

OpenFlow Switch Test Suite

 6 © 2013 Open Networking Foundation

TEST CASE 60.80: TRANSMITTED BYTES .. 60
TEST CASE 60.90: RECEIVE DROPS ... 60
TEST CASE 60.100: TRANSMIT DROP .. 61
TEST CASE 60.110: RECEIVE ERRORS .. 61
TEST CASE 60.120: TRANSMIT ERRORS .. 61
TEST CASE 60.130: RECEIVE FRAME ERRORS .. 62
TEST CASE 60.140: RECEIVE OVERRUN ERRORS ... 62
TEST CASE 60.150: CRC ERRORS ... 63
TEST CASE 60.160: COLLISIONS .. 63
TEST CASE 60.170: TRANSMIT PACKETS .. 64
TEST CASE 60.180: TRANSMIT BYTES .. 64
TEST CASE 60.190: TRANSMIT OVERRUN ERRORS .. 64
TEST CASE 60.200: ACTIVE ENTRIES .. 65
TEST CASE 60.210: PACKET LOOKUP & MATCHED COUNT ... 65

TEST SUITE 70: ACTIONS .. 66
TEST CASE 70.10: NO ACTION DROPS PACKET ... 66
TEST CASE 70.20: GET SUPPORTED ACTIONS ... 67
TEST CASE 70.30: FORWARD: ALL .. 67
TEST CASE 70.40: FORWARD:CONTROLLER .. 68
TEST CASE 70.50: FORWARD:LOCAL .. 68
TEST CASE 70.60: FORWARD:TABLE .. 68
TEST CASE 70.70: FORWARD:INPORT .. 69
TEST CASE 70.80: FORWARD:NORMAL .. 69
TEST CASE 70.90: FORWARD:FLOOD .. 70
TEST CASE 70.100: FORWARD:MULTIPLEPORTS ... 70
TEST CASE 70.110: FORWARD:ENQUEUE .. 70
TEST CASE 70.120: ADD VLAN ID .. 71
TEST CASE 70.130: SET VLAN ID .. 71
TEST CASE 70.140: ADD VLAN PRIORITY ... 72
TEST CASE 70.150: SET VLAN PRIORITY ... 72
TEST CASE 70.160: STRIP VLAN HEADER ... 72
TEST CASE 70.170: MODIFY ETHERNET SOURCE MAC ADDRESS .. 73
TEST CASE 70.180: MODIFY ETHERNET DESTINATION MAC ADDRESS 73
TEST CASE 70.190: MODIFY IPV4 SOURCE ADDRESS ... 74
TEST CASE 70.200: MODIFY IPV4 DESTINATION ADDRESS .. 74
TEST CASE 70.210: MODIFY IPV4 TOS BITS ... 74
TEST CASE 70.220: MODIFY TCP/UDP SOURCE PORT ... 75
TEST CASE 70.230: MODIFY TCP/UDP DESTINATION PORT .. 75
TEST CASE 70.240: ORDERING NOT POSSIBLE .. 76
TEST CASE 70.250: SEQUENTIAL EXECUTION .. 76

TEST SUITE 80: MESSAGES .. 77
TEST CASE 80.10: OFPT_HELLO WITHOUT BODY .. 77
TEST CASE 80.20: OFPT_HELLO WITH BODY .. 77
TEST CASE 80.30: OFPT_ERROR .. 78
TEST CASE 80.40: OFPT_ECHO_REQUEST / REPLY WITHOUT BODY 78
TEST CASE 80.50: OFPT_ECHO_REQUEST / REPLY WITH BODY ... 78
TEST CASE 80.60: FEATURES REQUEST-REPLY .. 79
TEST CASE 80.70: FEATURES REPLY .. 79
TEST CASE 80.80: UINT64_T DATAPATH_ID ... 80
TEST CASE 80.90: UINT32_T N_BUFFERS .. 80

OpenFlow Switch Test Suite

 7 © 2013 Open Networking Foundation

TEST CASE 80.100: UINT8_T N_TABLES ... 80
TEST CASE 80.110: OFPC_FLOW_STATS ... 81
TEST CASE 80.120: OFPC_TABLE_STATS .. 81
TEST CASE 80.130: OFPC_PORT_STATS .. 82
TEST CASE 80.140: OFPC_STP .. 82
TEST CASE 80.150: OFPC_RESERVED .. 82
TEST CASE 80.160: OFPC_IP_REASM ... 83
TEST CASE 80.170: OFPC_ARP_MATCH_IP ... 83
TEST CASE 80.180: UINT32_T ACTIONS .. 84
TEST CASE 80.190: STRUCT OFP_PHY_PORT PORTS[0] ... 84
TEST CASE 80.200: GET CONFIG REQUEST-REPLY .. 84
TEST CASE 80.210: OFPC_FRAG_NORMAL ... 85
TEST CASE 80.220: OFPC_FRAG_DROP ... 85
TEST CASE 80.230: OFPC_FRAG_REASM .. 86
TEST CASE 80.240: OFPC_FRAG_MASK ... 86
TEST CASE 80.250: UINT16_T MISS_SEND_LEN .. 87
TEST CASE 80.260: OFPT_SET_CONFIG – MISS_SEND_LEN ... 87
TEST CASE 80.270: OFPT_SET_CONFIG – OFPC_FRAG_NORMAL = 0 88
TEST CASE 80.280: OFPT_SET_CONFIG – OFPC_FRAG_DROP .. 88
TEST CASE 80.290: OFPT_SET_CONFIG – OFPC_FRAG_REASM 89
TEST CASE 80.300: OFPT_SET_CONFIG – OFPC_FRAG_MASK = 3 89

TEST SUITE 90: ASYNC MESSAGES ... 90
TEST CASE 90.10: OFPR_NO_MATCH UINT8_T REASON .. 90
TEST CASE 90.20: OFPR_NO_MATCH UNIT8_T DATA[0] BUFFERED 90
TEST CASE 90.30: OFPR_NO_MATCH UNIT8_T DATA[0] UNBUFFERED 91
TEST CASE 90.40: OFPR_NO_MATCH UINT16_T IN_PORT .. 92
TEST CASE 90.50: OFPR_NO_MATCH INT16_T TOTAL_LEN .. 92
TEST CASE 90.60: OFPR_ACTION UINT8_T REASON ... 92
TEST CASE 90.70: OFPR_ACTION UNIT8_T DATA[0] BUFFERED ... 93
TEST CASE 90.80: OFPR_ACTION UNIT8_T DATA[0] UNBUFFERED 93
TEST CASE 90.90: OFPR_ACTION UINT16_T IN_PORT .. 94
TEST CASE 90.100: OFPR_ACTION INT16_T TOTAL_LEN ... 94
TEST CASE 90.110: OFPT_PORT_STATUS ... 95
TEST CASE 90.120: OFPT_PORT_MOD - NO_FLOOD ... 95
TEST CASE 90.130: OFPT_PORT_MOD - NO_FORWARD ... 96
TEST CASE 90.140: OFPT_PORT_MOD - NO_PACKET_IN ... 96
TEST CASE 90.150: OFPT_PACKET_OUT ... 97
TEST CASE 90.160: OFPST_DESC .. 97
TEST CASE 90.170: OFPT_QUEUE_GET_CONFIG_REPLY .. 98

TEST SUITE 100: ERROR MESSAGES ... 98
TEST CASE 100.10: OFPHFC_INCOMPATIBLE .. 99
TEST CASE 100.20: OFPHFC_EPERM .. 99
TEST CASE 100.30: OFPBRC_BAD_VERSION ... 99
TEST CASE 100.40: OFPBRC_BAD_TYPE ... 100
TEST CASE 100.50: OFPBRC_BAD_VENDOR .. 100
TEST CASE 100.60: OFPBRC_BAD_SUBTYPE ... 101
TEST CASE 100.70: OFPBRC_EPERM .. 101
TEST CASE 100.80: OFPBRC_BAD_LEN .. 102
TEST CASE 100.90: OFPBRC_BUFFER_EMPTY .. 102
TEST CASE 100.100: OFPBRC_BUFFER_UNKNOWN ... 102

OpenFlow Switch Test Suite

 8 © 2013 Open Networking Foundation

TEST CASE 100.110: OFPBAC_BAD_TYPE ... 103
TEST CASE 100.120: OFPBAC_BAD_LEN .. 103
TEST CASE 100.130: OFPBAC_BAD_VENDOR ... 104
TEST CASE 100.140: OFPBAC_BAD_VENDOR_TYPE .. 104
TEST CASE 100.150: OFPBAC_BAD_OUT_PORT .. 105
TEST CASE 100.160: OFPBAC_BAD_ARGUMENT ... 105
TEST CASE 100.170: OFPBAC_EPERM .. 106
TEST CASE 100.180: OFPBAC_TOO_MANY .. 106
TEST CASE 100.190: OFPBAC_BAD_QUEUE ... 107
TEST CASE 100.200: OFPFMFC_ALL_TABLES_FULL ... 107
TEST CASE 100.210: OFPFMFC_OVERLAP .. 108
TEST CASE 100.220: OFPFMFC_EPERM ... 108
TEST CASE 100.230: OFPFMFC_BAD_EMERG_TIMEOUT .. 108
TEST CASE 100.240: OFPFMFC_BAD_COMMAND .. 109
TEST CASE 100.250: OFPFMFC_UNSUPPORTED ... 110
TEST CASE 100.260: OFPPMFC_BAD_PORT ... 110
TEST CASE 100.270: OFPPMFC_BAD_HW_ADDR .. 111
TEST CASE 100.280: OFPQOFC_BAD_PORT ... 111
TEST CASE 100.290: OFPQFC_BAD_QUEUE ... 112
TEST CASE 100.300: OFPET_QUEUE_OP_FAILED ... 112

1 Introduction

This document defines the requirements and corresponding test procedures that determine the
conformance of an OpenFlow 1.0.1 enabled switch. Requirements are derived from the
OpenFlow Switch Specification 1.0.0 and the subsequent Errata v1.0.1 available on the ONF
website at www.opennetworking.org.

Vendors may refer to these requirements and test procedures during development of their
product. Consumers may use these requirements and test results to determine the viability of
products for inclusion within their network infrastructure. Test tool manufacturers may use
these requirements and test procedures in development of their testing products.

Requirements and test procedures to determine conformance for any changes, clarifications
or additions to the main 1.0.0 specification beyond Errata 1.0.1 will be covered in addendums
to this document.

This document does not cover requirement and test procedures for extensions outside of the
main specification.

Requirements and test procedures to determine conformance for any major specification
release beyond 1.0 (1.1, 1.2, etc.…) will be covered in a separate document.

This document does not include requirements or test procedures to validate security,
interoperability or performance.

OpenFlow Switch Test Suite

9 © 2013 Open Networking Foundation

2 Glossary
• Action: An operation that forwards the packet to a port or modifies the packet.
• Byte: An 8-bit octet.
• Controller: Test Framework Controller interacting with DUT using the OpenFlow

protocol.
• Control Plane: Software responsible for controlling the Data Plane.
• Control Plane Connection: The TCP connection between the DUT and the Controller

Software.
• Controller Software: Implementation of the Control Plane.
• Data Plane: Functionality within a Network Device responsible for packet switching,

filtering, and related management.
• Data Plane Port: A physical port where packets enter and exit the Data Plane of the

DUT.
• DUT: Device Under Test.
• Egress Port: Data Plane port on which the data packets exit the DUT.
• Flow: A communications interaction between a pair or more endpoints identified by a

n-tuple consisting of Layer 2-4 header information.
• Flow Action: An Action associated with a Flow Rule.
• Flow Entry/Flow Rule: an element in a flow table used to match and process packets.

It contains a set of match fields for matching packets, a priority for matching
precedence, a set of counters to track packets, and a set of instructions to apply.

• Flow Statistics: Performance indicators for a flow.
• Flow Table: The Forwarding Table in a Networking Device that defines how the

device should process the flow.
• Hybrid: Control Plane that simultaneously supports OpenFlow and Non-OpenFlow

control
• Ingress Port: Data Plane port on which the data packets enters the DUT.
• Layer 2: Functionality and protocols associated with network switching.
• Layer 3: Functionality and protocols associated with network routing.
• Local: Indicates a non-OpenFlow function native to the DUT.
• Match: Outcome when an inbound packet conforms to a Flow Entry in the Flow

Table.
• Match Field: A field against which a packet is matched, including packet headers, the

ingress port and the metadata value. A match field may be wildcarded (match any
value) and in some cases bitmasked.

• OpenFlow: ONF standard protocol that enable OpenFlow Controllers to control
Networking Devices in an SDN architecture.

• OpenFlow Controller: An SDN Controller that uses OpenFlow as the interface
between the Control and Data Planes.

• OpenFlow Pipeline: A chain of OpenFlow processing elements in a DUT . Often used
to distinguish from the Local processing elements.

• OpenFlow Switch: Networking Device that supports OpenFlow protocol.
• Packet: An Ethernet frame, including header and payload.

OpenFlow Switch Test Suite

 10 © 2013 Open Networking Foundation

• Port: Where packets enter and exit the OpenFlow pipeline. May be a physical port, a
logical port defined by the switch, or a reserved port defined by the OpenFlow
protocol.

• TCP Port: A number assigned to user sessions and server applications in an IP
network. Port numbers, which are standardized by the Internet Assigned Numbers
Authority (IANA), reside in the header area of the TCP packet.

3 Conformance Requirements and Definitions
Official conformance testing will be performed as outlined by the ONF Conformance Testing
Program <Insert Link>.

Usage of the OpenFlow Trademark is outlined in the ONF Trademark Policies located at
https://www.opennetworking.org/membership/onf-documents.

In some cases, test cases described in this document are mutually exclusive, OPTIONAL or
only relevant for some implementations. This section outlines the valid combinations of test
cases required to achieve conformance.

In some cases, the methods of validation are not fully described and may be left up to the
tester or test tool developer.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

3.1 Conformance Profiles
Many hardware implementations cannot support all features within the standard.

Support of some applications does not require the use of all 12 match fields described in the
OpenFlow Switch Specification 1.0.0.

While we believe the intention of the specification was to require all match fields, there was
sufficient ambiguity to allow other interpretations.

Due to these issues, several profiles were defined to specify required match fields to support
the most common applications.

3.1.1 Full Profile
To be considered fully conformant with the OpenFlow Switch Specification 1.0.0 and the
subsequent OpenFlow Switch Errata 1.0.1 the implementation MUST satisfy the
requirements of all test cases that indicate “MANDATORY” for “All” or “Full” profiles.

To satisfy the Full profile requirements, the device MUST be able to match all 12 fields
individually and simultaneously under the constraints given in the specification as listed in
OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.

OpenFlow Switch Test Suite

 11 © 2013 Open Networking Foundation

3.1.2 Layer2 Profile
To be considered conformant with the Layer 2 Profile, the implementation MUST satisfy the
requirements of all test cases that indicate “MANDATORY” for “All” or “L2” profiles.
Refer to Table 1 in Test Suite 50 for specific match field requirements.

3.1.3 Layer3 Profile
To be considered conformant with the Layer 3 Profile, the implementation MUST satisfy the
requirements of all test cases that indicate “MANDATORY” for “All” or “L3” profiles.
Refer to Table 2 in Test Suite 50 for specific match field requirements.

4 Test Bed Configuration
The primary testbed will consist of

1. A test controller with a single control channel connection to the DUT.
2. The test controller should have the ability to perform a packet trace and decode

OpenFlow 1.0 packets.
3. A traffic generator/analyzer with a minimum of 4 ports compatible with the DUT for

data plane connections.

A backup test controller MAY be used for some tests, but is not required.
Each test case will describe the number and type of connections required.

Figure 1: Test Bed Diagram

OpenFlow Switch Test Suite

 12 © 2013 Open Networking Foundation

5 Test Case Template
Test Suite X: <Suite Title>
<Brief description of test suite.
<Describe any special cases or dependencies.>
<Describe relevant profile dependencies>

Test case X.Y: <Test Case Title>

6 Test Cases
Test Suite 10: Basic Sanity Checks
Basic Sanity Checks verifies establishment of a control channel, verifies behavior
when the control channel is lost.

Special cases:

1. Control channel port and encryption:
4 methods of control channel establishment are tested (Tests 10.20, 10.30,
10.40, 10.50). At least one of the four MUST be supported for the device to be
considered conformant.

2. Control channel failure:
Errata 1.0.1 adds support for Fail-Secure Mode in the case of a control
channel failure. After loss of the control channel, the switch MUST enter either
Emergency Mode (Tests 10.90, 10.100, 10.110) or Fail-Secure Mode (Test
10.120) to be considered conformant. The test cases are labeled as either
MANDATORY for Emergency Mode or MANDATORY for Fail-Secure Mode.

3. Backup Controllers:

Test Number X.Y
Test Title Group/Subgroup/Title
Test Purpose Brief description of test purpose
Specification
Reference

Reference document, section and p..
(Include Specification Wording when useful for clarity)

Profile Status List all relevant profiles and the OPTIONAL or MANDATORY status
for each.
Ex. [OPTIONAL | MANDATORY] for [All | [Full | L2 | L3]] Profiles

Requirements Brief description of requirements that DUT MUST satisfy
Topology Describe topology or reference diagram
Methodology Describe test procedure and methodology
Results Description of the format in which to display results.

Ex. (Pass or Fail)
Remarks Description of any particular observations that might affect results

OpenFlow Switch Test Suite

 13 © 2013 Open Networking Foundation

As backup controllers are optional, so are test cases 10.60 and 10.70.

Profiles:
All profiles MUST pass all test cases from 10.10 to 10.150, except the 3 named
exceptions / under the previous named constraints.

Test case 10.10: Startup behavior with established control channel

Test case 10.20: Configure and establish control channel
Test Number 10.20
Test Title Connection Setup/ Establish Control Channel / Encrypted, Unencrypted,

Default & non-Default TCP port Combinations
Test Purpose Test all methods of control channel establishment
Specification
Reference

OpenFlow Switch Specification 1.0.0
4.2 Connection setup / p. 12
4.4 Encryption / p. 13

Profile Status 1 of 4 [10.20a | 10.20b | 10.20c | 10.20d] is MANDATORY for All
Profiles

Requirements A control channel MUST be established between the DUT and
reference controller using at least 1 of 4 methods.

Topology Control-plane connection between DUT and reference controller
Methodology Follow methodology for each sub-test (10.20a-d).
Results Pass or Fail
Remarks

Test case 10.20a: Use default tcp port
Test Number 10.20a
Test Title Connection Setup/ Establish Control Channel/ TCP using default port

6633
Test Purpose Test unencrypted control channel establishment on default TCP

port

Test Number 10.10
Test Title Connection Setup / Establish Control Channel / Switch Startup
Test Purpose Verify the startup mode, verify no packets are forwarded
Specification
Reference

OpenFlow Switch Errata v1.0.1
4.3 Controller Connection Failure Behavior, p. 8

Profile Status MANDATORY for All Profiles
Requirements At first startup, the DUT MUST not forward any data plane packets
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections on the DUT.
Methodology Startup switch, Configure and connect the Primary-controller on the

DUT. Send packets to data plane, verify packets are not forwarded on
the data plane.

Results Pass or Fail
Remarks On initial startup, the switch should not have any emergency rules or

flows installed. It should not default to layer 2 forwarding.

OpenFlow Switch Test Suite

 14 © 2013 Open Networking Foundation

Specification
Reference

OpenFlow Switch Specification 1.0.0 / 4.2 Connection setup / p.
12
The switch must be able to establish the communication at a user-configurable
(but otherwise fixed) IP address, using a user-specified port.

Profile Status
Requirements A control channel MUST be established between the DUT and

reference controller without encryption on the default TCP port
6633.

Topology Control-plane connection between DUT and reference controller
Methodology Reference controller must be running and reachable at

configured IP and Port 6633. Configure DUT to connect with
reference controller using unencrypted TCP. If required, manually
configure switch to connect to controller using TCP port 6633.

Results Pass or Fail or Not Tested
Remarks

Test case 10.20b: Use non-default tcp port

Test case 10.20c: Use TLS with default tcp port

Test Number 10.20b
Test Title Connection Setup/ Establish Control Channel/ TCP using non-default

port
Test Purpose Test unencrypted control channel establishment on non-default

TCP port
Specification
Reference

OpenFlow Switch Specification 1.0.0 / 4.2 Connection setup / p.
12
The switch must be able to establish the communication at a user-configurable
(but otherwise fixed) IP address, using a user-specified port.

Profile Status OPTIONAL
Requirements A control channel MUST be established between the DUT and

reference controller without encryption on a non-default TCP port.
Topology Control-plane connection between DUT and reference controller
Methodology Reference controller must be running and reachable at

configured IP and Port. Configure DUT to connect with reference
controller using unencrypted TCP. Manually configure switch to
connect to controller using previously configured TCP port.

Results Pass or Fail or Not Tested
Remarks

Test Number 10.20c
Test Title Connection Setup/ Establish Control Channel/ TLS using default port

6633
Test Purpose Test encrypted control channel establishment on default TCP

port
Specification
Reference

OpenFlow Switch Specification 1.0.0 / 4.4 Encryption/ p. 13
The TLS connection is initiated by the switch on startup to the controller’s
server, which is located by default on TCP port 6633

OpenFlow Switch Test Suite

 15 © 2013 Open Networking Foundation

Test case 10.20d: Use TLS with non-default tcp port

Test case 10.30 Supported version announcement

Profile Status OPTIONAL
Requirements A control channel MUST be established between the DUT and

reference controller with encryption on the default TCP port 6633.
Topology Control-plane connection between DUT and reference controller
Methodology Reference controller must be running and reachable at

configured IP and Port 6633. Configure DUT to connect with
reference controller using encrypted TLS. If required, manually
configure switch to connect to controller using TCP port 6633.

Results Pass or Fail or Not Tested
Remarks

Test Number 10.20c
Test Title Connection Setup/ Establish Control Channel/ TLS using non-default

port.
Test Purpose Test encrypted control channel establishment on non-default

TCP port
Specification
Reference

OpenFlow Switch Specification 1.0.0 / 4.4 Encryption/ p. 13
The TLS connection is initiated by the switch on startup to the controller’s
server, which is located by default on TCP port 6633

Profile Status OPTIONAL
Requirements A control channel MUST be established between the DUT and

reference controller with encryption on a non-default TCP port.
Topology Control-plane connection between DUT and reference controller
Methodology Reference controller must be running and reachable at

configured IP and non-default Port. Configure DUT to connect
with reference controller using encrypted TLS.

Results Pass or Fail or Not Tested
Remarks

Test Number 10.30
Test Title Connection Setup / Establish control channel / Supported version

announcement
Test Purpose Check the Switch reports the correct version to the controller
Specification
Reference

OpenFlow Switch Specification 1.0.0 / 4.2 Connection Setup / p.
12
When an OpenFlow connection is first established, each side of the
connection must immediately send an OFPT_HELLO message with the
version field set to the highest OpenFlow protocol version supported by the
sender.

Profile Status MANDATORY for All Profiles
Requirements The DUT MUST announce the correct protocol version 1.0
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Verify

version field in Hello message.
Results Pass or Fail

OpenFlow Switch Test Suite

 16 © 2013 Open Networking Foundation

Test case 10.40: Supported version negotiation

Test case 10.50: No common version negotiated

Test case 10.60: Echo timeout triggering connection attempt to Backup-
controller

Remarks

Test Number 10.40
Test Title Connection Setup / Establish control channel / Supported version

negotiation
Test Purpose Check the Switch negotiates the correct version with the controller
Specification
Reference

OpenFlow Switch Specification 1.0.0 / 4.2 Connection Setup / p. 12
Upon receipt of this message, the recipient may calculate the OpenFlow
protocol version to be used as the smaller of the version number that it sent
and the one that it received.

Profile Status MANDATORY for ALL Profiles
Requirements The DUT MUST negotiate the correct version to use on the control

channel
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Verify

switch negotiates the correct version with the controller.
Results Pass or Fail
Remarks In this case, the controller announces the correct version, so negotiation

to version 1.0 should succeed.

Test Number 10.50
Test Title Error messages / Connection Setup / Establish control channel / No

common version negotiated
Test Purpose Verify the switch reports the correct error message and terminates the

connection when no common version can be negotiated with the
controller.

Specification
Reference

OpenFlow Switch Specification 1.0.0/4.2 Connection Setup/p. 12
if the negotiated version is supported by the recipient, then the connection
proceeds. Otherwise, the recipient must reply with an OFPT_ERROR
message with a type field of OFPET_HELLO_FAILED, a code field of
OFPHFC_COMPATIBLE, and optionally an ASCII string explaining the
situation in data, and then terminate the connection.

Profile Status MANDATORY for All Profiles
Requirements The DUT MUST handle version negotiation as described in the

specification.
Topology Control-plane connection between DUT and reference controller
Methodology Configure and connect the Primary-controller on the DUT. The

controller sends an unsupported version, which prevents version
negotiation from succeeding. The Error message is verified in packet
traces or controller logs.

Results Pass or Fail
Remarks

Test Number 10.60

OpenFlow Switch Test Suite

 17 © 2013 Open Networking Foundation

Test case 10.70: TLS Session timeout triggering connection attempt to
Backup-controller

Test case 10.80: Losing the control channel triggers connection attempts

Test Title Connection interruption / Primary control channel lost / Echo
timeout triggering connection attempt to Backup-controller

Test Purpose Verify switch tries to contact Backup-controller after losing
connection to Primary-controller.

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.3 Connection interruption,
p. 12
in the case that a switch loses contact with the controller, as a result of an echo
request timeout, TLS session timeout, or other disconnection, it should attempt to
contact one or more backup controllers. The ordering of the controller IP addresses is
not specified by the protocol.

Profile Status OPTIONAL
Requirements If supported and configured, the DUT MUST contact a Backup-

controller after losing connection with the Primary-controller
Topology Control-plane connection between DUT and reference controller
Methodology Configure Primary-controller and Backup-controller on the DUT. Fail

the Primary-controller connection by echo request timeout. Verify the
device tries to connect to the Backup-controller. This can be done by
packet trace or established connection to Backup-controller.

Results Pass or Fail or Not Tested
Remarks

Test Number 10.70
Test Title Connection interruption / Primary control channel lost / TLS

Session timeout triggering connection attempt to Backup-
controller

Test Purpose Verify switch tries to contact Backup-controller after losing
connection to Primary-controller.

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.3 Connection interruption,
p. 12
in the case that a switch loses contact with the controller, as a result of an echo
request timeout, TLS session timeout, or other disconnection, it should attempt to
contact one or more backup controllers. The ordering of the controller IP addresses is
not specified by the protocol.

Profile Status OPTIONAL
Requirements If supported and configured, the DUT MUST contact a Backup-

controller after losing connection with the Primary-controller
Topology Control-plane connection between DUT and reference controller
Methodology Configure Primary-controller and Backup-controller on the DUT. Fail

the Primary-controller connection by TLS Session timeout. Verify the
device tries to connect to the Backup-controller. This can be done by
packet trace or established connection to Backup-controller.

Results Pass or Fail or Not Tested
Remarks

Test Number 10.80

OpenFlow Switch Test Suite

 18 © 2013 Open Networking Foundation

Test case 10.90: Losing the control channel triggers emergency mode

Test case 10.100: Emergency mode removes standard flow entries

Test Title Connection interruption / Primary control channel lost / Losing the
control channel triggers connection attempts

Test Purpose Verify switch tries to reconnect after losing control channel, check
whether retries and backoff are applied as configured on the
DUT.

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.3 Connection interruption,
p. 12
if some number of attempts to contact a controller (zero or more) fail, the switch must
enter “emergency mode” and immediately reset the current TCP connection.

Profile Status MANDATORY for ALL Profiles
Requirements After losing the control channel, the DUT MUST try to re-establish a

connection with the controller
Topology Control-plane connection between DUT and reference controller
Methodology Configure and connect the Primary-controller on the DUT. Fail the

Primary-controller connection. Verify the device attempts to re-connect
to the controller. Verify the frequency of reconnection attempts. Verify
with packet trace.

Results Pass or Fail
Remarks Method for generating control channel failure is unspecified

Test Number 10.90
Test Title Connection interruption / Primary control channel lost / Losing the

control channel triggers emergency mode
Test Purpose Verify switch activates emergency rules after losing control

channel connections.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.3 Connection interruption, p. 12
In emergency mode, the matching process is dictated by the emergency flow
table entries (those marked with the emergency bit when added to the switch

Profile Status MANDATORY for Emergency Mode.
Requirements After losing the control channel, the DUT MUST activate the

emergency rule set.
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections on the DUT.
Methodology Configure and connect the Primary-controller on the DUT.

Create emergency flow table entries. Verify with data plane traffic that
emergency flow table entries are not active. Fail control channel. Verify
with data plane traffic that emergency flow entries are activated.

Results Pass or Fail
Remarks

Test Number 10.100
Test Title Connection interruption / Primary control channel lost / Emergency

mode removes standard flow entries
Test Purpose Verify switch deletes all normal flow entries when emergency mode is

activated

OpenFlow Switch Test Suite

 19 © 2013 Open Networking Foundation

Test case 10.110: Emergency rules after control channel reconnection

Test case 10.120: Fail secure mode

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.3 Connection interruption, p.
13
All normal entries are deleted when entering emergency mode

Profile Status MANDATORY for Emergency Mode.
Requirements After activating the emergency rule set all normal entries in the flow

table MUST be deleted.
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections on the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create

normal and emergency flow table entries. Verify with data plane traffic
that normal entries are active and emergency flow table entries are not
active. Fail control channel. Verify with data plane traffic that
emergency flow entries are now active, and normal entries are inactive.
Check the flow table to verify normal entries are deleted.

Results Pass or Fail
Remarks

Test Number 10.110
Test Title Connection interruption / Primary control channel lost /

Emergency rules after control channel reconnection
Test Purpose Verify switch keeps the emergency rules active after reconnection to a

controller.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.3 Connection interruption,
p. 13
Upon connecting to a controller again, the emergency flow entries remain. The
controller then has the option of deleting all flow entries, if desired.

Profile Status MANDATORY for Emergency Mode.
Requirements After reconnection to the controller, the emergency rule set MUST stay

active.
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections on the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create

emergency flow table entries. Fail control channel. After reconnection
of the control channel, verify with data plane traffic that the emergency
flow table entries stay active.

Results Pass or Fail
Remarks

Test Number 10.120
Test Title Connection interruption / Primary control channel lost / Fail secure

mode
Test Purpose Verify switch keeps the normal flow table active after losing the control

channel. Verify the entries time out as expected. Verify flow table
entries stay active after reconnection.

Specification OpenFlow Switch Errata 1.0.1, 4.3 Controller Connection Failure

OpenFlow Switch Test Suite

 20 © 2013 Open Networking Foundation

Test Suite 20: Basic OpenFlow protocol messages
Test suite 20 checks for implementation of the basic protocol messages. We only verify that
the messages do not generate error messages on the DUT, we do not check for correct
responses or implementation. Detailed checks follow later in the respective test groups.

Special cases:
None

Profiles:
All profiles MUST pass all test cases from 20.10 to 20.110.

Test case 20.10: Verify Features Request / Reply is implemented

Reference Behavior, p. 8
In ”fail secure mode”, the only change to switch behavior is that packets and
messages destined to the controllers are dropped. Flow entries should continue to
expire according to their timeouts in ”fail secure mode

Profile Status MANDATORY for Fail-Secure Mode
Requirements After losing the control channel, normal flow entries MUST stay active

and time out as expected. After reconnection, flow entries MUST stay
active and time out as expected.

Topology Control-plane connection between DUT and reference controller.
At least two data plane connections on the DUT.

Methodology Configure and connect the Primary-controller on the DUT. Create
normal flow table entries with different timeouts. Fail control channel.
Verify with data plane traffic that flow table entries stay active and time
out as expected. After reconnection of the control channel, verify with
data plane traffic that the flow table entries left in the flow table stay
active and time out as expected.

Results Pass or Fail
Remarks

Test Number 20.10
Test Title Controller to Switch messages / Features / Verify Features

Request/Reply is implemented.
Test Purpose Verify that a basic Features Request generates a Features Reply.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Features: Upon Transport Layer Security (TLS) session establishment, the controller
sends a features request message to the switch. The switch must reply with a features
reply that specifies the capabilities supported by the switch

Profile Status MANDATORY for ALL Profiles
Requirements Generate a Features Reply in response to a Features Request
Topology Control-plane connection between DUT and reference controller
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_features_request to the DUT; verify ofpt_features_reply is
returned.

OpenFlow Switch Test Suite

 21 © 2013 Open Networking Foundation

Test case 20.20: Verify basic Config Request is implemented

Test case 20.30: Verify basic Modify state Add message is implemented

Test case 20.40: Verify basic Modify state Delete message is implemented

Results Pass or Fail
Remarks

Test Number 20.20
Test Title Controller to Switch messages / Configuration / Verify basic Config

Request is implemented
Test Purpose Verify that a basic Get Config Request does not generate an error.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Configuration: The controller is able to set and query configuration parameters in the
switch. The switch only responds to a query from the controller.

Profile Status MANDATORY for ALL Profiles
Requirements Generate a Config Reply in response to a Config Request
Topology Control-plane connection between DUT and reference controller
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_get_config_request to the DUT, verify ofpt_get_config_reply is
returned.

Results Pass or Fail
Remarks

Test Number 20.30
Test Title Controller to Switch messages / Modify state / Verify basic Modify

state Add message is implemented
Test Purpose Verify that a basic Flow ADD request does not generate an error.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Modify-State: Modify-State messages are sent by the controller to manage state on the
switches. Their primary purpose is to add/delete and modify Flows in the Flow tables
and to set switch port properties

Profile Status MANDATORY for ALL Profiles
Requirements Modify Flow Add implemented
Topology Control-plane connection between DUT and reference controller
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_flow_mod command ofpfc_add to the DUT, verify no Error is
returned

Results Pass or Fail
Remarks

Test Number 20.40
Test Title Controller to Switch messages / Modify state / Verify basic Modify

state Delete message is implemented
Test Purpose Verify that a basic Flow Delete request does not generate an error.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Modify-State: Modify-State messages are sent by the controller to manage state on the
switches. Their primary purpose is to add/delete and modify Flows in the Flow tables
and to set switch port properties

OpenFlow Switch Test Suite

 22 © 2013 Open Networking Foundation

Test case 20.50: Verify basic Modify Flow Modify message is implemented

Test case 20.60: Verify basic Read state is implemented

Test case 20.70: Verify basic send packet is implemented

Profile Status MANDATORY for ALL Profiles
Requirements Modify Flow Delete implemented
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_flow_mod command ofpfc_delete to the DUT, verify no Error is
returned

Results Pass or Fail
Remarks

Test Number 20.50
Test Title Controller to Switch messages / Modify state / Verify basic Modify

State Modify message is implemented
Test Purpose Verify that a basic Modify State Modify request does not generate an

error.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Modify-State: Modify-State messages are sent by the controller to manage state on the
switches. Their primary purpose is to add/delete and modify Flows in the Flow tables
and to set switch port properties

Profile Status MANDATORY for ALL Profiles
Requirements Modify Flow Delete implemented
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_flow_mod command ofpfc_modify to the DUT, verify no Error is
returned

Results Pass or Fail
Remarks

Test Number 20.60
Test Title Controller to Switch messages / Read state / Verify basic Read state is

implemented
Test Purpose Verify that a basic Read state request does not generate an error.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Read-State: Read-State messages are used by the controller to collect statistics from
the switch’s flow-tables, ports and the individual flow entries

Profile Status MANDATORY for ALL Profiles
Requirements Read state is implemented
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_stats_request to the DUT. Verify ofpt_stats_reply is received
Results Pass or Fail
Remarks

Test Number 20.70
Test Title Controller to Switch messages / Send packet / Verify basic send packet

OpenFlow Switch Test Suite

 23 © 2013 Open Networking Foundation

Test case 20.80: Verify basic barrier request-reply is implemented

Test case 20.90: Packet_in generation

is implemented
Test Purpose Verify that a basic send packet request does not generate an error.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Send-Packet: These are used by the controller to send packets out of a specified port
on the switch

Profile Status MANDATORY for ALL Profiles
Requirements Send packet implemented
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection on the DUT.
Methodology Configure and connect the Primary-controller on DUT. Send

ofpt_packet message to DUT. Verify no error is returned.
Results Pass or Fail
Remarks

Test Number 20.80
Test Title Controller to Switch messages / Barrier / Verify basic barrier request-

reply is implemented
Test Purpose Verify that a basic barrier request does not generate an error.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.1 Controller to Switch, p. 10.
Barrier: Barrier request/reply messages are used by the controller to ensure message
dependencies have been met or to receive notifications for completed operations.

Profile Status MANDATORY for ALL Profiles
Requirements Basic barrier request-reply implemented
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send basic

barrier request to the DUT; verify no Error is returned.
Results Pass or Fail
Remarks

Test Number 20.90
Test Title Asynchronous Messages / Packet_in generation
Test Purpose Verify that non matched data plane packets generate a packet_in to the

controller
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.2 Asynchronous, p. 10.
Packet-in: For all packets that do not have a matching Flow entry, a packet-in event is
sent to the controller.

Profile Status MANDATORY for ALL Profiles
Requirements Packet_in is implemented
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection on the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send packet

to the DUT data plane port; verify the controller receives a packet_in.
Results Pass or Fail
Remarks

OpenFlow Switch Test Suite

 24 © 2013 Open Networking Foundation

Test case 20.100: Verify basic Hello messages are implemented

Test case 20.110: Verify Echo Reply messages are implemented

Test Suite 30: Spanning Tree
Test suite 30 checks for implementation of Spanning Tree Protocol related functions. Most of
these tests are not required for conformance. Only port state and config messages that have a
possible application outside of STP are required for conformance.

Special cases:
Only the following test cases are MANDATORY and tested: 30.40 Port Down.

Profiles:
All profiles MUST pass test case 30.40.

Test Number 20.100
Test Title Symmetric Messages / Hello / Verify basic Hello messages are

implemented
Test Purpose Verify basic Hello message generation with correct version field
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.3 Symmetric, p. 11.
Hello: Hello messages are exchanged between the switch and controller upon
connection startup.

Profile Status MANDATORY for ALL Profiles
Requirements Hello message is implemented
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Verify from

controller log or packet trace that a ofpt_hello message is generated, and
the version field correctly populated

Results Pass or Fail
Remarks

Test Number 20.110
Test Title Symmetric Messages / Echo / Verify Echo Reply messages are

implemented
Test Purpose Verify basic Echo Reply generation
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.1.3 Symmetric, p. 11.
Hello: Echo: Echo request/reply messages can be sent from either the switch or the
controller, and must return an echo reply. They can be used to indicate the latency,
bandwidth, and/or liveness of a controller-switch connection

Profile Status MANDATORY for ALL Profiles
Requirements ofpt_echo_request/reply is implemented
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_echo_request. Verify from controller log or packet trace that
ofpt_echo_reply message is generated.

Results Pass or Fail
Remarks

OpenFlow Switch Test Suite

 25 © 2013 Open Networking Foundation

Test case 30.10: Flood control port mod message

Test case 30.20: Port config bits

Test case 30.40: Port administratively down

Test Number 30.10
Test Title Spanning Tree / No Spanning Tree / Flood control port mod message
Test Purpose Verify Controller is able to control flooding with port mod messages
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
Switches that do not support 802.1D spanning tree must allow the controller to specify
the port status for packet flooding through the port-mod messages

Profile Status OPTIONAL
Requirements Port mod ofppc_no_flood flag is implemented
Topology Control-plane connection between DUT and reference controller.

At least 4 data plane connections to the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Move a

subset of ports into the flood group, create flow entry with flood action,
generate matching data plane packet. Verify only ports in the flood
group output packet. Verify all ports in the flood group output the
packet.

Results Pass or Fail or Not Tested
Remarks For Example: 4 data plane ports - 1 input port, 2 output ports in the

flood group, 1 output port not in flood group.

Test Number 30.20
Test Title Spanning Tree / Config / Port config bits
Test Purpose Verify Controller is able to read the current Spanning Tree state
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
The port config bits indicate whether a port has been administratively brought down,
options for handling 802.1D spanning tree packets, and how to handle incoming and
outgoing packets. These bits, configured over multiple switches, enable an OpenFlow
network to safely flood packets along either a custom or 802.1D spanning tree; When
OFPPFL_NO_STP is 0, STP controls the OFPPFL_NO_FLOOD and
OFPPFL_STP_* bits directly. OFPPFL_NO_FLOOD is set to 0 when the STP port
state is Forwarding, otherwise to 1. The bits in OFPPFL_STP_MASK are set to one of
the other OFPPFL_STP_* values according to the current STP port state.

Profile Status OPTIONAL
Requirements Port mod OFPPFL_STP_* and OFPPFL_NO_* config bits are

implemented
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send

ofpt_features_request and verify port config bits are set according to the
DUT config

Results Pass or Fail or Not Tested
Remarks

Test Number 30.40
Test Title Spanning Tree / Config / Port administratively down
Test Purpose Verify Controller is able to bring port up and down
Specification OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, p. 17.

OpenFlow Switch Test Suite

 26 © 2013 Open Networking Foundation

Test case 30.50: Disable 802.1D Spanning Tree

Test case 30.60: Drop all except 802.1D

Reference OFPPC_PORT_DOWN =1<<0, /* Port is administratively down.

Profile Status MANDATORY for ALL Profiles
Requirements DUT is able to get and set port state ”administratively down”
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify

current port state; if port is down bring port up. Send port down
message; verify port is down. Send port up message; verify port is up
again.

Results Pass or Fail
Remarks Port must end in a port_up state for subsequent tests.

Test Number 30.50
Test Title Spanning Tree / Config / Disable 802.1D Spanning Tree
Test Purpose Verify Controller is able to enable and disable Spanning Tree on port
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, p. 17.
OFPPC_NO_STP=1<<1, /* Disable 802.1D spanning tree on port

Profile Status OPTIONAL
Requirements DUT is able to get and set port state ”Disable 802.1D ”
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify

current port state; if 802.1D is enabled, disable it. Using
features_request, verify that ofppc_stp bit=0. Enable Spanning Tree.
Using features_request, verify that ofppc_stp bit=1. Disable Spanning
Tree. Using features_request, verify that ofppc_stp bit=0.

Results Pass or Fail or Not Tested
Remarks Testing of non-OpenFlow Spanning Tree implementation is out of

scope.

Test Number 30.60
Test Title Spanning Tree / Config / Drop all except 802.1D
Test Purpose Verify Controller is able to enable and disable OFPPC_NO_RECV
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, p. 17.
OFPPC_NO_RECV=1<<2, /* Drop all packets except 802.1D spanning tree packets.

Profile Status OPTIONAL
Requirements DUT is able to get and set port state ”OFPPC_NO_RECV ”
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify

current port state for OFPPC_NO_RECV; if OFPPC_NO_RECV is
enabled, disable it. Verify on data plane port that Spanning Tree packets
are received, all other packet types are also received. Enable
OFPPC_NO_RECV. Verify on data plane port that Spanning Tree

OpenFlow Switch Test Suite

 27 © 2013 Open Networking Foundation

Test case 30.70: Forward all except 802.1D

Test case 30.80: Flood control port mod message

packets are still received, all other packet types are now dropped.
Disable OFPPC_NO_RECV again. Verify on data plane port that
Spanning Tree packets are still received, and all other packet types are
received again.

Results Pass or Fail or Not Tested
Remarks

Test Number 30.70
Test Title Spanning Tree / Config / Forward all except 802.1D
Test Purpose Verify Controller is able to enable and disable

OFPPC_NO_RECV_STP
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, p. 17.
OFPPC_NO_RECV_STP=1<3, Drop received 802.1D STP packets.

Profile Status OPTIONAL
Requirements DUT is able to get and set port state ”OFPPC_NO_RECV_STP”, and

all 802.1D packets on the port are dropped, all other packets are
forwarded

Topology Control-plane connection between DUT and reference controller.
At least one data plane connection to DUT.

Methodology Configure and connect the Primary-controller on the DUT. Verify
current port state for OFPPC_NO_RECV _STP; if OFPPC_NO_RECV
_STP is enabled, disable it. Verify on data plane port that Spanning Tree
packets are received, all other packet types are also received. Enable
OFPPC_NO_RECV. Verify on data plane port that Spanning Tree
packets are dropped, all other packet types are still received. Disable
OFPPC_NO_RECV again. Verify on data plane port that Spanning Tree
packets are now received, and all other packet types are still received.

Results Pass or Fail or Not Tested
Remarks

Test Number 30.80
Test Title Spanning Tree / No Spanning Tree / Flood control port mod message
Test Purpose Verify Controller is able to control flooding with port mod messages
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
Switches that do not support 802.1D spanning tree must allow the controller to specify
the port status for packet flooding through the port-mod messages

Profile Status OPTIONAL
Requirements Port mod ofppc_no_flood flag is implemented
Topology Control-plane connection between DUT and reference controller.

At least 4 data plane connections to the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Move a

subset of ports into the flood group, create flow entry with flood action,
generate matching data plane packet. Verify only ports in the flood
group output packet. Verify all ports in the flood group output the

OpenFlow Switch Test Suite

 28 © 2013 Open Networking Foundation

Test case 30.90: Drop all egress packets on port

Test case 30.100: No Packet_in

packet.
Results Pass or Fail or Not Tested
Remarks For Example: 4 data plane ports - 1 input port, 2 output ports in the

flood group, 1 output port not in flood group.

Test Number 30.90
Test Title Spanning Tree / Config / Drop all egress packets on port.
Test Purpose Verify Controller is able to enable and disable OFPPC_NO_FWD
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, p. 17.
OFPPC_NO_FWD=1<<5, Drop packets forwarded to port.

Profile Status OPTIONAL
Requirements DUT is able to get and set port state OFPPC_NO_FWD, and all packets

on the port are dropped.
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify

current port state for OFPPC_NO_FWD; if OFPPC_NO_FWD is
enabled, disable it. Create Flow Rule forwarding to one port. Verify on
data plane that packets are forwarded to that port. Enable
OFPPC_NO_FWD. Verify on data plane that packets are now dropped.
Disable OFPPC_NO_FWD again. Verify on data plane that packets are
forwarded again.

Results Pass or Fail
Remarks The DUT must end in state OFPPC_NO_FWD=0 for subsequent tests.

Test Number 30.100
Test Title Spanning Tree / Config / No Packet_in
Test Purpose Verify Controller is able to enable and disable

OFPPC_NO_PACKET_IN
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, p. 17.
OFPPC_NO_FWD=1<<5, Drop packets forwarded to port.

Profile Status OPTIONAL
Requirements DUT is able to get and set port state OFPPC_NO_FWD, and all packets

on the port are dropped.
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify

current port state for OFPPC_NO_PACKET_IN; if
OFPPC_NO_PACKET_IN is enabled, disable it. Verify on control-
plane connection that packets reaching this port generate packet_in
messages. Enable OFPPC_NO_PACKET_IN. Verify on control-plane
connection that packets reaching the port do not generate packet_in
messages. Disable OFPPC_NO_PACKET_IN again. Verify on control-
plane connection that packets are now generating packet_in again.

OpenFlow Switch Test Suite

 29 © 2013 Open Networking Foundation

Test case 30.110: STP classification

Test case 30.120: STP features reply

Test case 30.130: STP on all physical ports

Results Pass or Fail
Remarks The DUT must end in state OFPPC_NO_PACKET_IN=0 for

subsequent tests.

Test Number 30.110
Test Title Spanning Tree / Hybrid / STP classification
Test Purpose Verify DUT is able to process STP locally first.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
If spanning tree is supported, process packets locally first. OpenFlow switches may
OPTIONALLY support 802.1D Spanning Tree Protocol. Those switches that do
support it are expected to process all 802.1D packets locally before performing flow
lookup.

Profile Status OPTIONAL
Requirements DUT is HYBRID and able to run a local Spanning Tree.
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

Flow Rule forwarding STP packets from port 1 to port 2. Verify STP
packets do not trigger a flow match as the local STP processes them
first.

Results Pass or Fail or Not Tested
Remarks

Test Number 30.120
Test Title Spanning Tree / Hybrid / STP features reply
Test Purpose Verify a DUT that implements STP sets the OFPC_STP bit in the

’capabilities’ field of its OFPT_FEATURES_REPLY message
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
A switch that implements STP must set the OFPC_STP bit in the ’capabilities’ field of
its OFPT_FEATURES_REPLY message

Profile Status OPTIONAL
Requirements The DUT MUST set the OFPC_STP bit if it supports Spanning Tree.
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Verify the

OFPC_STP bit in the ’capabilities’ field of the DUT’s
OFPT_FEATURES_REPLY message is set by checking the controller
log or packet trace.

Results Pass or Fail or Not Tested
Remarks

Test Number 30.130
Test Title Spanning Tree / Hybrid / STP on all physical ports
Test Purpose Verify a DUT that implements Local STP supports STP on all physical

ports

OpenFlow Switch Test Suite

 30 © 2013 Open Networking Foundation

Test case 30.140: Flood along STP topology

Test case 30.150: STP triggers port_update message

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
A switch that implements STP must make it available on all of its physical ports, but it
need not implement it on virtual ports (e.g. OFPP_LOCAL)

Profile Status OPTIONAL
Requirements A switch that implements Local STP MUST make it available on all of

its physical ports
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Activate

Local STP on all available physical ports.
Results Pass or Fail or Not Tested
Remarks

Test Number 30.140
Test Title Spanning Tree / Hybrid / Flood along STP topology
Test Purpose Verify a DUT that implements Local STP floods packets only along the

locally determined STP topology
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
Port status, as specified by the spanning tree protocol, is then used to limit packets
forwarded to the OFP_FLOOD port to only those ports along the spanning tree

Profile Status OPTIONAL
Requirements A switch that implements STP locally MUST adapt the ofppc_flood

status of ports to the external STP topology
Topology Control-plane connection between DUT and reference controller.

At least 4 data plane ports connected to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Activate

Local STP on all available physical ports. Force Local STP to disable at
least one port (one method would be to create a loop between two
ports). Use controller to send packets to the OFP_FLOOD port. Verify
packets are only forwarded along the Local STP topology.

Results Pass or Fail or Not Tested
Remarks

Test Number 30.150
Test Title Spanning Tree / Hybrid / STP triggers port_update message
Test Purpose Verify a DUT that implements Local STP reports port state changes

caused by Local STP back to the controller
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
Port changes as a result of the spanning tree are sent to the controller via port-update
messages

Profile Status OPTIONAL
Requirements Local STP reports port state changes caused by STP back to the

controller
Topology Control-plane connection between DUT and reference controller.

At least 4 data plane ports connected to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Activate

OpenFlow Switch Test Suite

 31 © 2013 Open Networking Foundation

Test case 30.160: OFP_ALL or explicit out_port override STP

Test case 30.170: Enable – Disable STP per port

Local STP on all available physical ports. Force Local STP topology
change so STP port state on the DUT changes (one method would be to
create a loop between two ports). Verify port_update message is sent to
the controller.

Results Pass or Fail or Not Tested
Remarks

Test Number 30.160
Test Title Spanning Tree / Hybrid / OFP_ALL or explicit out_port override STP
Test Purpose Verify OFP_ALL and explicit out_port actions ignore Local STP

generated port state when forwarding packets.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
Note that forward actions that specify the outgoing port or OFP_ALL ignore the port
status set by the spanning tree protocol

Profile Status OPTIONAL
Requirements A switch MUST forward packets to OFP_ALL or explicit set port,

ignoring the port status set by the spanning tree protocol
Topology Control-plane connection between DUT and reference controller.

At least 4 data plane ports connected to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Activate

Local STP on all available physical ports. Verify at least one of the
connected ports is blocked by spanning tree (one method would be to
create a loop between two ports). Create a flow with target OFP_ALL;
send a matching packet, verify it gets output from the blocked port.
Create a flow explicitly forwarding a packet to the blocked port, send
matching packet, verify packet gets output from the blocked port.

Results Pass or Fail or Not Tested
Remarks

Test Number 30.170
Test Title Spanning Tree / Hybrid / Enable – Disable STP per port
Test Purpose Verify the DUT allows enabling and disabling Local STP per port, and

changes forwarding behavior accordingly
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.5 Spanning Tree, p. 13.
The switch must support disabling spanning tree per port. Packets received on ports
that are disabled by spanning tree must follow the normal flow table processing path

Profile Status OPTIONAL
Requirements When a Local STP port state changes from STP enabled to ATP

disabled, the packets received on that port MUST be processed by the
normal flow table processing path.

Topology Control-plane connection between DUT and reference controller.
At least 4 data plane ports connected to DUT.

Methodology Configure and connect the Primary-controller on the DUT. Activate
Local STP on all available physical ports. Send STP packets; they
should not generate packet_in events as they are processed by the

OpenFlow Switch Test Suite

 32 © 2013 Open Networking Foundation

Test Suite 40: Flow modification messages
Test suite 40 deals with all the requirements for adding, editing, deleting and removing a
flow.

Special cases:
In some instances 40.40, 40.50 and 40.60 may not be applicable and are OPTIONAL. For
example, a software switch might be able to have every possible port number available.

Tests 40.70 and 40.130 deal with Emergency Mode and are OPTIONAL.

Profiles:
All profiles MUST pass all tests from 40.10 to 40.230. With the exceptions (40.40 to 40.70
and 40.130) named above.

Test case 40.10: Overlap checking

Test case 40.20: No overlap checking

external STP. Disable STP on one port; verify STP packets from this
port now generate packet_in events.

Results Pass or Fail or Not Tested
Remarks

Test Number 40.10
Test Title Flow Table Modification Messages / ADD / Overlap checking
Test Purpose Verify that overlap checking generates an error when the controller

attempts to add an overlapping flow to the flow table.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
For ADD requests with the OFPFF_CHECK_OVERLAP flag set, the switch must first
check for any overlapping flow entries. Two flow entries overlap if a single packet may
match both, and both entries have the same priority. If an overlap conflict exists
between an existing flow entry and the ADD request, the switch must refuse the
addition and respond with an ofp_error_msg with OFPET_FLOW_MOD_FAILED
type and OFPFMFC_OVERLAP code

Profile Status MANDATORY for ALL Profiles
Requirements DUT implements overlap checking
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Add flow 1

into flow table. Try to add overlapping flow with “check overlap” flag
set into flow table. Verify the correct error message is returned. Verify
flow is not entered into flow table.

Results Pass or Fail
Remarks

Test Number 40.20
Test Title Flow Table Modification Messages / ADD / No overlap checking
Test Purpose Verify that no overlap checking does not generate an error when the

OpenFlow Switch Test Suite

 33 © 2013 Open Networking Foundation

Test case 40.30: Identical flows

Test case 40.40: No table to add

controller attempts to add an overlapping flow to the flow table.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
For valid (non-overlapping) ADD requests, or those with no overlap checking, the
switch must insert the flow entry at the lowest numbered table for which the switch
supports all wildcards set in the flow_match structure, and for which the priority
would be observed during the matching process."

Profile Status MANDATORY for ALL Profiles
Requirements DUT implements adding overlapping flows
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Add flow 1

into flow table. Add overlapping flow with “check overlap” flag not set
into flow table. Verify no error message is returned. Verify flow is
entered into flow table.

Results Pass or Fail
Remarks

Test Number 40.30
Test Title Flow Table Modification Messages / ADD / Identical flows
Test Purpose Verify that adding an identical flow overwrites the existing flow and

clears the counters
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
If a flow entry with identical header fields and priority already resides in any table,
then that entry, including its counters, must be removed, and the new flow entry
added."

Profile Status MANDATORY for ALL Profiles
Requirements DUT implements adding identical flows while resetting counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add flow 1

into flow table. Send matching packets to data plane to increase
counters. Add identical flow into flow table. Verify the new flow
replaces the existing flow. Verify the counters are reset.

Results Pass or Fail
Remarks

Test Number 40.40
Test Title Flow Table Modification Messages / ADD / No table to add
Test Purpose Verify that flow table full error messages are generated.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
If a switch cannot find any table in which to add the incoming flow entry, the switch
should send an ofp_error_msg with OFPET_FLOW_MOD_FAILED type and
OFPFMFC_ALL_TABLES_FULL code

Profile Status MANDATORY for ALL Profiles

OpenFlow Switch Test Suite

 34 © 2013 Open Networking Foundation

Test case 40.50: Never valid output port

Test case 40.60: Currently non-existant output port

Requirements DUT returns correct error code when flow table is full.
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create and

add flows until flow table is full, verify
OFPFMFC_ALL_TABLES_FULL error message is generated.

Results Pass or Fail
Remarks

Test Number 40.50
Test Title Flow Table Modification Messages / ADD / Never valid output port
Test Purpose Verify that adding a flow with a never valid output port number triggers

correct error
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
If the action list in a flow mod message references a port that will never be valid on a
switch, the switch must return an ofp_error_msg with OFPET_BAD_ACTION type
and OFPBAC_BAD_OUT_PORT code

Profile Status MANDATORY for ALL Profiles
Requirements DUT returns correct error code when never valid port is referenced as

output port
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create and

add flow pointing to a never existing port number. Verify
OFPBAC_BAD_OUT_PORT error message is generated

Results Pass or Fail
Remarks

Test Number 40.60
Test Title Flow Table Modification Messages / ADD / Currently non-existant

output port Version A
Test Purpose Verify that adding a flow with action OFPAT_OUTPUT to a currently

not available port number (but possibly available later) generates one of
the two possible responses from the switch

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
If the referenced port may be valid in the future, e.g. when a line card is added to a
chassis switch, or a port is dynamically added to a software switch, the switch may
either silently drop packets sent to the referenced port or immediately return an
OFPBAC_BAD_OUT_PORT error and refuse the flow mod

Profile Status 1 of 2 [40.60a | 40.60b] is MANDATORY for All Profiles
Requirements DUT accepts flow pointing to a port that may be valid in the future.
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create and

add flow pointing to a currently non-existant port number.
Results Pass or Fail

OpenFlow Switch Test Suite

 35 © 2013 Open Networking Foundation

Test case 40.60a: Currently non-existant output port Version A

Test case 40.60b: Currently non-existent port Version B

Test case 40.70: No timeout for emergency flows

Remarks

Test Number 40.60a
Test Title Flow Table Modification Messages / ADD / Currently non-existant

output port Version A
Test Purpose Verify that adding a flow with action output to a currently not available

port number (but possibly available later) gets added, and silently drops
packets

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
If the referenced port may be valid in the future, e.g. when a line card is added to a
chassis switch, or a port is dynamically added to a software switch, the switch may
either silently drop packets sent to the referenced port

Profile Status OPTIONAL
Requirements DUT accepts flow pointing to a port that may be in the future valid.

Packets are dropped until then.
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create and

add flow pointing to a currently non-existant port number. Verify flow
is added, but packets are dropped

Results Pass or Fail or Not Tested
Remarks Version A option

Test Number 40.60b
Test Title Flow Table Modification Messages / ADD /

Currently non-existant port Version B
Test Purpose Verify that adding a flow with action output to a currently not available

port number triggers correct error message
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
or immediately return an OFPBAC_BAD_OUT_PORT error and refuse the flow mod

Profile Status OPTIONAL
Requirements DUT does not accept flow pointing to a port that may be in the future

valid, and generates correct error message
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create and

add flow pointing to a currently non-existant port number. Verify flow
is not added, but error message generated

Results Pass or Fail or Not Tested
Remarks Version B option

Test Number 40.70

OpenFlow Switch Test Suite

 36 © 2013 Open Networking Foundation

Test case 40.80: Modify non-existent flow

Test case 40.90: Modify action preserves counters

Test Title Flow Table Modification Messages / ADD / No timeout for emergency
flows

Test Purpose Verify that adding an emergency flow with a non-zero timeout value
triggers correct error message.

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
Emergency flow mod messages must have timeout values set to zero. Otherwise, the
switch must refuse the addition and respond with an ofp_error_msg with
OFPET_FLOW_MOD_FAILED type and OFPFMFC_BAD_EMERG_TIMEOUT
code

Profile Status MANDATORY for Emergency Mode.
Requirements DUT only accepts timeout = 0 for emergency flows, all other values

MUST trigger correct error message
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create and

add emergency flow with timeout = 0, verify flow gets added. Create
and add emergency flow with non-zero timeout, verify flow does not get
added. Verify OFPFMFC_BAD_EMERG_TIMEOUT error message
is returned.

Results Pass or Fail or Not Tested
Remarks

Test Number 40.80
Test Title Flow Table Modification Messages / Modify / Modify non-existent flow
Test Purpose Verify that modifying a non-existent flow adds the flow with zeroed

counters.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
For MODIFY requests, if a flow entry with identical header fields does not current
reside in any table, the MODIFY acts like an ADD, and the new flow entry must be
inserted with zeroed counters

Profile Status MANDATORY for ALL Profiles
Requirements DUT allows modifying non-existent flows and adds the respective flow

to the flow table
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send a

modify request targeting a non-existent flow. Verify the flow gets added
with zeroed counters

Results Pass or Fail
Remarks

Test Number 40.90
Test Title Flow Table Modification Messages / Modify / Modify action preserves

counters
Test Purpose Verify that modifying the action of a flow does not reset counters

OpenFlow Switch Test Suite

 37 © 2013 Open Networking Foundation

Test case 40.100: Modify_strict of action preserves counters

Test case 40.110: Delete non-existent flow

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
Otherwise, the actions field is changed on the existing entry and its counters and idle
time fields are left unchanged.

Profile Status MANDATORY for ALL Profiles
Requirements Modifying the action of an existing flow preserves the flow counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Insert a

flow. Send data plane packets to increase counters. Modify the Flow
Action with OFPFC_MODIFY. Get flow statistics, verify counters were
preserved.

Results Pass or Fail
Remarks

Test Number 40.100
Test Title Flow Table Modification Messages / Modify / Modify_strict action

preserves counters
Test Purpose Verify that modifying the action of a flow does not reset counters for

modify_strict
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
Otherwise, the actions field is changed on the existing entry and its counters and idle
time fields are left unchanged.

Profile Status MANDATORY for ALL Profiles
Requirements Modifying the action of an existing flow preserves counters for modify

strict
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Insert a

flow. Send data plane packets to increase counters. Modify the Flow
Action with OFPFC_MODIFY_STRICT. Get flow statistics, verify
counters are preserved.

Results Pass or Fail
Remarks

Test Number 40.110
Test Title Flow Table Modification Messages / Modify / Delete non-existent flow
Test Purpose Verify that deleting a non-existent flow does not generate an error
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
For DELETE requests, if no flow entry matches, no error is recorded, and no flow
table modification occurs.

Profile Status MANDATORY for ALL Profiles
Requirements Deleting a non-existent flow does not generate an error

OpenFlow Switch Test Suite

 38 © 2013 Open Networking Foundation

Test case 40.120: Delete flows with and without flow_removed flag set

Test case 40.130: Delete emergency flow

Test case 40.140: Delete without wildcards

Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send a

delete request for a non-existent flow. Verify no error is returned.
Results Pass or Fail
Remarks

Test Number 40.120
Test Title Flow Table Modification Messages / Modify / Delete flows with and

without flow_removed flag set
Test Purpose Verify that deleting a flow with send flow removed flag set triggers a

flow removed message, and deleting a flow without the send flow
removed flag set does not trigger a flow removed message.

Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
If flow entries match, and must be deleted, then each normal entry with the
OFPFF_SEND_FLOW_REM flag set should generate a flow removed message.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of the OFPFF_SEND_FLOW_REM flag
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate

two flows, one of them with OFPFF_SEND_FLOW_REM set. Delete
both entries, verify only the one with the OFPFF_SEND_FLOW_REM
flag set, generates an OFPT_FLOW_REMOVED message.

Results Pass or Fail
Remarks

Test Number 40.130
Test Title Flow Table Modification Messages / Modify / Delete emergency flow
Test Purpose Verify that deleting an emergency flow does not trigger a flow removed

message.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
Deleted emergency flow entries generate no flow removed messages

Profile Status MANDATORY for Emergency Mode
Requirements Correct implementation of emergency flow removal
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Insert a flow

with the OFPFF_EMERG flag set. Send flow_mod message command
DELETE with the OFPFF_EMERG flag set. Verify no
OFPT_FLOW_REMOVED message is generated.

Results Pass or Fail or Not Tested
Remarks

Test Number 40.140

OpenFlow Switch Test Suite

 39 © 2013 Open Networking Foundation

Test case 40.150: Delete with wildcards set

Test case 40.160: Strict_Delete with wildcards set

Test Title Flow Table Modification Messages / Modify / Delete without wildcards
Test Purpose Verify that flow_mod delete and strict_delete map to the correct flows
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
MODIFY and DELETE flow mod commands have corresponding STRICT versions.
Without STRICT appended, the wildcards are active and all flows that match the
description are modified or removed. If STRICT is appended, all fields, including the
wildcards and priority, are strictly matched against the entry, and only an identical
flow is modified or removed

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of strict and non strict matching
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. In this case,

strict_delete and delete are identical. Insert a flow F1 with all header
fields set. Issue a strict_delete message matching F1, and verify F1 is
deleted. Insert a flow F2 with all header fields set. Issue a delete
message matching F2, and verify F2 is deleted.

Results Pass or Fail
Remarks

Test Number 40.150
Test Title Flow Table Modification Messages / Modify / Delete with wildcards set
Test Purpose Verify that delete maps to the correct flows
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
MODIFY and DELETE flow mod commands have corresponding STRICT versions.
Without STRICT appended, the wildcards are active and all flows that match the
description are modified or removed. If STRICT is appended, all fields, including the
wildcards and priority, are strictly matched against the entry, and only an identical
flow is modified or removed

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of non strict delete matching
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. In this case

both flows are matched by the wildcards in the delete.
Insert a flow T1 with all header fields set, except Ethernet source
address, this is wildcarded. Insert a flow T2 with only ingress port set,
all other fields are wilcarded. The ingress port of T2 is identical to the
ingress port of T1. Issue a delete message matching on ingress port of
both flows (T1,T2), all other fields are wild carded. Verify that both
flows (T1, T2) are deleted.

Results Pass or Fail
Remarks

Test Number 40.160

OpenFlow Switch Test Suite

 40 © 2013 Open Networking Foundation

Test case 40.170: Testing that delete message ignores priorities

Test Title Flow Table Modification Messages / Modify / Strict_Delete with
wildcards set

Test Purpose Verify that strict_delete maps to the correct flows
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
MODIFY and DELETE flow mod commands have corresponding STRICT versions.
Without STRICT appended, the wildcards are active and all flows that match the
description are modified or removed. If STRICT is appended, all fields, including the
wildcards and priority, are strictly matched against the entry, and only an identical
flow is modified or removed

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of strict_delete matching
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. In this case,

only T2 matches. Insert a flow T1 with all header fields set, except
Ethernet source address, this is wildcarded. Insert a flow T2 with only
ingress port set, all other fields are wilcarded. The ingress port of T2 is
identical to the ingress port of T1. Issue a strict_delete message
matching on ingress port of both flows (T1,T2), all other fields are wild
carded. Verify that only flow T2 gets deleted.

Results Pass or Fail
Remarks

Test Number 40.170
Test Title Flow Table Modification Messages / Modify / Testing that delete

message ignores priorities
Test Purpose Verify that delete maps to the correct flows
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
MODIFY and DELETE flow mod commands have corresponding STRICT versions.
Without STRICT appended, the wildcards are active and all flows that match the
description are modified or removed. If STRICT is appended, all fields, including the
wildcards and priority, are strictly matched against the entry, and only an identical
flow is modified or removed

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of non strict delete matching
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Insert a

priority 100 flow T1 with all header fields set, except Ethernet source
address, this is wildcarded. Insert a priority 200 flow T2 with only
ingress port set, all other fields are wilcarded. The ingress port of T2 is
identical to the ingress port of T1. Insert a flow T3, identical to T2,
except the Priority is set to 300. Issue a delete message matching on
ingress port of all flows (T1, T2, T3) with priority 200 as additional
constraint. All other fields are wild carded. Verify all flows (T1, T2, T3)
are deleted.

Results Pass or Fail

OpenFlow Switch Test Suite

 41 © 2013 Open Networking Foundation

Test case 40.180: Testing that strict_delete message does not ignore priorities

Test case 40.190: Delete with constraint out_port

Remarks

Test Number 40.180
Test Title Flow Table Modification Messages / Modify Testing that strict_delete

message does not ignore priorities
Test Purpose Verify that delete maps to the correct flows
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
MODIFY and DELETE flow mod commands have corresponding STRICT versions.
Without STRICT appended, the wildcards are active and all flows that match the
description are modified or removed. If STRICT is appended, all fields, including the
wildcards and priority, are strictly matched against the entry, and only an identical
flow is modified or removed

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of strict and non strict matching
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Insert a

priority 100 flow T1 with all header fields set, except Ethernet source
address, this is wildcarded. Insert a priority 200 flow T2 with only
ingress port set, all other fields are wilcarded. The ingress port of T2 is
identical to the ingress port of T1. Insert a flow T3, identical to T2,
except the Priority is set to 300. Issue a strict_delete message matching
on ingress port of all flows (T1, T2, T3) with priority 200 as additional
constraint. All other fields are wild carded. Verify only T2 gets deleted.

Results Pass or Fail
Remarks

Test Number 40.190
Test Title Flow Table Modification Messages / Modify / Delete with constraint

out_port
Test Purpose Verify that delete supports filtering on action out_port
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
DELETE and DELETE STRICT commands can be optionally filtered by output port. If
the out_port field contains a value other than OFPP_NONE, it introduces a constraint
when matching. This constraint is that the rule must contain an output action directed
at that port.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of filtering delete commands based on out_port
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Insert two

OpenFlow Switch Test Suite

 42 © 2013 Open Networking Foundation

Test case 40.200: out_port ignored by Add and Modify requests

Test case 40.210: Timeout with flow removed message

identical flows forwarding to two different out_ports. Send an exact
match delete request for these flows, but specify only one of the two
ports as out_port. Check that only the flow with the specified out_port is
deleted.

Results Pass or Fail
Remarks

Test Number 40.200
Test Title Flow Table Modification Messages / Modify / out_port ignored by Add

and Modify requests
Test Purpose Verify that out_port values in FLOW_MOD Add or Modify requests are

ignored.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
Messages, p. 13.
DELETE and DELETE STRICT commands can be optionally filtered by output port. If
the out_port field contains a value other than OFPP_NONE, it introduces a constraint
when matching.
…
This field is ignored by ADD, MODIFY, and MODIFY STRICT messages

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of FLOW_MOD Add and Modify requests
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send

command ofp_flow_mod add with out_port value set to some port.
Verify flow is added but out_port field is ignored. Send command
ofp_flow_mod modify with out_port value set to some port . Verify
flow modification takes places but, out_port is ignored.

Results Pass or Fail
Remarks Flow Delete, Delete_Strict, Add, Modify and Modify Strict all share the

same format.

Test Number 40.210
Test Title Flow Table Modification Messages / Flow removal / Timeout with flow

removed message
Test Purpose Verify flow removed message for timeout is implemented
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.7 Flow removal, p. 15.
When the OFPFF_SEND_FLOW_REM flag is set, the switch must send a flow
removed message when the flow expires. The default is for the switch to not send flow
removed messages for newly added flows

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of flow removed messages for timeout
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

OpenFlow Switch Test Suite

 43 © 2013 Open Networking Foundation

Test case 40.220: Idle timeout

Test case 40.230: hard timeout

with hard timeout = 1 sec and OFPFF_SEND_FLOW_REM flag set.
Send for n seconds packets matching the flow to the data plane, then
stop. Verify the OFPT_FLOW_REMOVED message is received with
duration_sec field set to 1 sec

Results Pass or Fail
Remarks

Test Number 40.220
Test Title Flow Table Modification Messages / Flow removal / Idle timeout
Test Purpose Verify that idle timeout is implemented
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.7 Flow removal, p. 15.
Each flow entry has an idle_timeout and a hard_timeout associated with it. If no
packet has matched the rule in the last idle_timeout seconds, or it has been
hard_timeout seconds since the flow was inserted, the switch removes the entry and
sends a flow removed message.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of idle timeout
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with idle timeout = 1 sec. Send packets matching the flow to the data
plane for n seconds, then stop. Verify the flow expiration message is
received and duration_sec field is (n+1)sec.

Results Pass or Fail
Remarks

Test Number 40.230
Test Title Flow Table Modification Messages / Flow removal / hard timeout
Test Purpose Verify that hard timeout is implemented
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.7 Flow removal, p. 15.
Each flow entry has an idle_timeout and a hard_timeout associated with it. If no
packet has matched the rule in the last idle_timeout seconds, or it has been
hard_timeout seconds since the flow was inserted, the switch removes the entry and
sends a flow removed message.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of hard timeout
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with hard timeout = 1 sec. Send packets matching the flow to the data
plane for n >= 2 second, then stop. Verify the flow expiration message
is received and duration_sec field is 1sec

Results Pass or Fail
Remarks

OpenFlow Switch Test Suite

 44 © 2013 Open Networking Foundation

Test Suite 50: Flow Matching
Test suite 50 deals with all cases of matching the flow table. This is where the profiles
defined for L2 and L3 are most relevant. In this group, each profile will have a different set
of required versus OPTIONAL header fields to match on. Tests focusing on flow entry
priority and fragmented IP packet matching are also part of this group.

Special cases:
Each profile defines a different set of MANDATORY and OPTIONAL test cases in this
group. These are defined in the profiles section in this test suite. All matches MUST consider
the constraints given in OpenFlow spec 1.0, Table2, pp. 3 and 4. So, for example, even the
Single header field match for VLAN ID requires a non-wildcarded Ethertype. These
constraints should be implemented in the test cases where needed, without being mentioned
in the test list for every occurrence.

Profiles:
Full conformance:
MUST pass all tests from 50.10 to 50.190

L2 Profile:
MUST pass test-cases 50.10, 50.20, 50.30, 50.40, 50.50, 50.60, 50.140, 50.190

To satisfy the L2 profile requirements, the device MUST be able to match all of the fields
listed in Table 1 both individually and simultaneously under the constraints given in the
specification and outlined in table 1. When testing a device against this profile, all other
match fields not listed in Table 1 will be wildcarded.

Additionally the DUT MUST be able to match with all fields wildcarded under the
constraints given in the specification as listed in OpenFlow Switch Specification 1.0.0 Table
3 on p. 4.

Table 1: L2 Profile Field lengths and the way they must be applied to flow entries (Excerpt from OpenFlow Switch
Specification 1.0 Table 3 p. 4)

Field Bits When applicable Notes
Ingress Port (Implementation

dependent)
All packets Numerical representation of incoming port,

starting at 1.
Ethernet source address 48 All packets on enabled ports
Ethernet destination address 48 All packets on enabled ports
Ethernet type 16 All packets on enabled ports An OpenFlow switch is required to match the

type in both standard Ethernet and 802.2 with a
SNAP header and OUI of 0x000000. The
special value of 0x05FF is used to match all
802.3 packets without SNAP headers.

VLAN id 12 All packets of Ethernet type
0x8100

L3 Profile:
MUST pass 50.10,50.20, 50.50, 50.80, 50.90, 50.150, 50.190

OpenFlow Switch Test Suite

 45 © 2013 Open Networking Foundation

To satisfy the L3 profile requirements, the device MUST be able to match all of the fields
listed in Table2 both individually and simultaneously under the constraints given in the
specification and outlined in Table 2. When testing a device against this profile, all other
match fields not listed in Table 2 will be wildcarded.

Additionally it MUST be able to match with all fields wildcarded under the constraints given
in the specification as listed in OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.

Table 2: L3 Profile Field lengths and the way they must be applied to flow entries (Excerpt from OpenFlow Switch
Specification 1.0 Table 3 p. 4)

Field Bits When applicable Notes
Ingress Port (Implementation

dependent)
All packets Numerical representation of incoming port,

starting at 1.
Ethernet type 16 All packets on enabled ports An OpenFlow switch is required to match the

type in both standard Ethernet and 802.2 with a
SNAP header and OUI of 0x000000. The
special value of 0x05FF is used to match all
802.3 packets without SNAP headers.

IP source address 32 All IP and ARP packets Can be subnet masked
IP destination address 32 All IP and ARP packets Can be subnet masked

Test case 50.10: All Wildcards

Test case 50.20: Ingress Port (uint16_t in_port)

Test Number 50.10
Test Title Data plane / Matching / All Wildcards
Test Purpose Test matching a global (all wildcards) Flow
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Matching all wildcards
Topology Control-plane connection between DUT and reference controller.

At least three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with all header fields wildcarded and action OFPAT_OUTPUT set to
second port. Send a packet matching the flow. Verify the packet is
forwarded only to the second port.

Results Pass or Fail
Remarks

Test Number 50.20
Test Title Data plane / Matching Single Header Field/ Ingress Port (uint16_t

in_port)
Test Purpose Matching against a flow with Ingress Port set, all other fields are

wildcarded
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field

OpenFlow Switch Test Suite

 46 © 2013 Open Networking Foundation

Test case 50.30: Ethernet source address (dl_src[OFP_ETH_ALEN])

Test case 50.40: Ethernet destination address (dl_dst[OFP_ETH_ALEN])

has a value of ANY, it matches all possible values in the header
Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Matching ingress port
Topology Control-plane connection between DUT and reference controller.

At least three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ingress Port and action
OFPAT_OUTPUT set to second port. Send a packet matching the flow.
Verify the packet gets forwarded only to the second port. Send a packet
not matching the flow, verify a packet_in is generated, and the packet is
not forwarded on the data plane.

Results Pass or Fail
Remarks

Test Number 50.30
Test Title Data plane / Matching Single Header Field/ Ethernet source address

(dl_src[OFP_ETH_ALEN])
Test Purpose Matching against a flow with Ethernet source address set, all other

fields are wildcarded
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full and L2 Profile
Requirements Correct implementation of Matching Ethernet source address
Topology Control-plane connection between DUT and reference controller.

At least three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ethernet source address and
action OFPAT_OUTPUT set to second port. Send a packet matching
the flow. Verify the packet gets forwarded only to the second port. Send
a packet not matching the flow, verify a packet_in is generated, and the
packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.40
Test Title Data plane / Matching Single Header Field/ Ethernet destination address

(dl_dst[OFP_ETH_ALEN])
Test Purpose Matching against a flow with Ethernet destination address set, all other

fields are wildcarded
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

OpenFlow Switch Test Suite

 47 © 2013 Open Networking Foundation

Test case 50.50: Ethernet frame type (uint16_t dl_type)

Profile Status MANDATORY for Full and L2 Profile
Requirements Correct implementation of Matching Ethernet destination address
Topology Control-plane connection between DUT and reference controller.

At least three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ethernet destination
address and action OFPAT_OUTPUT set to second port. Send a packet
matching the flow. Verify the packet gets forwarded only to the second
port. Send a packet not matching the flow, verify a packet_in is
generated, and the packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.50
Test Title Data plane / Matching Single Header Field/ Ethernet frame type

(uint16_t dl_type)
Test Purpose Matching against a flow with Ethernet frame type set, all other fields are

wildcarded (under the constraints given in the specification as listed in
OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Matching Ethernet frame type
Topology Control-plane connection between DUT and reference controller.

At least three data plane connections on the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ethernet frame type and action
OFPAT_OUTPUT set to second port. Send a packet matching the flow.
Verify the packet gets forwarded only to the second port. Send a packet
not matching the flow, verify a packet_in is generated, and the packet is
not forwarded on the data plane.

Results Pass or Fail
Remarks Notes: An OpenFlow switch is required to match the type in both

standard Ethernet and 802.2 with a SNAP header and OUI of 0x000000.
The special value of 0x05FF is used to match all 802.3 packets without
SNAP headers.
To handle the various Ethernet framing types, matching the Ethernet
type is handled in a slightly different manner. If the packet is an
Ethernet II frame, the Ethernet type is handled in the expected way. If
the packet is an 802.3 frame with a SNAP header and Organizationally
Unique Identifier (OUI) of 0x000000, the SNAP protocol id is matched
against the flows Ethernet type. A flow entry that specifies an Ethernet
type of 0x05FF, matches all Ethernet 802.2 frames without a SNAP
header and those with SNAP headers that do not have an OUI of

OpenFlow Switch Test Suite

 48 © 2013 Open Networking Foundation

Test case 50.60: Input VLAN id (uint16_t dl_vlan)

Test case 50.70: Input VLAN priority (uint8_t dl_vlan_pcp)

0x000000."

Test Number 50.60
Test Title Data plane / Matching Single Header Field/ Input VLAN id (uint16_t

dl_vlan)
Test Purpose Matching against a flow with Input VLAN id set, all other fields are

wildcarded (under the constraints given in the specification as listed in
OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full and L2 Profile
Requirements Correct implementation of Matching input VLAN id
Topology Control-plane connection between DUT and reference controller.

At least three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Input VLAN id and action
OFPAT_OUTPUT set to second port. Send a packet matching the flow.
Verify the packet gets forwarded only to the second port. Send a packet
not matching the flow, verify a packet_in is generated, and the packet is
not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks If the packet is a VLAN (Ethernet type 0x8100), the VLAN ID and PCP

fields are used in the lookup.

Test Number 50.70
Test Title Data plane / Matching Single Header Field/ Input VLAN priority

(uint8_t dl_vlan_pcp)
Test Purpose Matching against a flow with Input VLAN priority set, all other fields

are wildcarded (under the constraints given in the specification as listed
in OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Matching VLAN priority
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.

Methodology Configure and connect the Primary-controller on the DUT. Add a flow
with All header fields wildcarded except Input VLAN priority and
action OFPAT_OUTPUT set to second port. Send a packet matching
the flow. Verify the packet gets forwarded only to the second port. Send

OpenFlow Switch Test Suite

 49 © 2013 Open Networking Foundation

Test case 50.80: IP source address (uint32_t nw_src)

Test case 50.90: IP destination address (uint32_t nw_dst)

a packet not matching the flow, verify a packet_in is generated, and the
packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks If the packet is a VLAN (Ethernet type 0x8100), the VLAN ID and PCP

fields are used in the lookup

Test Number 50.80
Test Title Data plane / Matching Single Header Field/ IP source address (uint32_t

nw_src)
Test Purpose Matching against a flow with IP source address and netmask set, all

other fields are wildcarded (under the constraints given in the
specification as listed in OpenFlow Switch Specification 1.0.0 Table 3
on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full and L3 Profile
Requirements Correct implementation of Matching IP source address
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except IP source address and netmask
with action OFPAT_OUTPUT set to second port. Send a packet
matching the flow. Verify the packet gets forwarded only to the second
port. Send a packet not matching the flow, verify a packet_in is
generated, and the packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.90
Test Title Data plane / Matching Single Header Field/ IP destination address

(uint32_t nw_dst)
Test Purpose Matching against a flow with IP destination address and netmask set,

all other fields are wildcarded (under the constraints given in the
specification as listed in OpenFlow Switch Specification 1.0.0 Table 3
on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full and L3 Profile
Requirements Correct implementation of Matching IP destination address
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.

OpenFlow Switch Test Suite

 50 © 2013 Open Networking Foundation

Test case 50.100: IP protocol (uint8_t nw_proto)

Test case 50.110: IP TOS bits (uint8_t nw_tos)

Methodology Configure and connect the Primary-controller on the DUT. Add a flow
with All header fields wildcarded except IP destination address and
netmask with action OFPAT_OUTPUT set to second port. Send a
packet matching the flow. Verify the packet gets forwarded only to the
second port. Send a packet not matching the flow, verify a packet_in is
generated, and the packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.100
Test Title Data plane / Matching Single Header Field/ IP protocol (uint8_t

nw_proto)
Test Purpose Matching against a flow with IP protocol set, all other fields are

wildcarded (under the constraints given in the specification as listed in
OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Matching IP protocol
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except IP protocol and action
OFPAT_OUTPUT set to second port. Send a packet matching the flow.
Verify the packet gets forwarded only to the second port. Send a packet
not matching the flow, verify a packet_in is generated, and the packet is
not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.110
Test Title Data plane / Matching Single Header Field/ IP TOS bits (uint8_t

nw_tos)
Test Purpose Matching against a flow with IP TOS bits set, all other fields are

wildcarded (under the constraints given in the specification as listed in
OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Matching IP TOS bits
Topology Control-plane connection between DUT and reference controller.

OpenFlow Switch Test Suite

 51 © 2013 Open Networking Foundation

Test case 50.120: TCP/UDP source port (uint16_t tp_src)

Test case 50.130: TCP/UDP destination port (uint16_t tp_dst)

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except IP TOS and action
OFPAT_OUTPUT set to second port. Send a packet matching the flow.
Verify the packet gets forwarded only to the second port. Send a packet
not matching the flow, verify a packet_in is generated, and the packet is
not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.120
Test Title Data plane / Matching Single Header Field/ TCP/UDP source port

(uint16_t tp_src)
Test Purpose Matching against a flow with TCP/UDP source port set, all other fields

are wildcarded (under the constraints given in the specification as listed
in OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Matching TCP/UDP source port
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except TCP/UDP source port and
action OFPAT_OUTPUT set to second port. Send a packet matching
the flow. Verify the packet gets forwarded only to the second port. Send
a packet not matching the flow, verify a packet_in is generated, and the
packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks For IP packets that are TCP or UDP (IP protocol is equal to 6 or 17), the

lookup includes the transport ports. For IP packets that are ICMP (IP
protocol is equal to 1), the lookup includes the Type and Code fields

Test Number 50.130
Test Title Data plane / Matching Single Header Field/ TCP/UDP destination port

(uint16_t tp_dst)
Test Purpose Matching against a flow with TCP/UDP destination port set, all other

fields are wildcarded (under the constraints given in the specification as
listed in OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

OpenFlow Switch Test Suite

 52 © 2013 Open Networking Foundation

Test case 50.140: L2

Test case 50.150: L3

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Matching TCP/UDP destination port
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except TCP/UDP destination port and
action OFPAT_OUTPUT set to second port. Send a packet matching
the flow. Verify the packet gets forwarded only to the second port. Send
a packet not matching the flow, verify a packet_in is generated, and the
packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks For IP packets that are TCP or UDP (IP protocol is equal to 6 or 17), the

lookup includes the transport ports. For IP packets that are ICMP (IP
protocol is equal to 1), the lookup includes the Type and Code fields

Test Number 50.140
Test Title Data plane / Matching Multiple Header Fields / L2
Test Purpose Matching against a flow with Ingress Port, Ethernet source address,

Ethernet destination address, Ethernet type and VLAN id set, all other
fields are wildcarded (under the constraints given in the specification as
listed in OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full and L2 Profile
Requirements Correct implementation of Matching all L2 profile fields
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ingress Port, Ethernet source
address, Ethernet destination address, Ethernet type and VLAN id,
action OFPAT_OUTPUT set to egress port. Send a packet matching the
flow. Verify the packet is forwarded only to the second port. Send a
non-matching packet. Verify a packet_in is generated and the packet is
not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks On hybrid switches VLAN id ranges may need to be preconfigured.

Test Number 50.150
Test Title Data plane / Matching Multiple Header Fields / L3
Test Purpose Matching against a flow with Ingress Port, IP source address and

netmask, IP destination address and netmask and Ethernet type set, all
other fields are wildcarded (under the constraints given in the

OpenFlow Switch Test Suite

 53 © 2013 Open Networking Foundation

Test case 50.160: L4

Test case 50.170: Exact match

specification as listed in OpenFlow Switch Specification 1.0.0 Table 3
on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full and L3 Profile
Requirements Correct implementation of Matching all L3 profile fields
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ingress Port, IP source address
and netmask, IP destination address and netmask, and Ethernet type
with action OFPAT_OUTPUT set to second port. Send a packet
matching the flow. Verify the packet gets forwarded only to the second
port. Send a packet not matching the flow, verify a packet_in is
generated, and the packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.160
Test Title Data plane / Matching Multiple Header Fields / L4
Test Purpose Matching against a flow with Ingress Port, IP protocol, TCP/UDP

source port, TCP/UDP destination port and Ethernet type set, all other
fields are wildcarded (under the constraints given in the specification as
listed in OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Matching all L4 fields
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ingress Port, IP protocol
TCP/UDP source port, TCP/UDP destination port and Ethernet type
with action OFPAT_OUTPUT set to second port. Send a packet
matching the flow. Verify the packet gets forwarded only to the second
port. Send a packet not matching the flow, verify a packet_in is
generated, and the packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.170

OpenFlow Switch Test Suite

 54 © 2013 Open Networking Foundation

Test case 50.180: Exact match priority

Test case 50.190: Match priorities

Test Title Data plane / Matching Multiple Header Fields / Exact match
Test Purpose Matching against a flow with all Header fields set. (Under the

constraints given in the specification as listed in OpenFlow Switch
Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Exact Matching
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields set. Send a packet matching the flow. Verify the
packet gets forwarded only to the second port. Send a packet not
matching the flow, verify a packet_in is generated, and the packet is not
forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.180
Test Title Data plane / Matching / Exact match priority
Test Purpose Verifying that a flow with all Header fields set has the highest priority.

(Under the constraints given in the specification as listed in OpenFlow
Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
Packets are matched against flow entries based on prioritization. An entry that
specifies an exact match (i.e., it has no wildcards) is always the highest priority

Profile Status MANDATORY for Full Profile
Requirements Correct implementation of Matching
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields set, action output port two. Add a second flow
with at least one field not wildcarded and highest possible priority,
action output port three. Send a packet matching both flows to the data
plane. Verify the packet gets forwarded only to the second port. Send a
packet not matching the flow, verify a packet_in is generated, and the
packet is not forwarded on the data plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.190
Test Title Data plane / Matching / Match priorities
Test Purpose Verifying that flows with different priorities match in the correct order.

OpenFlow Switch Test Suite

 55 © 2013 Open Networking Foundation

Test case 50.200: Fragments wildcard TCP port

Test case 50.210: IP source address of ARP packets(uint32_t nw_src)

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
Packets are matched against flow entries based on prioritization. An entry that
specifies an exact match (i.e., it has no wildcards) is always the highest priority

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Matching priorities
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add two

flows with different priorities. Send a packet matching both flows to the
data plane. Verify the packet matches the higher priority flow.

Results Pass or Fail
Remarks

Test Number 50.200
Test Title Data plane / Matching / Fragments wildcard TCP port
Test Purpose Verifying that when matching on fragments the TCP ports are ignored.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
For IP packets with nonzero fragment offset or More Fragments bit set, the transport
ports are set to zero for the lookup.

Profile Status OPTIONAL
Requirements Correct implementation of Matching Fragments
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add two

flows with different priorities and different TCP Ports set. Send a
fragmented packet with TCP Ports matching the lower priority flow.
Verify all packet fragments match the lower priority flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.210
Test Title Data plane / Matching Single Header Field/ IP source address of ARP

packets(uint32_t nw_src)
Test Purpose For ARP packets (Ethernet type equal to 0x0806), the lookup

elds may also include the contained IP source and destination
fields(under the constraints given in the specification as listed in
OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status OPTIONAL
Requirements Correct implementation of Matching IP source address of ARP packets.
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.

OpenFlow Switch Test Suite

 56 © 2013 Open Networking Foundation

Test case 50.220: IP destination address of ARP packets(uint32_t nw_src)

Test Suite 60: Counters
Test suite 60, named Counters, checks for the correct implementation of counters in the
Devices. Counters are checked per Flow, per Port, per Queue and per table. Table 4, p5 of the
OpenFlow Switch Specification 1.0.0 lists required counters for use in statistics messages,
but the existence of a capabilities reporting field for each of these types of counters in the
features reply (p. 25 o the OpenFlow Switch Specification 1.0.0) would seem to indicate
these are optional. Since queues are configured locally on the DUT and outside of the
OpenFlow protocol, we have left support of the enqueue action and it’s respective counters

Methodology Configure and connect the Primary-controller on the DUT. Add a flow
with All header fields wildcarded except Ether Type being 0x806 and IP
source address and netmask with action OFPAT_OUTPUT set to egress
port. Send a packet matching the flow. Verify the packet gets forwarded
only to the egress port. Send a packet not matching the flow, verify a
packet_in is generated, and the packet is not forwarded on the data
plane.

Results Pass or Fail or Not Tested
Remarks

Test Number 50.220
Test Title Data plane / Matching Single Header Field/ IP destination address of

ARP packets(uint32_t nw_src)
Test Purpose For ARP packets (Ethernet type equal to 0x0806), the lookup

fields may also include the contained IP source and destination
fields(under the constraints given in the specification as listed in
OpenFlow Switch Specification 1.0.0 Table 3 on p. 4.).

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.4 Matching, p. 8.
A packet matches a flow table entry if the values in the header fields used for the
lookup (as defined above) match those defined in the flow table. If a flow table field
has a value of ANY, it matches all possible values in the header

Profile Status OPTIONAL
Requirements Correct implementation of Matching IP destination address of ARP

packets.
Topology Control-plane connection between DUT and reference controller.

At least Three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow

with All header fields wildcarded except Ether Type being 0x806, IP
destination address and netmask with action OFPAT_OUTPUT set to
egress port. Send a packet matching the flow. Verify the packet gets
forwarded only to the egress port. Send a packet not matching the flow,
verify a packet_in is generated, and the packet is not forwarded on the
data plane.

Results Pass or Fail or Not Tested
Remarks

OpenFlow Switch Test Suite

 57 © 2013 Open Networking Foundation

as OPTIONAL, but all other counters are MANDATORY except Packet Lookup & Matched
Count counters.

60.10 to 60.40 per flow counters
60.50 to 60.160 per port counters
60.170 to 60.190 per queue counters
60.200 per table counters

Special cases:
Some counters may not be reliably triggered on every device (e.g. transmit overrun error). In
these cases only the existence of the counter will be verified, but not correct counting.

Queue counters are OPTIONAL (60.170 to 60.190).
Packet Lookup & Matched Count counters are OPTIONAL (60.210).

Profiles:
All profiles MUST pass all tests except 60.170, 60.180, 60.190 and 60.210

Test case 60.10: Received Packets

Test case 60.20: Received Bytes

Test Number 60.10
Test Title Counters/ Per Flow / Received Packets
Test Purpose Verify that the packet_count counter in the Flow-stats reply increments

in accordance with packets received.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per flow packet_count counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to the DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow.

Send N matching packets. Send OFPST_FLOW request. Verify reply
packet_count counter is incremented correctly.

Results Pass or Fail
Remarks

Test Number 60.20
Test Title Counters/ Per Flow / Received Bytes
Test Purpose Verify that the byte_count counter in the Flow-stats reply increments in

accordance with packets received.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per flow byte_count counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.

OpenFlow Switch Test Suite

 58 © 2013 Open Networking Foundation

Test case 60.30: Duration (secs)

Test case 60.40: Duration (nsecs)

Test case 60.50: Received Packets

Methodology Configure and connect the Primary-controller on the DUT. Add a flow.
Send matching packets with N total bytes. Send OFPST_FLOW
request. Verify reply byte_count counter is incremented correctly

Results Pass or Fail
Remarks Some DUTs may count the FCS and others may not.

Test Number 60.30
Test Title Counters/ Per Flow / Duration (secs)
Test Purpose Verify that the duration_sec counter in the Flow_stats reply increments

in accordance with the time the flow has been alive
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per flow duration_sec counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow.

Send matching packets. Send multiple OFPST_FLOW requests within a
certain time interval (e.g. 1 per 10sec for 60 sec). Verify duration_sec
counter is incremented correctly

Results Pass or Fail
Remarks

Test Number 60.40
Test Title Counters/ Per Flow / Duration (nsecs)
Test Purpose Verify that the duration_nsec counter in the Flow_stats reply increments

in accordance with the time the flow has been alive
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per flow duration_nsec counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow.

Send matching packets. Send OFPST_FLOW request within certain
time intervals (e.g. 1 per 10sec for 60 sec). Verify duration_nsec counter
is incremented correctly.

Results Pass or Fail
Remarks

Test Number 60.50
Test Title Counters/ Per Port / Received Packets
Test Purpose Verify that the rx_packets counter in the Port_Stats reply increments in

OpenFlow Switch Test Suite

 59 © 2013 Open Networking Foundation

Test case 60.60: Transmitted Packets

Test case 60.70: Received bytes

accordance with the packets received
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port rx_packets counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send

OFPST_PORT request for ingress port . Note current rx_packets value.
Add a flow. Send N matching packets to ingress port. Send
OFPST_PORT request for ingress port, and verify the reply contains the
correct rx_packets count (i.e. previous rx_packets count + N)

Results Pass or Fail
Remarks

Test Number 60.60
Test Title Counters/ Per Port / Transmitted Packets
Test Purpose Verify that the tx_packets counter in the Port_Stats reply increments in

accordance with the packets transmitted
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port tx_packets counters
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send

OFPST_PORT stats request for egress port. Note current tx_packets
value. Add a flow with output action to an egress port. Send N matching
packets. Send OFPST_PORT request for the egress port, and verify the
reply contains the correct tx_packets count (i.e previous tx_packets
counter + N)

Results Pass or Fail
Remarks

Test Number 60.70
Test Title Counters/ Per Port / Received bytes
Test Purpose Verify that the rx_bytes counter in the Port_Stats reply increments in

accordance with the bytes received
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port rx_bytes counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.

OpenFlow Switch Test Suite

 60 © 2013 Open Networking Foundation

Test case 60.80: Transmitted bytes

Test case 60.90: Receive drops

Methodology Configure and connect the Primary-controller on the DUT. Send
OFPST_PORT request for ingress port. Note the current rx_bytes value.
Add a flow. Send N matching packets to ingress port. Send
OFPST_PORT request for the ingress port. Verify the reply contains the
correct rx_bytes count (i.e previous rx_bytes + N *(No. of bytes in each
packet))

Results Pass or Fail
Remarks

Test Number 60.80
Test Title Counters/ Per Port / Transmitted bytes
Test Purpose Verify that the tx_bytes counter in the Port_Stats reply increments in

accordance with the packets transmitted
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Counters
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections.
Methodology Configure and connect the Primary-controller on the DUT. Send OFPST

PORT stats request fot egress port. Add a flow with output action to
egress port, send N matching packets. Send OFPST_PORT request for
the egress port, and verify the reply contains the correct transmitted
bytes count i.e previous tx_bytes counter + N*(No. of bytes in a packet
)

Results Pass or Fail
Remarks

Test Number 60.90
Test Title Counters/ Per Port / Receive drops
Test Purpose Verify that the rx_dropped counter in the Port_Stats reply increments in

accordance with the packets dropped
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port rx_dropped counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow.

Trigger rx_dropped counter. Send OFPST_PORT request for the ingress
port, and verify the reply contains the correct rx_dropped count

Results Pass or Fail
Remarks rx_dropped counters may not be reliably triggered. If unable to trigger

the rx_dropped counter, then the DUT will pass if rx_dropped counter

OpenFlow Switch Test Suite

 61 © 2013 Open Networking Foundation

Test case 60.100: Transmit drop

Test case 60.110: Receive Errors

Test case 60.120: Transmit Errors

exists.

Test Number 60.100
Test Title Counters/ Per Port / Transmit drops
Test Purpose Verify that the tx_dropped counter in the Port_Stats reply increments in

accordance with the packets dropped
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port tx_dropped counters
Topology Control-plane connection between DUT and reference controller.

One egress data plane connection to DUT. At least one ingress data
plane connection to DUT. Total ingress bandwidth must exceed total
egress bandwidth.

Methodology Configure and connect the Primary-controller on the DUT. Add a flow
on each ingress port with the action set to output to the egress port. Send
matching packets to each ingress port at a combined higher rate than the
egress port supports. Send OFPST_PORT request for the egress port,
and verify the reply contains the correct tx_dropped count.

Results Pass or Fail
Remarks

Test Number 60.110
Test Title Counters/ Per Port / Receive Errors
Test Purpose Verify that the rx_errors counter in the Port_Stats reply increments in

accordance with errors encountered while switch is receiving.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port rx_errors counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow.

Send N matching packets containing errors (e.g. frame alignment or crc
or overrun). Send OFPST_PORT request for the ingress port, and verify
the reply contains the correct error count.

Results Pass or Fail
Remarks

Test Number 60.120
Test Title Counters/ Per Port / Transmit Errors
Test Purpose Verify that the tx_errors counter in the Port_Stats reply increments in

accordance with errors encountered while switch is sending.

OpenFlow Switch Test Suite

 62 © 2013 Open Networking Foundation

Test case 60.130: Receive Frame Errors

Test case 60.140: Receive Overrun Errors

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3; 5.3.5 Read
State Messages, p. 30; struct ofp_port_stats p. 34
uint64_t tx_errors;
/* Number of transmit errors. This is a super-set of more specific transmit errors and
should be greater than or equal to the sum of all tx_*_err values (none currently
defined.) */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port tx_errors counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send

OFPST_PORT request for the egress port, and verify the reply contains
the correct transmit error count.

Results Pass or Fail
Remarks Since no tx_*_err values are currently defined. Only the existence of the

tx_error counter is verified.

Test Number 60.130
Test Title Counters/ Per Port / Receive Frame Errors
Test Purpose Verify that the rx_frame_err counter in the Port_Stats reply increments

in accordance with errors the switch is receiving.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port rx_frame_err counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow.

Send matching packets containing frame alignment errors. Send
OFPST_PORT request for the ingress port, and verify the reply contains
the correct rx_frame_err count.

Results Pass or Fail
Remarks

Test Number 60.140
Test Title Counters/ Per Port / Receive Overrun Errors
Test Purpose Verify that the rx_over_err counter in the Port_Stats reply increments in

accordance with errors the switch is receiving.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port rx_over_err counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OpenFlow Switch Test Suite

 63 © 2013 Open Networking Foundation

Test case 60.150: CRC Errors

Test case 60.160: collisions

rx_over_err counter. Send OFPST_PORT request for the ingress port,
and verify the reply contains the correct overrun count

Results Pass or Fail
Remarks rx_over_err counters may not be reliably triggered. If unable to trigger

the rx_over_err counter, then the DUT will pass if rx_over_err counter
exists.

Test Number 60.150
Test Title Counters/ Per Port / CRC Errors
Test Purpose Verify that the rx_crc_err counter in the Port_Stats reply increments in

accordance with crc errors the switch is receiving.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port rx_crc_err counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Add a flow.

Send N matching packets containing crc errors. Send OFPST_PORT
request for the ingress port, and verify the reply contains the correct
rx_crc_err count

Results Pass or Fail
Remarks

Test Number 60.160
Test Title Counters/ Per Port / Collisions
Test Purpose Verify that the collisions counter in the Port_Stats reply increments in

accordance with collisions errors the switch is receiving.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per port collisions counters
Topology Control-plane connection between DUT and reference controller.

At least two data plane connection to DUT. Set one data plane
connection to half duplex.

Methodology Configure and connect the Primary-controller on the DUT. Add a flow
in each direction. Send packets at a high rate to half-duplex ingress port.
Generate collisions by sending packets at a high rate through DUT to
half-duplex egress port. Send OFPST_PORT request for the half-duplex
port, and verify the reply contains the correct collisions count

Results Pass or Fail
Remarks

OpenFlow Switch Test Suite

 64 © 2013 Open Networking Foundation

Test case 60.170: Transmit Packets

Test case 60.180: Transmit bytes

Test case 60.190: Transmit Overrun Errors

Test Number 60.170
Test Title Counters/ Per Queue / Transmit Packets
Test Purpose Verify that the tx_packets counter in the Queue_Stats reply increments

in accordance with packets transmitted from the queue.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status OPTIONAL
Requirements Correct implementation of per queue tx_packets counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Configure a

queue and map it to a port. Create a flow with action
OFPAT_ENQUEUE and mapped to the queue. Send N matching
packets. Send queue_stats request for the ingress port, and verify the
reply contains the correct tx_packets count

Results Pass or Fail or Not Tested
Remarks

Test Number 60.180
Test Title Counters/ Per Queue / Transmit bytes
Test Purpose Verify that the tx_bytes counter in the Queue_Stats reply increments in

accordance with bytes transmitted from the queue.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status OPTIONAL
Requirements Correct implementation of per queue tx_bytes counters
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Configure a

queue and map it to a port. Create a flow with action
OFPAT_ENQUEUE and mapped to the queue. Send N matching
packets. Send queue_stats request for the ingress port and verify the
reply contains the correct tx_bytes count

Results Pass or Fail or Not Tested
Remarks

Test Number 60.190
Test Title Counters/ Per Queue / Transmit Overrun Errors
Test Purpose Verify that the tx_errors counter in the Queue_Stats reply increments in

accordance with bytes transmitted from the queue.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status OPTIONAL

OpenFlow Switch Test Suite

 65 © 2013 Open Networking Foundation

Test case 60.200: Active Entries

Test case 60.210: Packet Lookup & Matched Count

Requirements Correct implementation of per queue tx_errors counters
Topology Control-plane connection between DUT and reference controller.

One egress data plane connection to DUT. At least one ingress data
plane connection to DUT. Total ingress bandwidth must exceed total
egress bandwidth.

Methodology Configure and connect the Primary-controller on the DUT. Add a flow
on each ingress port with the action set to output to the egress port. Map
each flow to an egress port queue. Send matching packets to each
ingress port at a combined higher rate than the egress port supports.
Send queue_stats request for the egress port, and verify the reply
contains the correct tx_errors count.

Results Pass or Fail or Not Tested
Remarks

Test Number 60.200
Test Title Counters/ Per Table / Active Entries
Test Purpose Verify that the active_count counter in the Table_Stats reply increments

in accordance with the number of active flow entries in the table of the
switch.

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of per table active_count counters
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create N

flows with long idle timeout, Insert flows in the switch. Send
Table_Stats request. Verify the reply contains the correct active_count
value.

Results Pass or Fail
Remarks

Test Number 60.210
Test Title Counters/ Per Table / Packet Lookup & Matched Count
Test Purpose Verify that lookup_count & matched_count counter in the Table_Stats

reply increments in accordance with the number of packets looked up
and the packets matched.

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.2 Counters, p. 3, 5.3.5 Read
State Messages, p. 30

Profile Status OPTIONAL
Requirements Correct implementation of per table lookup_count and matched_count

counters
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Insert a

OpenFlow Switch Test Suite

 66 © 2013 Open Networking Foundation

Test Suite 70: Actions
Test suite 70 tests all the data plane actions a switch can support. The test suite contains tests
for nine forwarding actions (70.30 to 70.110) and eleven header field write actions (70.120 to
70.230).

The OpenFlow Switch 1.0 Specification does not clarify what is considered an illegal action
order. Due to this ambiguity, what is considered an illegal action order may vary based on the
implementation. While it seems reasonable to consider a header modify action with no
subsequent output or forward action as an illegal ordering, we have left tests 70.240 and
70.250 as OPTIONAL.

Special cases:

The following Forwarding actions are required:
All: 70.30
Controller: 70.40
Table: 70.60
In_port: 70.70

The following Forwarding actions are OPTIONAL:
Local: 70.50
Normal: 70.80
Flood: 70.90
Multiple Ports: 70.100
Enqueue: 70.110

All the write Actions are OPTIONAL:
70.120 to 70.230

Action ordering tests are OPTIONAL
70.240 and 70.250

Profiles:
All profiles MUST pass tests 70.10, 70.20, 70.30, 70.40, 70.60, 70.70

Test case 70.10: No action drops packet

flow. Send N packets matching the flow and N’ non-matching packets.
Send OFPST_TABLE request. Verify lookup_count = N'+ N and
matched_count= N.

Results Pass or Fail
Remarks

Test Number 70.10
Test Title Data plane / Actions / No action drops packet
Test Purpose Verify that flows without a forward action drop matching packets

OpenFlow Switch Test Suite

 67 © 2013 Open Networking Foundation

Test case 70.20: Get supported actions

Test case 70.30: Forward: ALL

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
Required Action: Drop. A flow-entry with no specified action indicates that all
matching packets should be dropped.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of drop action
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create flow

without action and/or create flows with actions but no forward action.
Send packets matching the flow. Verify packets are dropped and flow
counters are incremented.

Results Pass or Fail
Remarks

Test Number 70.20
Test Title Data plane / Actions / Get supported actions
Test Purpose Get the supported actions from switch and make sanity checks
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
A switch is not required to support all action types — just those marked “Required
Actions” below. When connecting to the controller, a switch indicates which of the
“OPTIONAL Actions” it supports. OpenFlow enabled switches, routers, and access
points may also support the NORMAL action

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of supported actions announcement
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST message. Parse the
OFPT_FEATURES_REPLY and verify correct announcement of the
supported actions.

Results Pass or Fail
Remarks

Test Number 70.30
Test Title Data plane / Actions / Forward:ALL
Test Purpose Verify implementation of the Forward: ALL function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
ALL: Send the packet out all interfaces, not including the incoming interface

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Action FORWARD:ALL
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action Forward:ALL .Send matching packet to ingress port.
Verify all (or a meaningful subset of) ports receive the packet. Verify
the ingress port does not receive the packet.

Results Pass or Fail

OpenFlow Switch Test Suite

 68 © 2013 Open Networking Foundation

Test case 70.40: Forward:CONTROLLER

Test case 70.50: Forward:Local

Test case 70.60: Forward:TABLE

Remarks

Test Number 70.40
Test Title Data plane / Actions / Forward:CONTROLLER
Test Purpose Verify implementation of the Forward: CONTROLLER function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
CONTROLLER: Encapsulate and send the packet to the controller

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of action Forward:Controller
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action Forward:Controller. Send matching packet. Verify
Controller receives OFPT_PACKET_IN message.

Results Pass or Fail
Remarks

Test Number 70.50
Test Title Data plane / Actions / Forward:Local
Test Purpose Verify implementation of the Forward:LOCAL function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
LOCAL: Send the packet to the switch’s local networking stack

Profile Status OPTIONAL
Requirements Correct implementation of action Forward:LOCAL
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action Forward:LOCAL. Send matching packet. Send
OFPST_TABLE request. Verify matched_count increases accordingly.

Results Pass or Fail or Not Tested
Remarks The behavior of the IP Stack is not defined enough to currently check it

directly with a testcase.

Test Number 70.60
Test Title Data plane / Actions / Forward:TABLE
Test Purpose Verify implementation of the Forward:TABLE function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
TABLE: Perform actions in flow table. Only for packet-out messages

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of action Forward:Table
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create an

OpenFlow Switch Test Suite

 69 © 2013 Open Networking Foundation

Test case 70.70: Forward:INPORT

Test case 70.80: Forward:NORMAL

OFPT_PACKET_OUT message with action OFPP_TABLE. Create
matching flow with an output action to an egress port. Send packet_out
message. Verify packet hits flow in table and gets output at the egress
port.

Results Pass or Fail
Remarks

Test Number 70.70
Test Title Data plane / Actions / Forward:INPORT
Test Purpose Verify implementation of the Forward: INPORT function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
INPORT: Send the packet out the input port

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of action Forward:INPORT
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPP_IN_PORT. Send matching packet on ingress
port. Verify packet is output on the ingress port.

Results Pass or Fail
Remarks

Test Number 70.80
Test Title Data plane / Actions / Forward: NORMAL
Test Purpose Verify implementation of the Forward: NORMAL function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
NORMAL: Process the packet using the traditional forwarding path supported by the
switch (i.e. traditional L2, VLAN, and L3 processing).The switch may check the VLAN
field to determine whether or not to forward the packet along the normal processing
route. If the switch cannot forward entries for the OpenFlow-specific VLAN back to
the normal processing route, it must indicate that it does not support this action.

Profile Status OPTIONAL
Requirements Correct implementation of action Forward: NORMAL
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPP_NORMAL. Send matching packet. Send
OFPST_TABLE request. Verify matched_count increases accordingly

Results Pass or Fail or Not Tested
Remarks Normal behavior is not specified, so we cannot check the behavior

directly.

OpenFlow Switch Test Suite

 70 © 2013 Open Networking Foundation

Test case 70.90: Forward:FLOOD

Test case 70.100: Forward:MULTIPLEPORTS

Test case 70.110: Forward:ENQUEUE

Test Number 70.90
Test Title Data plane / Actions / Forward:FLOOD
Test Purpose Verify implementation of the Forward:FLOOD function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
Flood the packet along the minimum spanning tree, not including the incoming
interface.

Profile Status OPTIONAL
Requirements Correct implementation of action Forward:FLOOD
Topology Control-plane connection between DUT and reference controller.

At least three data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Configure

one data plane egress port as part of the flood group. Configure a second
data plane egress port that is not a member of the flood group. Create a
flow with action OFPP_FLOOD. Send matching packet to ingress port.
Verify packet is output on the flood group member port, but not the
non-member port or the ingress port.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.100
Test Title Data plane / Actions / Forward:MULTIPLEPORTS
Test Purpose Verify implementation of the Forward:MULTIPLEPORTS function
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
The controller will only ask the switch to send to multiple physical ports
simultaneously if the switch indicates it supports this behavior in the initial handshake
(see section 5.3.1).

Profile Status OPTIONAL
Requirements Correct implementation of action Forward:MULTIPLEPORTS
Topology Control-plane connection between DUT and reference controller.

At least four data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_OUTPUT to multiple egress ports. Leave at
least one egress port out of the action list. Send matching packet to
ingress port. Verify packet is output on all egress ports of the action list
but not the ports left out of the action list.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.110
Test Title Data plane / Actions / Forward:ENQUEUE
Test Purpose Verify implementation of the Forward: ENQUEUE
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 3.
OPTIONAL Action: Enqueue. The enqueue action forwards a packet through a queue
attached to a port. Forwarding behavior is dictated by the configuration of the queue

OpenFlow Switch Test Suite

 71 © 2013 Open Networking Foundation

Test case 70.120: Add VLAN ID

Test case 70.130: Set VLAN ID

and is used to provide basic Quality-of-Service (QoS) support (see section 5.2.2).
Profile Status OPTIONAL
Requirements Correct implementation of action Forward:ENQUEUE
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Configure a

queue and map it to a port. Create a flow with action
OFPAT_ENQUEUE and mapped to the queue. Send matching packet.
Verify packet gets forwarded through the queue specified in the flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.120
Test Title Data plane / Modify-Field Actions / Add VLAN ID
Test Purpose Verify implementation of the Set VLAN ID action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
If no VLAN is present, a new header is added with the specified VLAN ID and priority
of zero

Profile Status OPTIONAL
Requirements Correct implementation of Action:Set VLAN ID
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_VLAN_VID and output to an egress
port. Send matching untagged packet to the ingress port. Verify packet
gets output to the egress port with correct VLAN Tag added.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.130
Test Title Data plane / Modify-Field Actions / Set VLAN ID
Test Purpose Verify implementation of the Set VLAN ID action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
If a VLAN header already exists, the VLAN ID is replaced with the specified value

Profile Status OPTIONAL
Requirements Correct implementation of Action: Set VLAN ID
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_VLAN_VID and output to an egress
port. Send matching packet tagged with random VLAN ID to ingress
port. Verify packet gets output with correct VLAN Tag as specified in
the flow.

Results Pass or Fail or Not Tested

OpenFlow Switch Test Suite

 72 © 2013 Open Networking Foundation

Test case 70.140: Add VLAN priority

Test case 70.150: Set VLAN priority

Test case 70.160: Strip VLAN header

Remarks

Test Number 70.140
Test Title Data plane / Modify-Field Actions / Add VLAN priority
Test Purpose Verify implementation of the Set VLAN priority action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
If no VLAN is present, a new header is added with the specified priority and a VLAN
ID of zero

Profile Status OPTIONAL
Requirements Correct implementation of Action: Set VLAN priority
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_VLAN_PCP and output to an egress
port. Send matching tagged packet to the ingress port. Verify packet is
output to the egress port with the correct VLAN Tag and priority
specified in the flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.150
Test Title Data plane / Modify-Field Actions / Set VLAN priority
Test Purpose Verify implementation of the Set VLAN priority action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
If a VLAN header already exists, the priority field is replaced with the specified value

Profile Status OPTIONAL
Requirements Correct implementation of action Set VLAN priority
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_VLAN_PCP and output to an egress
port. Send matching packet tagged with random VLAN priority to
ingress port. Verify packet gets output with the correct VLAN priority
set.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.160
Test Title Data plane / Modify-Field Actions / Strip VLAN header
Test Purpose Verify implementation of the Strip VLAN header action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
Strip VLAN header if it exists

Profile Status OPTIONAL

OpenFlow Switch Test Suite

 73 © 2013 Open Networking Foundation

Test case 70.170: Modify Ethernet source MAC address

Test case 70.180: Modify Ethernet destination MAC address

Requirements Correct implementation of action Strip VLAN header
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_STRIP_VLAN and output to an egress port.
Send matching VLAN tagged packet to ingress port. Verify packet gets
output to the egress port without a VLAN tag.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.170
Test Title Data plane / Modify-Field Actions / Modify Ethernet source MAC

address
Test Purpose Verify implementation of the Modify Ethernet source MAC address

action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.

Profile Status OPTIONAL
Requirements Correct implementation of action Modify Ethernet source MAC address
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_DL_SRC address and output to an
egress port. Send matching packet to ingress port. Verify packet gets
output to the egress port with the correct Ethernet source MAC address
as specified in the flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.180
Test Title Data plane / Modify-Field Actions / Modify Ethernet destination MAC

address
Test Purpose Verify implementation of the Modify Ethernet destination MAC address

action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.

Profile Status OPTIONAL
Requirements Correct implementation of action Modify Ethernet destination MAC

address
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with OFPAT_SET_DL_DST and output to an egress port. Send
matching packet to ingress port. Verify packet gets output to the egress

OpenFlow Switch Test Suite

 74 © 2013 Open Networking Foundation

Test case 70.190: Modify IPv4 source address

Test case 70.200: Modify IPv4 destination address

Test case 70.210: Modify IPv4 ToS bits

port with the correct Ethernet destination MAC address as specified in
the flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.190
Test Title Data plane / Modify-Field Actions / Modify IPv4 source address
Test Purpose Verify implementation of the Modify IPv4 source address action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
Replace the existing IP source address with new value and update the IP checksum
(and TCP/UDP checksum if applicable). This action is only applicable to IPv4 packets

Profile Status OPTIONAL
Requirements Correct implementation of action Modify IPv4 source address
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_NW_SRC and output to an egress port.
Send matching packet to ingress port. Verify packet gets output to the
egress port with the correct IPv4 source address as specified in the flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.200
Test Title Data plane / Modify-Field Actions / Modify IPv4 destination address
Test Purpose Verify implementation of the Modify IPv4 destination address action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
Replace the existing IP destination address with new value and update the IP
checksum (and TCP/UDP checksum if applicable). This action is only applicable to
IPv4 packets

Profile Status OPTIONAL
Requirements Correct implementation of action Modify IPv4 destination address
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_NW_DST and output to an egress port.
Send matching packet to ingress port. Verify packet gets output to
egress port with correct IPv4 destination address as specified in the
flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.210
Test Title Data plane / Modify-Field Actions / Modify IPv4 ToS bits
Test Purpose Verify implementation of the Modify IPv4 ToS bits action

OpenFlow Switch Test Suite

 75 © 2013 Open Networking Foundation

Test case 70.220: Modify TCP/UDP source port

Test case 70.230: Modify TCP/UDP destination port

Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
Replace the existing IP ToS field. This action is only applied to IPv4 packets.

Profile Status OPTIONAL
Requirements Correct implementation of action Modify IPv4 ToS bits
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_NW_TOS bits and output egress port.
Send matching packet to ingress port. Verify packet gets output to the
egress port with correct IPv4 ToS bits as specified in the flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.220
Test Title Data plane / Modify-Field Actions / Modify TCP/UDP source port
Test Purpose Verify implementation of the Modify TCP/UDP source port action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
Replace the existing TCP/UDP source port with new value and update the TCP/UDP
checksum. This action is only applicable to TCP and UDP packets

Profile Status OPTIONAL
Requirements Correct implementation of action Modify TCP/UDP source port
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_TP_SRC and output to an egress port.
Send matching packet to ingress port. Verify packet gets output to
egress port with correct TCP/UDP source port as specified in the flow.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.230
Test Title Data plane / Modify-Field Actions / Modify TCP/UDP destination port
Test Purpose Verify implementation of the Modify TCP/UDP destination port action
Specification
Reference

OpenFlow Switch Specification 1.0.0, 3.3 Actions, p. 6.
Replace the existing TCP/UDP destination port with new value and update the
TCP/UDP checksum. This action is only applicable to TCP and UDP packets

Profile Status OPTIONAL
Requirements Correct implementation of action Modify TCP/UDP destination port
Topology Control-plane connection between DUT and reference controller.

At least two data plane connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_SET_TP_DST and output to an egress port.
Send matching packet to ingress port. Verify packet gets output to the
egress port with correct TCP/UDP destination port as specified in the
flow.

OpenFlow Switch Test Suite

 76 © 2013 Open Networking Foundation

Test case 70.240: Ordering not possible

Test case 70.250: Sequential execution

Results Pass or Fail or Not Tested
Remarks

Test Number 70.240
Test Title Data plane / Actions / Ordering not possible
Test Purpose Verify implementation of action lists
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
messages, p. 13.
If a switch cannot process the action list for any flow mod message in the order
specified, it MUST immediately return an OFPET_FLOW_MOD_FAILED :
OFPFMFC_UNSUPPORTED error and reject the flow

Profile Status OPTIONAL
Requirements Correct implementation of action ordering
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with action OFPAT_OUTPUT followed by action
OFPAT_SET_TP_SRC. Verify the correct error is returned.

Results Pass or Fail or Not Tested
Remarks

Test Number 70.250
Test Title Data plane / Actions / Sequential execution
Test Purpose Verify correct execution of sequential actions
Specification
Reference

OpenFlow Switch Specification 1.0.0, 4.6 Flow Table Modification
messages, p. 13.
Action lists for inserted flow entries MUST be processed in the order specified.
However, there is no packet output ordering guaranteed within a port. For example,
an action list may result in two packets sent to two different VLANs on a single port.
These two packets may be arbitrarily re-ordered, but the packet bodies must match
those generated from a sequential execution of the actions

Profile Status OPTIONAL
Requirements Correct implementation of sequential execution
Topology Control-plane connection between DUT and reference controller.

At least two data plane ports connections to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create a

flow with two OFPAT_SET_VLAN_VID actions (set to two different
VLAN IDs) followed by two OFPAT_OUTPUT actions (set to two
different egress ports). Send matching packet to ingress port. Verify the
packets sent out both egress ports contain the second VLAN ID.

Results Pass or Fail or Not Tested
Remarks

OpenFlow Switch Test Suite

 77 © 2013 Open Networking Foundation

Test Suite 80: Messages
Test suite 80 checks OpenFlow protocol messages and their correct implementation. In
contrast to the basic checks, return values are checked for correctness, and configurations for
functional implementation.

Special cases:
Fragmentation related test cases 80.270, 80.280, 80.290 & 80.300 are OPTIONAL

Profiles:
All profiles MUST pass all tests except fragmentation related tests 80.270, 80.280, 80.290 &
80.300.

Test case 80.10: OFPT_HELLO without body

Test case 80.20: OFPT_HELLO with body

Test Number 80.10
Test Title Protocol Messages / Symmetric messages/ OFPT_HELLO without body
Test Purpose Verify OFPT_HELLO without body is accepted by the device
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.5.1 Hello , p. 41.
The OFPT_HELLO message has no body; that is, it consists only of an OpenFlow
header. Implementations must be prepared to receive a hello message that includes a
body, ignoring its contents, to allow for later extensions

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Hello messages
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send

OFPT_HELLO message with empty body. Verify device accepts the
message without generating an error.

Results Pass or Fail Pass or Fail
Remarks

Test Number 80.20
Test Title Protocol Messages / Symmetric messages/ OFPT_HELLO with body
Test Purpose Verify OFPT_HELLO with body is accepted by the device
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.5.1 Hello, p. 41.
The OFPT_HELLO message has no body; that is, it consists only of an OpenFlow
header. Implementations must be prepared to receive a hello message that includes a
body, ignoring its contents, to allow for later extensions.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Hello messages
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send Hello

message with body. Verify device accepts the message without
generating an error.

Results Pass or Fail
Remarks

OpenFlow Switch Test Suite

 78 © 2013 Open Networking Foundation

Test case 80.30: OFPT_ERROR

Test case 80.40: OFPT_ECHO_REQUEST / Reply without body

Test case 80.50: OFPT_ECHO_REQUEST / Reply with body

Test Number 80.30
Test Title Protocol Messages / Symmetric messages/ OFPT_ERROR
Test Purpose Verify basic error message type is implemented
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4, Error Message, p. 38.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of error messages
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger a

basic OFPT_ERROR message One way to trigger this error is to send
an incompatible version in the OFPT_HELLO and verify
OFPET_HELLO_FAILED error type is returned.

Results Pass or Fail
Remarks

Test Number 80.40
Test Title Protocol Messages / Symmetric messages/ OFPT_ECHO_REQUEST /

Reply without body
Test Purpose Verify OFPT_ECHO_REQUEST / Reply
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.5.1 Echo, p. 41.
An Echo Request message consists of an OpenFlow header plus an arbitrary length
data field. The data field might be a message timestamp to check latency, various
lengths to measure bandwidth, or zero-size to verify liveness between the switch and
controller

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Echo Request / Reply messages
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate

OFPT_ECHO_REQUEST without body, and verify
OFPT_ECHO_REPLY is returned.

Results Pass or Fail
Remarks

Test Number 80.50
Test Title Protocol Messages / Symmetric messages/ OFPT_ECHO_REQUEST /

Reply with body
Test Purpose Verify OFPT_ECHO_REQUEST / Reply
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.5.2 Echo, p. 41.
An Echo Request message consists of an OpenFlow header plus an arbitrary length
data field. The data field might be a message timestamp to check latency, various
lengths to measure bandwidth, or zero-size to verify liveness between the switch and
controller

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Echo Request / Reply messages

OpenFlow Switch Test Suite

 79 © 2013 Open Networking Foundation

Test case 80.60: Features Request-Reply

Test case 80.70: Features Reply

Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate

OFPT_ECHO_REQUEST with arbitrary data field and verify the Reply
has the identical data field.

Results Pass or Fail
Remarks

Test Number 80.60
Test Title Protocol Messages / Switch configuration messages/ Features Request-

Reply
Test Purpose Verify OFPT_FEATURES_REQUEST / Reply dialogue
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.
Upon TLS session establishment, the controller sends an
OFPT_FEATURES_REQUEST message. This message does not contain a body
beyond the OpenFlow header. The switch responds with an
OFPT_FEATURES_REPLY message

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Features Request and Reply messages
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID.

Results Pass or Fail
Remarks

Test Number 80.70
Test Title Protocol Messages / Switch configuration messages/ Features Reply
Test Purpose Verify OFPT_FEATURES_REPLY contains complete feature

information
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.
Upon TLS session establishment, the controller sends an
OFPT_FEATURES_REQUEST message. This message does not contain a body
beyond the OpenFlow header. The switch responds with an
OFPT_FEATURES_REPLY message

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Features Reply message
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify reply has all the expected switch features information.

Results Pass or Fail

OpenFlow Switch Test Suite

 80 © 2013 Open Networking Foundation

Test case 80.80: uint64_t datapath_id

Test case 80.90: uint32_t n_buffers

Test case 80.100: uint8_t n_tables

Remarks The returned values will be checked in the following test cases.

Test Number 80.80
Test Title Protocol Messages / Switch configuration messages/ uint64_t

datapath_id
Test Purpose Verify OFPT_FEATURES_REPLY contains valid datapath_id field
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.
The datapath_id field uniquely identifies a datapath. The lower 48 bits are intended
for the switch MAC address, while the top 16 bits are up to the implementer. An
example use of the top 16 bits would be a VLAN ID to distinguish multiple virtual
switch instances on a single physical switch. This eld should be treated as an opaque
bit string by controllers

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of datapath_id field
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify reply has a valid datapath_id field

Results Pass or Fail
Remarks

Test Number 80.90
Test Title Protocol Messages / Switch configuration messages/ uint32_t n_buffers
Test Purpose Verify OFPT_FEATURES_REPLY contains valid datapath_id field
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.
Max packets buffered at once

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of uint32_t n_buffers
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify reply contains a valid uint32_t n_buffers value.

Results Pass or Fail
Remarks If possible verify buffer value against the information provided by the

vendor.

Test Number 80.100
Test Title Protocol Messages / Switch configuration messages/ uint8_t n_tables
Test Purpose Verify OFPT_FEATURES_REPLY contains valid uint8_t n_tables

field

OpenFlow Switch Test Suite

 81 © 2013 Open Networking Foundation

Test case 80.110: OFPC_FLOW_STATS

Test case 80.120: OFPC_TABLE_STATS

Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.
The n_tables field describes the number of tables supported by the switch,each of
which can have a diferent set of supported wildcard bits and number of entries. When
the controller and switch rst communicate, the controller will find out how many
tables the switch supports from the Features Reply. If it wishes to understand the size,
types, and order in which tables are consulted, the controller sends a OFPST_TABLE
stats request. A switch must return these tables in the order the packets traverse the
tables, with all exact-match tables listed before all tables with wildcards

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of uint8_t n_tables
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify reply contains a valid uint8_t n_tables value

Results Pass or Fail
Remarks

Test Number 80.110
Test Title Protocol Messages / Switch configuration messages /

OFPC_FLOW_STATS
Test Purpose Verify OFPT_FEATURES_REPLY for Flow statistics support
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_FLOW_STATS
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check whether the OFPC_FLOW_STATS bit is set. If yes, Flow
statistics are supported.

Results Pass or Fail
Remarks

Test Number 80.120
Test Title Protocol Messages / Switch configuration messages /

OFPC_TABLE_STATS
Test Purpose Verify OFPT_FEATURES_REPLY for Table statistics support
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_TABLE_STATS
Topology Control-plane connection between DUT and reference controller.

OpenFlow Switch Test Suite

 82 © 2013 Open Networking Foundation

Test case 80.130: OFPC_PORT_STATS

Test case 80.140: OFPC_STP

Test case 80.150: OFPC_RESERVED

Methodology Configure and connect the Primary-controller on the DUT. Generate an
OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check whether the OFPC_TABLE_STATS bit is set. If yes, Table
statistics are supported.

Results Pass or Fail
Remarks

Test Number 80.130
Test Title Protocol Messages / Switch configuration messages /

OFPC_PORT_STATS
Test Purpose Verify OFPT_FEATURES_REPLY for Port statistics support
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_PORT_STATS
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check whether the OFPC_PORT_STATS bit is set. If yes, Port
statistics are supported.

Results Pass or Fail
Remarks

Test Number 80.140
Test Title Protocol Messages / Switch configuration messages / OFPC_STP
Test Purpose Verify OFPT_FEATURES_REPLY for 802.1d spanning tree support
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_STP
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check whether the OFPC_STP bit is set. If yes, 802.1d spanning
tree is supported.

Results Pass or Fail
Remarks

Test Number 80.150
Test Title Protocol Messages / Switch configuration messages /

OpenFlow Switch Test Suite

 83 © 2013 Open Networking Foundation

Test case 80.160: OFPC_IP_REASM

Test case 80.170: OFPC_ARP_MATCH_IP

OFPC_RESERVED
Test Purpose Verify OFPT_FEATURES_REPLY for OFPC_RESERVED returns 0
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.
OFPC_RESERVED = 1 <4, /* Reserved, must be zero.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_RESERVED
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify OFPC_RESERVED is 0.

Results Pass or Fail
Remarks

Test Number 80.160
Test Title Protocol Messages / Switch configuration messages /

OFPC_IP_REASM
Test Purpose Verify OFPT_FEATURES_REPLY for IP packet reassembly
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_IP_REASM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check whether the OFPC_IP_REASM bit is set. If yes, Switch
can reassemble IP fragments.

Results Pass or Fail
Remarks

Test Number 80.170
Test Title Protocol Messages / Switch configuration messages /

OFPC_ARP_MATCH_IP
Test Purpose Verify OFPT_FEATURES_REPLY for Match IP addresses in ARP

packets.
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_ARP_MATCH_IP
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the

OpenFlow Switch Test Suite

 84 © 2013 Open Networking Foundation

Test case 80.180: uint32_t actions

Test case 80.190: struct ofp_phy_port ports[0]

Test case 80.200: Get Config Request-Reply

OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check whether the OFPC_ARP_MATCH_IP bit is set. If yes, the
Switch supports matching IP addresses in ARP packets.

Results Pass or Fail
Remarks

Test Number 80.180
Test Title Protocol Messages / Switch configuration messages / uint32_t actions
Test Purpose Verify OFPT_FEATURES_REPLY for Bitmap of supported

ofp_action_types
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of uint32_t actions
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check the bitmap of supported ofp_action_types, and create a list
of supported actions. The switch MUST support the announced actions.

Results Pass or Fail
Remarks

Test Number 80.190
Test Title Protocol Messages / Switch configuration messages / struct

ofp_phy_port ports[0]
Test Purpose Verify OFPT_FEATURES_REPLY for list of available ports
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3 Controller to switch
messages, p. 25.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of ofp_phy_port ports[0]
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Check the ofp_phy_port ports[0] and compare the returned list of
available ports with the switch configuration to verify consistency.

Results Pass or Fail
Remarks

Test Number 80.200
Test Title Protocol Messages / Switch configuration messages / Get Config

Request-Reply

OpenFlow Switch Test Suite

 85 © 2013 Open Networking Foundation

Test case 80.210: OFPC_FRAG_NORMAL

Test case 80.220: OFPC_FRAG_DROP

Test Purpose Verify implementation of Get Config Request-Reply
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26.
The controller is able to set and query configuration parameters in the switch with the
OFPT_SET_CONFIG and OFPT_GET_CONFIG_REQUEST messages, respectively.
The switch responds to a configuration request with an OFPT_GET_CONFIG_REPLY
message; it does not reply to a request to set the configuration. There is no body for
OFPT_GET_CONFIG_REQUEST beyond the OpenFlow header

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Get Config Request-Reply
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_GET_CONFIG_REQUEST, and verify
OFPT_GET_CONFIG_REPLY is received. Verify reply has the
expected fields (OFPC_FRAG_NORMAL, OFPC_FRAG_DROP,
OFPC_FRAG_REASM, OFPC_FRAG_MASK).

Results Pass or Fail
Remarks Values of the fields will be checked in the following test cases

Test Number 80.210
Test Title Protocol Messages / Switch configuration messages /

OFPC_FRAG_NORMAL
Test Purpose Check OFPT_GET_CONFIG_REPLY value for No special handling

for fragments
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_FRAG_NORMAL
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify OFPC_FRAG_NORMAL flag value and verify handling of
fragments is consistent with the returned configuration.

Results Pass or Fail
Remarks

Test Number 80.220
Test Title Protocol Messages / Switch configuration messages /

OFPC_FRAG_DROP
Test Purpose Check OFPT_GET_CONFIG_REPLY value for Drop fragments
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_FRAG_DROP

OpenFlow Switch Test Suite

 86 © 2013 Open Networking Foundation

Test case 80.230: OFPC_FRAG_REASM

Test case 80.240: OFPC_FRAG_MASK

Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify OFPC_FRAG_DROP flag value and verify handling of
fragments is consistent with the returned configuration.

Results Pass or Fail
Remarks

Test Number 80.230
Test Title Protocol Messages / Switch configuration messages /

OFPC_FRAG_REASM
Test Purpose Check OFPT_GET_CONFIG_REPLY value for Reassemble fragments
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_FRAG_REASM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify OFPC_FRAG_REASM flag value and verify handling of
fragments is consistent with the returned configuration.

Results Pass or Fail
Remarks

Test Number 80.240
Test Title Protocol Messages / Switch configuration messages /

OFPC_FRAG_MASK
Test Purpose Check OFPT_GET_CONFIG_REPLY value for OFPC_FRAG_MASK
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPC_FRAG_MASK
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Verify OFPC_FRAG_MASK flag value and verify handling of
fragments is consistent with the returned configuration.

Results Pass or Fail
Remarks

OpenFlow Switch Test Suite

 87 © 2013 Open Networking Foundation

Test case 80.250: uint16_t miss_send_len

Test case 80.260: OFPT_SET_CONFIG – miss_send_len

Test Number 80.250
Test Title Protocol Messages / Switch configuration messages / uint16_t

miss_send_len
Test Purpose Check OFPT_GET_CONFIG_REPLY value for miss_send_len
Specification
Reference

OpenFlow Switch Specification 11.0.0, 5.3.2 Switch configuration
messages, p. 26.
The miss_send_len field defines the number of bytes of each packet sent to the
controller as a result of both Flow table misses and Flow table hits with the controller
as the destination. If this field equals 0, the switch must send a zero-size packet_in
message.
5.4.1 Packet-In Message p.36.
If the packet is sent because of a flow table miss, then at least miss_send_len bytes
from the OFPT_SET_CONFIG message are sent. The default miss_send_len is 128
bytes. If the packet is not buffered,the entire packet is included in the data portion, and
the buffer_id is -1

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of miss_send_len
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_FEATURES_REQUEST. Verify the
OFPT_FEATURES_REPLY is received from the switch with the same
XID. Document miss_send_len value. Send a packet .Verify data
length in ofp_packet_in message is in accordance with miss_send_len
value. If miss_send_len is 0 bytes, data length in ofp_packet_in is 0
bytes. If miss_send_len is x bytes (x>0) , then data length in
ofp_packet_in is >= x bytes.

Results Pass or Fail
Remarks If the packet is not buffered the entire packet is included in the data

portion, and the buffer_id is -1

Test Number 80.260
Test Title Protocol Messages / Switch configuration messages /

OFPT_SET_CONFIG – miss_send_len
Test Purpose Verify implementation of OFPT_SET_CONFIG – miss_send_len
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26.
The miss_send_len field defines the number of bytes of each packet sent to the
controller as a result of both Flow table misses and Flow table hits with the controller
as the destination. If this field equals 0, the switch must send a zero-size packet_in
message.
5.4.1 Packet-In Message p.36.
If the packet is sent because of a flow table miss, then at least miss_send_len bytes
from the OFPT_SET_CONFIG message are sent. The default miss_send_len is 128
bytes. If the packet is not buffered,the entire packet is included in the data portion, and
the buffer_id is -1

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of miss_send_len

OpenFlow Switch Test Suite

 88 © 2013 Open Networking Foundation

Test case 80.270: OFPT_SET_CONFIG – OFPC_FRAG_NORMAL = 0

Test case 80.280: OFPT_SET_CONFIG – OFPC_FRAG_DROP

Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_GET_CONFIG_REQUEST and verify reply is received. Verify
the value in miss_send_len field (defines number of bytes of each
packet sent to the controller). Generate OFPT_SET_CONFIG request.
Overwrite the miss_send_len field. Again send an
OFPT_GET_CONFIG_REQUEST and verify the change has taken
effect.

Results Pass or Fail
Remarks

Test Number 80.270
Test Title Protocol Messages / Switch configuration messages /

OFPT_SET_CONFIG – OFPC_FRAG_NORMAL
Test Purpose Verify implementation of OFPT_SET_CONFIG –

OFPC_FRAG_NORMAL
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch Configuration, p.
26.
The OFPC_FRAG_* flags indicate whether IP fragments should be treated normally,
dropped, or reassembled. “Normal" handling of fragments means that an attempt
should be made to pass the fragments through the OpenFlow tables. If any field is not
present (e.g., the TCP/UDP ports didn't fit), then the packet
should not match any entry that has that field set.

Profile Status OPTIONAL
Requirements Correct implementation of OFPC_FRAG_NORMAL
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT.

Generate a OFPT_GET_CONFIG_REQUEST and verify reply is
received. Generate OFPT_SET_CONFIG_REQUEST. Set
OFPC_FRAG_NORMAL = 0. Send an OFPT_GET_CONFIG request
and verify the value is 0.

Results Pass or Fail
Remarks

Test Number 80.280
Test Title Protocol Messages / Switch configuration messages /

OFPT_SET_CONFIG – OFPC_FRAG_DROP
Test Purpose Verify implementation of OFPT_SET_CONFIG –

OFPC_FRAG_DROP
Specification
Reference

OpenFlow 1.0.0, 5.3.2 Switch configuration messages, p. 26.

Profile Status OPTIONAL
Requirements Correct implementation of OFPC_FRAG_DROP
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OpenFlow Switch Test Suite

 89 © 2013 Open Networking Foundation

Test case 80.290: OFPT_SET_CONFIG – OFPC_FRAG_REASM

Test case 80.300: OFPT_SET_CONFIG – OFPC_FRAG_MASK = 3

OFPT_GET_CONFIG_REQUEST and verify reply is received.
Generate OFPT_SET_CONFIG request. Set OFPC_FRAG_DROP = 1
Send an OFPT_GET_CONFIG request and verify the change has taken
effect.

Results Pass or Fail
Remarks Value changes from 0 (set in test case 80.270) to 1.

Test Number 80.290
Test Title Protocol Messages / Switch configuration messages /

OFPT_SET_CONFIG – OFPC_FRAG_REASM
Test Purpose Verify implementation of OFPT_SET_CONFIG –

OFPC_FRAG_REASM
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26

Profile Status OPTIONAL
Requirements Correct implementation of OFPC_FRAG_REASM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_GET_CONFIG_REQUEST and verify
OFPT_GET_CONFIG_REPLY is received. Generate
OFPT_SET_CONFIG_REQUEST and set OFPC_FRAG_REASM = 2.
Send the OFPT_GET_CONFIG_REQUEST and verify the value is 2.

Results Pass or Fail or Not Tested
Remarks

Test Number 80.300
Test Title Protocol Messages / Switch configuration messages /

OFPT_SET_CONFIG – OFPC_FRAG_MASK
Test Purpose Verify implementation of OFPT_SET_CONFIG –

OFPC_FRAG_MASK = 3
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.2 Switch configuration
messages, p. 26

Profile Status OPTIONAL
Requirements Correct implementation of OFPC_FRAG_MASK
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Generate an

OFPT_GET_CONFIG_REQUEST and verify reply is received.
Generate OFPT_SET_CONFIG request and set OFPC_FRAG_MASK
= 3. Send the OFPT_GET_CONFIG_REQUEST and verify the value is
3.

Results Pass or Fail or Not Tested
Remarks

OpenFlow Switch Test Suite

 90 © 2013 Open Networking Foundation

Test Suite 90: Async Messages
Test suite 90 checks async OpenFlow protocol messages and their correct implementation. In
contrast to the basic checks, return values are checked for correctness, and configurations for
functional implementation.

Special cases:

90.120, 90.130, 90.140 are optional as these are port states for STP.
90.170 the get Queue config command is OPTIONAL.

Profiles:
All profiles have to pass all tests except 90.170.

Test case 90.10: OFPR_NO_MATCH uint8_t reason

Test case 90.20: OFPR_NO_MATCH unit8_t data[0] buffered

Test Number 90.10
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_NO_MATCH uint8_t reason
Test Purpose Verify packet_in specifies the right reason (no match or send to

controller)
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_NO_MATCH
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send a

packet to the data plane and trigger a packet_in. Verify Reason field is
OFPR_NO_MATCH.

Results Pass or Fail
Remarks

Test Number 90.20
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_NO_MATCH unit8_t data[0] buffered
Test Purpose Verify packet_in OFPR_NO _MATCH implements buffer handling

correct
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
The buffer_id is an opaque value used by the datapath to identify a buffered packet.
When a packet is buffered, some number of bytes from the message will be included in
the data portion of the message. If the packet is sent because of a “send to controller”
action, then max_len bytes from the action_output of the flow setup request are sent. If
the packet is sent because of a flow table miss, then at least miss_send_len bytes from
the OFPT_SET_CONFIG message are sent. The default miss_send_len is 128 bytes. If
the packet is not buffered, the entire packet is included in the data portion, and the
buffer_id is -1

Profile Status MANDATORY for ALL Profiles

OpenFlow Switch Test Suite

 91 © 2013 Open Networking Foundation

Test case 90.30: OFPR_NO_MATCH unit8_t data[0] unbuffered

Requirements Correct implementation of OFPR_NO_MATCH unit8_t data[0]
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify the

miss_send_len value is non-zero. Send a packet to the data plane and
trigger a packet_in. Verify Reason field is OFPR_NO_MATCH. For
buffered packets, verify the number of bytes transferred in the packet_in
is in accordance to the miss_send_len configuration.

Results Pass or Fail
Remarks

Test Number 90.30
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_NO_MATCH unit8_t data[0] unbuffered
Test Purpose Verify packet_in OFPR_NO _MATCH implements buffer handling

correct
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
The buffer_id is an opaque value used by the datapath to identify a
buffered packet. When a packet is buffered, some number of bytes from
the message will be included in the data portion of the message. If the
packet is sent because of a “send to controller” action, then max_len
bytes from the action_output of the flow setup request are sent. If the
packet is sent because of a flow table miss, then at least miss_send_len
bytes from the OFPT_SET_CONFIG message are sent. The default
miss_send_len is 128 bytes. If the packet is not buffered, the entire
packet is included in the data portion, and the buffer_id is -1. Switches
that implement buffering are expected to expose, through
documentation, both the amount of available buffering, and the
length of time before buffers may be reused.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_NO_MATCH unit8_t data[0]
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Set

miss_send_len value to zero. Send a packet to the data plane and trigger
a packet_in. Verify Reason field is OFPR_NO_MATCH. If the packet
is buffered, verify no packet data is included in the packet_in. If it is
possible to create unbuffered packet_ins, verify unbuffered packets are
included completely in the packet_in, and the buffer-id is set to -1.

Results Pass or Fail
Remarks

OpenFlow Switch Test Suite

 92 © 2013 Open Networking Foundation

Test case 90.40: OFPR_NO_MATCH uint16_t in_port

Test case 90.50: OFPR_NO_MATCH int16_t total_len

Test case 90.60: OFPR_Action uint8_t reason

Test Number 90.40
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_NO_MATCH uint16_t in_port
Test Purpose Verify packet_in OFPR_NO _MATCH reports correct inport
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
uint16_t in_port; /* Port on which frame was received. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_NO_MATCH uint16_t in_port
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send a

packet to the data plane and trigger a packet_in. Verify Reason field is
OFPR_NO_MATCH. Verify the correct in_port is reported

Results Pass or Fail
Remarks

Test Number 90.50
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_NO_MATCH int16_t total_len
Test Purpose Verify packet_in OFPR_NO _MATCH reports correct value for full

length of frame
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
uint16_t total_len; /* Full length of frame. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_NO_MATCH uint16_t total_len
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send packet

to data plane and trigger packet_in. Verify Reason field is
OFPR_NO_MATCH. Verify the correct total_len is reported

Results Pass or Fail
Remarks

Test Number 90.60
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_Action uint8_t reason
Test Purpose Verify packet_in specifies the correct reason for Action explicitly

output to controller
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
uint8_t reason; /* Reason packet is being sent (one of OFPR_*) */

OpenFlow Switch Test Suite

 93 © 2013 Open Networking Foundation

Test case 90.70: OFPR_ACTION unit8_t data[0] buffered

Test case 90.80: OFPR_ACTION unit8_t data[0] unbuffered

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_Action uint8_t reason
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create flow

with ACTION: output to controller. Send matching packet to data plane
and trigger packet_in. Verify Reason field is OFPR_ACTION.

Results Pass or Fail
Remarks

Test Number 90.70
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_ACTION unit8_t data[0] buffered
Test Purpose Verify packet_in OFPR_ACTION implements buffer handling correct
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
The buffer_id is an opaque value used by the datapath to identify a buffered packet.
When a packet is buffered, some number of bytes from the message will be included in
the data portion of the message. If the packet is sent because of a “send to controller”
action, then max_len bytes from the action_output of the flow setup request are sent. If
the packet is sent because of a flow table miss, then at least miss_send_len bytes from
the OFPT_SET_CONFIG message are sent. The default miss_send_len is 128 bytes. If
the packet is not buffered, the entire packet is included in the data portion, and the
buffer_id is -1

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_ACTION unit8_t data[0]
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify

max_len value is non-zero. Create flow with ACTION: output to
controller. Send matching packet to data plane and trigger packet_in.
Verify Reason field is OFPR_ACTION. Verify that for buffered
packets the amount of bytes transferred in the packet_in is in
accordance to the max_len configuration.

Results Pass or Fail
Remarks

Test Number 90.80
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_ACTION unit8_t data[0] unbuffered
Test Purpose Verify packet_in OFPR_ACTION implements buffer handling correct
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
The buffer_id is an opaque value used by the datapath to identify a buffered packet.
When a packet is buffered, some number of bytes from the message will be included in
the data portion of the message. If the packet is sent because of a “send to controller”

OpenFlow Switch Test Suite

 94 © 2013 Open Networking Foundation

Test case 90.90: OFPR_ACTION uint16_t in_port

Test case 90.100: OFPR_ACTION int16_t total_len

action, then max_len bytes from the action_output of the flow setup request are sent. If
the packet is sent because of a flow table miss, then at least miss_send_len bytes from
the OFPT_SET_CONFIG message are sent. The default miss_send_len is 128 bytes. If
the packet is not buffered, the entire packet is included in the data portion, and the
buffer_id is -1

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_ACTION unit8_t data[0]
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create flow

with ACTION: output to controller. Send matching packet size l to data
plane and trigger packet_in. Verify Reason field is OFPR_ACTION.
Verify that not buffered packets are included completely in the
packet_in, and the buffer-id is set to -1.

Results Pass or Fail
Remarks

Test Number 90.90
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_ACTION uint16_t in_port
Test Purpose Verify packet_in OFPR_ACTION reports correct inport
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
uint16_t in_port; /* Port on which frame was received. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_ACTION uint16_t in_port
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Create flow

with ACTION: output to controller. Send matching packet to data plane
and trigger packet_in. Verify Reason field is OFPR_ACTION . Verify
the correct in_port is reported

Results Pass or Fail
Remarks

Test Number 90.100
Test Title Protocol Messages / Asynchronous messages - OFPT_PACKET_IN /

OFPR_ACTION int16_t total_len
Test Purpose Verify packet_in OFPR_ACTION reports correct value for full length

of frame
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4 Asynchronous Messages, p.
36.
uint16_t total_len; /* Full length of frame. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPR_ACTION uint16_t total_len

OpenFlow Switch Test Suite

 95 © 2013 Open Networking Foundation

Test case 90.110: OFPT_PORT_STATUS

Test case 90.120: OFPT_PORT_MOD - No_Flood

Topology Control-plane connection between DUT and reference controller.
At least one data plane connection to DUT.

Methodology Configure and connect the Primary-controller on the DUT. Create flow
with ACTION: output to controller. Send matching packet to data plane
and trigger packet_in. Verify Reason field is OFPR_ACTION. Verify
the correct total_len is reported.

Results Pass or Fail
Remarks

Test Number 90.110
Test Title Protocol Messages / Asynchronous messages /

OFPT_PORT_STATUS
Test Purpose Verify packet_in OFPR_ACTION reports correct value for full length

of frame
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.3 Port Status messages, p. 38.
As physical ports are added, modifed, and removed from the datapath, the controller
needs to be informed with the OFPT_PORT_STATUS message.

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPT_PORT_STATUS
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Verify the

data plane port has link. Bring port down; verify
OFPT_PORT_STATUS reason DELETE message is send to the
controller. Bring port up again; verify OFPT_PORT_STATUS reason
ADD is received at the controller.

Results Pass or Fail
Remarks

Test Number 90.120
Test Title Protocol Messages / Controller to switch message/

OFPT_PORT_MOD - No_Flood
Test Purpose Verify Controller is able to use the OFPT_PORT_MOD - No_Flood

message to change port state on the DUT
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, Page 17.
OFPPC_NO_FLOOD = 1 << 4, /* Do not include this port when flooding. */
OFPPFL_NO_FLOOD is set to 0 when the STP port state is Forwarding,
otherwise to 1.

Profile Status OPTIONAL
Requirements Correct implementation of OFPT_PORT_MOD - No_Flood
Topology Control-plane connection between DUT and reference controller.

At least one data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Check port

flood state, change port state with OFPT_PORT_MOD - No_Flood
message. Verify state change took place. Change back to original

OpenFlow Switch Test Suite

 96 © 2013 Open Networking Foundation

Test case 90.130: OFPT_PORT_MOD - No_Forward

Test case 90.140: OFPT_PORT_MOD - No_Packet_in

port state with OFPT_PORT_MOD - No_Flood message. Verify
port state change took place.

Results Pass or Fail
Remarks

Test Number 90.130
Test Title Protocol Messages / Controller to switch message/

OFPT_PORT_MOD - No_Forward
Test Purpose Verify Controller is able to use the OFPT_PORT_MOD -

OFPPFL_NO_FWD message to change port state on the DUT
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, Page 17.
OFPPC_NO_FWD = 1 << 5, /* Drop packets forwarded to port. */
The OFPPFL_NO_RECV , OFPPFL_NO_RECV_STP ,
OFPPFL_NO_FWD , and OFPPFL_NO_PACKET_IN bits in the OpenFlow port
flags may be useful for the controller to implement STP

Profile Status OPTIONAL
Requirements Correct implementation of OFPT_PORT_MOD -

OFPPFL_NO_FWD
Topology Control-plane connection between DUT and reference controller.One

data plane port.
Methodology Configure and connect the Primary-controller on the DUT. Check port

flood state, change port state with OFPT_PORT_MOD - No_Forward
message, verify state change took place. Change back to original
port state with OFPT_PORT_MOD - No_Forward message, verify
port state change took place.

Results Pass or Fail
Remarks

Test Number 90.140
Test Title Protocol Messages / Controller to switch message/

OFPT_PORT_MOD - No_Packet_in
Test Purpose Verify Controller is able to use the OFPT_PORT_MOD –

OFPPC_NO_PACKET_IN message to change port state on the
DUT

Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.2.1 Port Structures, Page 17.
OFPPC_NO_PACKET_IN = 1 << 6 /* Do not send packet-in msgs for port. */
The OFPPFL_NO_RECV , OFPPFL_NO_RECV_STP ,
OFPPFL_NO_FWD , and OFPPFL_NO_PACKET_IN bits in the OpenFlow port
flags may be useful for the controller to implement STP

Profile Status OPTIONAL
Requirements Correct implementation of OFPT_PORT_MOD –

OFPPC_NO_PACKET_IN
Topology Control-plane connection between DUT and reference controller.

At least One data plane connection to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Check port

OpenFlow Switch Test Suite

 97 © 2013 Open Networking Foundation

Test case 90.150: OFPT_PACKET_OUT

Test case 90.160: OFPST_DESC

flood state, change port state with OFPT_PORT_MOD -
OFPPC_NO_PACKET_IN flag, verify state change took place.
Change back to original port state. Verify port state change took
place.

Results Pass or Fail
Remarks

Test Number 90.150
Test Title Protocol Messages / Controller to switch message /

OFPT_PACKET_OUT
Test Purpose Verify Controller is able to use the OFPT_PACKET_OUT message

to send a packet out of one of the DUT ports
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.6 Send Packet Message,
Page 35.
When the controller wishes to send a packet out through the datapath, it uses the
OFPT_PACKET_OUT message

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPT_PACKET_OUT
Topology Control-plane connection between DUT and reference controller.

At least one data plane port connected to DUT.
Methodology Configure and connect the Primary-controller on the DUT. Send a

packet_out message targeting the data plane port. Verify the packet is
sent out the switch port.

Results Pass or Fail
Remarks

Test Number 90.160
Test Title Protocol Messages / Controller to switch message / OFPST_DESC

stats request / reply
Test Purpose Verify Controller is able to respond to OFPST_DESC stats request,

and returns valid field values
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.5 Read State Messages, p. 31
Information about the switch manufacturer, hardware revision, software revision,
serial number, and a description field is available from the OFPST_DESC stats
request type

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPST_DESC stats request / reply
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send an

OFPST_DESC stats request to the DUT, and verify a reply is
received. Check valid return values for:
char mfr_desc[DESC_STR_LEN; Manufacturer description
char hw_desc[DESC_STR_LEN]; Hardware description.
char sw_desc[DESC_STR_LEN]; Software description
char serial_num[SERIAL_NUM_LEN]; Serial number.

OpenFlow Switch Test Suite

 98 © 2013 Open Networking Foundation

Test case 90.170: OFPT_QUEUE_GET_CONFIG_REPLY

Test Suite 100: Error Messages
Test group 100 checks for all possible error messages as mentioned in the spec.

Special cases:
Error messages pose some specific testing challenges. Some devices might never enter the
state that triggers the error condition (e.g, soft switches might have unlimited tables, be able
to simulate unlimited port numbers). Permission errors involve an entity outside the switch’s
OpenFlow implementation, and are optional test cases. All queue related error messages are
optional. All emergency mode related error messages are optional.

Profiles:
All profiles have to pass all tests except (100.20, 100.50, 100.60, 100.70, 100.130, 100.140,
100.150, 100.170, 100.180, 100.190, 100.200, 100,220, 100.230, 100,250, 100.260, 100.270,
100.280, 100.290 and 100.300)

char dp_desc[DESC_STR_LEN]; Human readable description of
datapath

Results Pass or Fail
Remarks

Test Number 90.170
Test Title Protocol Messages / Controller to switch message /

OFPT_QUEUE_GET_CONFIG_REPLY
Test Purpose Verify Controller is able to respond to

OFPT_QUEUE_GET_CONFIG_REQUEST, and returns valid
information

Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.3.4 Queue Configuration
Messages, p. 29.
The controller can query the switch for configured queues on a port

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of OFPT_QUEUE_GET_CONFIG request /

reply
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Configure

queues on the switch outside the OpenFlow protocol. Send an
OFPT_QUEUE_GET_CONFIG_REQUEST for any port and
verify reply is received. Verify reply has List of configured
queues.

Results Pass or Fail
Remarks Queue configuration takes place outside the OpenFlow protocol,

either through a command line tool or through an external
dedicated configuration protocol.

OpenFlow Switch Test Suite

 99 © 2013 Open Networking Foundation

Test case 100.10: OFPHFC_INCOMPATIBLE

Test case 100.20: OFPHFC_EPERM

Test case 100.30: OFPBRC_BAD_VERSION

Test Number 100.10
Test Title OFPT_ERROR / OFPET_HELLO_FAILED /

OFPHFC_INCOMPATIBLE / No_Compatible_Version
Test Purpose Verify DUT is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_HELLO_FAILED, /* Hello protocol failed. */
OFPHFC_INCOMPATIBLE, /* No compatible version. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message

OFPHFC_INCOMPATIBLE
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Send

OFPT_HELLO message to DUT with an incompatible version. Verify
correct error message is sent to the controller.

Results Pass or Fail
Remarks When the reason for a Hello failing is due to version incompatibility

between switch and controller, then the switch generates
OFPT_ERROR msg with Type Field OFPET_HELLO_FAILED and
code field OFPHFC_INCOMPATIBLE

Test Number 100.20
Test Title OFPT_ERROR / OFPET_HELLO_FAILED /

OFPHFC_EPERM / Permission_Error
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_HELLO_FAILED, /* Hello protocol failed. */
OFPHFC_EPERM /* Permissions error. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPHFC_EPERM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPHFC_EPERM error condition. Verify correct error message is sent
to the controller.

Results Pass or Fail or Not Tested
Remarks Permissions error generated by an entity between a controller and

switch, such as an OpenFlow hypervisor
This requires an intermediate device or emulation of an intermediate
device to generate the permission error.

Test Number 100.30
Test Title OFPT_ERROR / OFPET_BAD_REQUEST /

OFPBRC_BAD_VERSION / Bad_Version
Test Purpose Verify Controller is able to respond correctly to error condition

OpenFlow Switch Test Suite

 100 © 2013 Open Networking Foundation

Test case 100.40: OFPBRC_BAD_TYPE

Test case 100.50: OFPBRC_BAD_VENDOR

Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_BAD_VERSION, /* ofp_header.version not supported. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message

OFPBRC_BAD_VERSION
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBRC_BAD_VERSION Error condition. This can be done by
sending a OFPT_STATS_REQUEST with a version field of 0. Verify
that the correct error message is sent to the controller

Results Pass or Fail
Remarks When the header in the request msg contains a version field which is not

supported by the switch, it generates OFPT_ERROR_msg with Type
field OFPET_BAD_REQUEST and code field
OFPBRC_BAD_VERSION

Test Number 100.40
Test Title OFPT_ERROR / OFPET_BAD_REQUEST /

OFPBRC_BAD_TYPE / Bad_Type
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_BAD_TYPE, /* ofp_header.type not supported. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message OFPBRC_BAD_TYPE
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBRC_BAD_TYPE Error condition.This can be done by sending
an unknown request to the switch. Verify correct error message is sent
to the controller

Results Pass or Fail or Not Tested
Remarks When the header in the request msg contains a type field which is not

supported by the switch, it generates OFPT_ERROR_msg with Type
field OFPET_BAD_REQUEST and code field OFPBRC_BAD_TYPE

Test Number 100.50
Test Title OFPT_ERROR / OFPET_BAD_REQUEST /

OFPBRC_BAD_VENDOR/ Bad_Vendor
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_BAD_VENDOR, /* Vendor not supported (in ofp_vendor_header * or
ofp_stats_request or ofp_stats_reply). */

Profile Status OPTIONAL

OpenFlow Switch Test Suite

 101 © 2013 Open Networking Foundation

Test case 100.60: OFPBRC_BAD_SUBTYPE

Test case 100.70: OFPBRC_EPERM

Requirements Correct implementation of Error message
OFPBRC_BAD_VENDOR

Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBRC_BAD_VENDOR Error condition. This can be done by
specifying an unknown vendor-id in the OFPST_VENDOR request.
Verify correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks

Test Number 100.60
Test Title OFPT_ERROR / OFPET_BAD_REQUEST /

OFPBRC_BAD_SUBTYPE / Bad_Subtype
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_BAD_SUBTYPE, /* Vendor subtype not supported.

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OFPBRC_BAD_SUBTYPE
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBRC_BAD_SUBTYPE Error condition. This can be done by
specifying an unknown vendor subtype in the OFPST_VENDOR
request. Verify correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks

Test Number 100.70
Test Title OFPT_ERROR / OFPET_BAD_REQUEST /

OFPBRC_EPERM / Permission_Error
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_EPERM, /* Permissions error. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPBRC_EPERM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPHFC_EPERM error condition. Verify correct error message is sent
to the controller.

Results Pass or Fail or Not Tested
Remarks Permissions error generated by an entity between a controller and

switch, such as an OpenFlow hypervisor
This requires an intermediate device or emulation of an intermediate

OpenFlow Switch Test Suite

 102 © 2013 Open Networking Foundation

Test case 100.80: OFPBRC_BAD_LEN

Test case 100.90: OFPBRC_BUFFER_EMPTY

Test case 100.100: OFPBRC_BUFFER_UNKNOWN

device to generate the permission error.

Test Number 100.80
Test Title OFPT_ERROR / OFPET_BAD_REQUEST /

OFPBRC_BAD_LEN / Bad_Length
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_BAD_LEN, /* Wrong request length for type. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message OFPBRC_BAD_LEN
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBRC_BAD_LEN Error condition. This can be done by sending a
OFPT_STATS_REQUEST with incorrect header length. Verify correct
error message is sent to the controller

Results Pass or Fail
Remarks

Test Number 100.90
Test Title OFPT_ERROR / OFPET_BAD_REQUEST /

OFPBRC_BUFFER_EMPTY / Buffer_Empty
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_BUFFER_EMPTY, /* Specified buffer has already been used. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message

OFPBRC_BUFFER_EMPTY
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBRC_BUFFER_EMPTY Error condition. This can be done by
sending two packet_out messages referencing the same buffer. The first
packet_out should succeed and empty the buffer, the second packet_out
should trigger the error. Verify correct error message is sent to the
controller

Results Pass or Fail or Not Tested
Remarks When the buffer specified by the controller has already been used ,

switch replies back with OFPT_ERROR msg with type field
OFPET_BAD_REQUEST and code field
OFPBRC_BUFFER_EMPTY" /* Specified buffer has already
been used. */

Test Number 100.100

OpenFlow Switch Test Suite

 103 © 2013 Open Networking Foundation

Test case 100.110: OFPBAC_BAD_TYPE

Test case 100.120: OFPBAC_BAD_LEN

Test Title OFPT_ERROR / OFPET_BAD_REQUEST /
OFPBRC_BUFFER_UNKNOWN / Buffer_Unknown

Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 38.
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPBRC_BUFFER_UNKNOWN /* Specified buffer does not exist. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message

OFPBRC_BUFFER_UNKNOWN
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBRC_BUFFER_UNKNOWN Error condition. This can be done
by specifying a random or unknown buffer_id in the
OFPT_PACKET_OUT message outside the scope reported by the
switch. Verify correct error message is sent to the controller

Results Pass or Fail
Remarks When the buffer specified by the controller does not exist, the switch

replies back with OFPT_ERROR msg with type field
OFPET_BAD_REQUEST" /* Specified buffer does not exist. */

Test Number 100.110
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_BAD_TYPE / Bad_Type
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 39.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_BAD_TYPE, * Unknown action type. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message OFPBAC_BAD_TYPE
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_BAD_TYPE Error condition. This can be done by sending
a flow with action OFPAT_OUTPUT such that type field in the action
header is an unknown value. Verify correct error message is sent to the
controller .

Results Pass or Fail
Remarks When the type field in the action header specified by the controller is

unknown, the switch generates an OFPT_ERROR msg with type field
OFPBET_BAD_ACTION and code field OFPBAC_BAD_TYPE" /*
Unknown action type. */

Test Number 100.120
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_BAD_LEN / Bad_Length2
Test Purpose Verify Controller is able to respond correctly to error condition

OpenFlow Switch Test Suite

 104 © 2013 Open Networking Foundation

Test case 100.130: OFPBAC_BAD_VENDOR

Test case 100.140: OFPBAC_BAD_VENDOR_TYPE

Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_BAD_LEN, /* Length problem in actions. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error messages
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

Error condition. This can be done by sending a flow with action
OFPAT_OUTPUT such that length field in the action_header is an
incorrect value. Verify correct error message is sent to the controller

Results Pass or Fail
Remarks When the length field in the action header specified by the controller is

wrong, the switch replies back with an OFPT_ERROR msg with Type
Field OFPBAC_BAD_LEN" /* Length problem in actions. */

Test Number 100.130
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_BAD_VENDOR / Bad_Vendor
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_BAD_VENDOR, /* Unknown vendor id specified. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OFPBAC_BAD_VENDOR
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_BAD_VENDOR Error condition.This can be done by
sending a flow with action OFPAT_VENDOR such that vendor id
specified in the ofp_action_vendor_header is an unknown value. Verify
correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks Unknown vendor id specified.

Test Number 100.140
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_BAD_VENDOR_TYPE / Bad_Vendor_Type, /*
Unknown action type for vendor id. */

Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_BAD_VENDOR_TYPE, /* Unknown action type for vendor id. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OpenFlow Switch Test Suite

 105 © 2013 Open Networking Foundation

Test case 100.150: OFPBAC_BAD_OUT_PORT

Test case 100.160: OFPBAC_BAD_ARGUMENT

OFPBAC_BAD_VENDOR_TYPE
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_BAD_VENDOR_TYPE Error condition. Verify correct
error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks Unknown action type for vendor id

Test Number 100.150
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_BAD_OUT_PORT / Bad_Out_Port, /* Problem validating
output action. */

Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_BAD_OUT_PORT, /* Problem validating output action. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OFPBAC_BAD_OUT_PORT
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_BAD_OUT_PORT Error condition. This can be done by
sending a flow with action OFPAT_OUTPUT to egress_port
OFPP_MAX. Verify correct error message is sent to the controller

Results Pass or Fail
Remarks /* When the output to switch port action refers to a port that does not

exist, the switch generates an OFPT_ERROR msg , with type field
OFPT_BAD_ACTION and code field OFPBAC_BAD_OUT_PORT"
 /* Problem validating output action. */

Test Number 100.160
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_BAD_ARGUMENT / Bad_Argument
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_BAD_ARGUMENT, /* Bad action argument. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message

OFPBAC_BAD_ARGUMENT
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_BAD_ARGUMENT Error condition. This can be done by
sending a flow with action OFPAT_SET_VLAN_VID such that
vlan_vid specified in the action is an incorrect value. Verify correct

OpenFlow Switch Test Suite

 106 © 2013 Open Networking Foundation

Test case 100.170: OFPBAC_EPERM

Test case 100.180: OFPBAC_TOO_MANY

error message is sent to the controller
Results Pass or Fail
Remarks /* if the arguments specified in the action are wrong , then the switch

reponds back with an OFPT_ERROR msg with type field
OFPT_BAD_ACTION and code field OFPBAC_BAD_ARGUMENT"
 /* Bad action argument. */

Test Number 100.170
Test Title OFPT_ERROR / OFPT_BAD_ACTION / OFPBAC_EPERM /

Permission_Error3
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_EPERM, /* Permissions error. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPBAC_EPERM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_EPERM Error condition. Verify correct error message is
sent to the controller

Results Pass or Fail or Not Tested
Remarks Permissions error generated by an entity between a controller and

switch, such as an OpenFlow hypervisor" /* Permissions error. */
This requires an intermediate device or emulation of an intermediate
device to generate the permission error.

Test Number 100.180
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_TOO_MANY / Too_Many Actions
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_TOO_MANY, /* Can’t handle this many actions. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPBAC_TOO_MANY
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_TOO_MANY Error condition. This can be done by sending
a flow with lot of actions such that the switch is unable to support them.
Verify correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks if the actions specified by the controller are more than that switch can

support, the switch responds back with an OFPT_ERROR msg , with
type field OFPT_BAD_ACTION and code field
OFPBAC_TOO_MANY" /* Can't handle this many actions. */

OpenFlow Switch Test Suite

 107 © 2013 Open Networking Foundation

Test case 100.190: OFPBAC_BAD_QUEUE

Test case 100.200: OFPFMFC_ALL_TABLES_FULL

A software switch may not trigger such an error even on very large
action_list.

Test Number 100.190
Test Title OFPT_ERROR / OFPT_BAD_ACTION /

OFPBAC_BAD_QUEUE / Bad_Queue1
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_BAD_ACTION, /* Error in action description. */
OFPBAC_BAD_QUEUE, /* Problem validating output queue. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPBAC_BAD_QUEUE
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPBAC_BAD_QUEUE Error condition. This can be done by
sending a flow with action OFPAT_ENQUEUE such that queue_id
specified in the action is an incorrect value. Verify correct error
message is sent to the controller

Results Pass or Fail or Not Tested
Remarks If the switch is not able to process the Enqueue action specified by the

controller then the switch should generate an OFPT_ERROR msg , type
field OFPT_BAD_ACTION and code field OFPBAC_BAD_QUEUE "
 /* Problem validating output queue. */

Test Number 100.200
Test Title OFPT_ERROR / OFPET_FLOW_MOD_FAILED /

OFPFMFC_ALL_TABLES_FULL / All_Tables_Full
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 2.
OFPET_FLOW_MOD_FAILED, /* Problem modifying flow entry. */
OFPFMFC_ALL_TABLES_FULL, /* Flow not added because of full tables. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OFPFMFC_ALL_TABLES_FULL
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPFMFC_ALL_TABLES_FULL Error condition. This can be done
by inserting a lot of flows in the switch such that switch runs out of
flow-tables. Verify correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks if the controller tries to insert a flow-entry when all the flow-tables are

full , then the switch should respond back with an OFPT_ERROR msg ,
type field OFPET_FLOW_MOD_FAILED and code field
OFPFMFC_ALL_TABLES_FULL" /* Flow not added because of full
tables. */

OpenFlow Switch Test Suite

 108 © 2013 Open Networking Foundation

Test case 100.210: OFPFMFC_OVERLAP

Test case 100.220: OFPFMFC_EPERM

Test case 100.230: OFPFMFC_BAD_EMERG_TIMEOUT

Test Number 100.210
Test Title OFPT_ERROR / OFPET_FLOW_MOD_FAILED /

OFPFMFC_OVERLAP / Overlap
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_FLOW_MOD_FAILED, /* Problem modifying flow entry. */
OFPFMFC_OVERLAP, /* Attempted to add overlapping flow with *
CHECK_OVERLAP flag set. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error messages
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

Error condition OFPFMFC_OVERLAP .This can be done by sending
a flow with OFPFF_CHECK_OVERLAP flag set. Then enter a second
overlapping flow into the flow tableSend an overlapping flow .. Verify
correct error message is sent to the controller

Results Pass or Fail
Remarks if the controller tries to insert an overlapping flow-entry with the Check

overlap flag set , the switch responds back with an OFPT_ERROR msg,
type field OFPET_FLOW_MOD_FAILED and code field
OFPFMFC_OVERLAP" /* Attempted to add overlapping flow
with CHECK_OVERLAP flag set. */

Test Number 100.220
Test Title OFPT_ERROR / OFPET_FLOW_MOD_FAILED /

OFPFMFC_EPERM / Permission_Error4
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_FLOW_MOD_FAILED, /* Problem modifying flow entry. */
OFPFMFC_EPERM, /* Permissions error. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPFMFC_EPERM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPFMFC_EPERM Error condition. Verify correct error message is
sent to the controller

Results Pass or Fail or Not Tested
Remarks permissions error generated by an entity between a controller and

switch, such as an OpenFlow hypervisor" /* Permissions error. */
This requires an intermediate device or emulation of an intermediate
device to generate the permission error.

Test Number 100.230
Test Title OFPT_ERROR / OFPET_FLOW_MOD_FAILED /

OpenFlow Switch Test Suite

 109 © 2013 Open Networking Foundation

Test case 100.240: OFPFMFC_BAD_COMMAND

OFPFMFC_BAD_EMERG_TIMEOUT /
Bad_Emergency_Timeout

Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_FLOW_MOD_FAILED, /* Problem modifying flow entry. */
OFPFMFC_BAD_EMERG_TIMEOUT, /* Flow not added because of non-zero
idle/hard * timeout. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OFPFMFC_BAD_EMERG_TIMEOUT
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPFMFC_BAD_EMERG_TIMEOUT Error condition.This can be
done by sending an emergency flow i.e a flow with OFPFF_EMERG
flag set and idle_timeout set to a non-zero value. Verify correct error
message is sent to the controller

Results Pass or Fail or Not Tested
Remarks When the emergency flows are added by the controller, (those flows

which are marked with emergency bit set), they should have a zero
idle/hard timeout. Otherwise, should switch should respond with an
OFPT ERROR msg , type field OFPET_FLOW_MOD_FAILED, code
field OFPFMFC_BAD_EMERG_TIMEOUT" /* Flow not added
because of non-zero idle/hard timeout

Test Number 100.240
Test Title OFPT_ERROR / OFPET_FLOW_MOD_FAILED /

OFPFMFC_BAD_COMMAND / Bad_Command
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_FLOW_MOD_FAILED, /* Problem modifying flow entry. */
OFPFMFC_BAD_COMMAND, /* Unknown command. */

Profile Status MANDATORY for ALL Profiles
Requirements Correct implementation of Error message

OFPFMFC_BAD_COMMAND
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPFMFC_BAD_COMMAND Error condition. This can be done by
sending a ofpt_flow_mod message with command field set to an
incorrect value. Verify correct error message is sent to the controller

Results Pass or Fail
Remarks when the flow_mod msg request is sent by the controller with the some

invalid command , the switch responds with an OFPT_ERROR msg ,
type field OFPET_FLOW_MOD_FAILED and code field
OFPFMFC_BAD_COMMAND" /* Unknown command. */

OpenFlow Switch Test Suite

 110 © 2013 Open Networking Foundation

Test case 100.250: OFPFMFC_UNSUPPORTED

Test case 100.260: OFPPMFC_BAD_PORT

Test Number 100.250
Test Title OFPT_ERROR / OFPET_FLOW_MOD_FAILED /

OFPFMFC_UNSUPPORTED / Unsupported_Actionlist
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_FLOW_MOD_FAILED, /* Problem modifying flow entry. */
OFPFMFC_UNSUPPORTED /* Unsupported action list - cannot process in
* the order specified. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OFPFMFC_UNSUPPORTED
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPFMFC_UNSUPPORTED Error condition.This can be done by
sending a flow with an action list specified such that order of the actions
is unsupported. E.g. first action : OFPAT_OUTPUT and second action
OFPAT_SET_DL_SRC . Verify correct error message is sent to the
controller

Results Pass or Fail or Not Tested
Remarks When the controller sends a flow_mod request with a action list which

is not supported by the switch , the switch should respond back with an
error msg OFPT_ERROR, type field OFPET_FLOW_MOD_FAILED
and code field OFPFMFC_UNSUPPORTED " "/* Unsupported
action list - cannot process in order specified /*

Test Number 100.260
Test Title OFPT_ERROR / OFPET_PORT_MOD_FAILED /

OFPPMFC_BAD_PORT / Bad_Port1
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_PORT_MOD_FAILED, /* Port mod request failed. */
OFPPMFC_BAD_PORT, /* Specified port does not exist. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPPMFC_BAD_PORT
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPPMFC_BAD_PORT Error condition. This can be done by
sending a OFPT_PORT_MOD message for an invalid port e.g
OFPP_MAX .Verify correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks if the controller sends a port_mod request for the port that is invalid ,

the switch will respond back with an OFPT_ERROR msg , type field
OFPT_ERROR and code field OFPPMFC_BAD_PORT

OpenFlow Switch Test Suite

 111 © 2013 Open Networking Foundation

Test case 100.270: OFPPMFC_BAD_HW_ADDR

Test case 100.280: OFPQOFC_BAD_PORT

Test Number 100.270
Test Title OFPT_ERROR / OFPET_PORT_MOD_FAILED /

OFPPMFC_BAD_HW_ADDR / Bad_HW_ADDR
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_PORT_MOD_FAILED, /* Port mod request failed. */
OFPPMFC_BAD_HW_ADDR, /* Specified hardware address is wrong. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message

OFPPMFC_BAD_HW_ADDR
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPPMFC_BAD_HW_ADDR Error condition. This can be done by
sending OFPT_PORT_MOD message for any port with
hw_addr[OFP_ETH_ALEN] field set to an incorrect value. i.e a value
different than what was returned in ofp_phy_port_stuct. Verify correct
error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks If the controller sends a port_mod request for any port with a hardware

address that is different from one returned in ofp_phy_port struct. , the
switch will respond back with an OFPT_ERROR msg , type field
OFPET_PORT_MOD_FAILED and code field
OFPPMFC_BAD_PORT" /* Specified hardware address is wrong. */

Test Number 100.280
Test Title OFPT_ERROR / OFPET_QUEUE_OP_FAILED /

OFPQOFC_BAD_PORT / Bad_Port
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_QUEUE_OP_FAILED /* Queue operation failed. */
OFPQOFC_BAD_PORT, /* Invalid port (or port does not exist). */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPQOFC_BAD_PORT
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPQOFC_BAD_PORT Error condition. This can be done by
sending ofp_queue_stats_request for an invalid port e.g OFPP_MAX.
Verify correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks If the port specifed for any queue operation (like enqeue --output to

queue or retrieving queue stats) is an invalid port , then the switch
responds back with an error msg OFPT_ERROR msg , type field
OFPET_QUEUE_OP_FAILED , code field OFPQOFC_BAD_PORT"
 /* Invalid port (or port does not exist). */

OpenFlow Switch Test Suite

 112 © 2013 Open Networking Foundation

Test case 100.290: OFPQFC_BAD_QUEUE

Test case 100.300: OFPET_QUEUE_OP_FAILED

Test Number 100.290
Test Title OFPT_ERROR / OFPET_QUEUE_OP_FAILED /

OFPQFC_BAD_QUEUE / Bad_Queue
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_QUEUE_OP_FAILED /* Queue operation failed. */
OFPQOFC_BAD_QUEUE, /* Queue does not exist. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPQFC_BAD_QUEUE
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPQFC_BAD_QUEUE Error condition. This can be done by
sending ofp_queue_stats_request for a valid port but an invalid
queue_id Verify correct error message is sent to the controller

Results Pass or Fail or Not Tested
Remarks if the queue_id specifed for any queue operation (like enqeue --output to

queue or retrieving queue stats) is an invalid queue , then the switch
responds back with an error msg OFPT_ERROR msg , type field
OFPET_QUEUE_OP_FAILED , code field
OFPQOFC_BAD_QUEUE" /* Queue does not exist. */

Test Number 100.300
Test Title OFPT_ERROR / OFPET_QUEUE_OP_FAILED /

OFPQOFC_EPERM / Permission Error 5
Test Purpose Verify Controller is able to respond correctly to error condition
Specification
Reference

OpenFlow Switch Specification 1.0.0, 5.4.4 Error Messages, p. 40.
OFPET_QUEUE_OP_FAILED /* Queue operation failed. */
OFPQOFC_EPERM /* Permissions error. */

Profile Status OPTIONAL
Requirements Correct implementation of Error message OFPQOFC_EPERM
Topology Control-plane connection between DUT and reference controller.
Methodology Configure and connect the Primary-controller on the DUT. Trigger

OFPQOFC_EPERM Error condition. Verify correct error message is
sent to the controller

Results Pass or Fail or Not Tested
Remarks Permissions error generated by an entity between a controller and

switch, such as an OpenFlow hypervisor" /* Permissions error. */
This requires an intermediate device or emulation of an intermediate
device to generate the permission error.

OpenFlow Switch Test Suite

113 © 2013 Open Networking Foundation

7 Official Results Reporting for Conformance
Conformance testing should follow the guidelines of the Conformance Testing Program as
outlined on the ONF Conformance Testing website. This document outlines specific
reporting requirements of this test specification.

A single report SHOULD be submitted for each DUT tested. The report SHOULD include
the ONF Conformance Test Application that was submitted by the vendor.

The report MUST clearly state all relevant test bed information. Including, but not limited to:
All testbed topology and configuration information.
For hardware based test tools, include:

Vendor/Manufacturer
Chassis Model
Card Model(s)
All Software and Firmware Versions

For Software based Test Tools, include:
Test Framework
Software Version
Server hardware specifications
Server OS and Configuration Information

The report MUST clearly state all DUT relevant information. Including, but not limited to:
For hardware based DUTs, include:

Vendor/Manufacturer
Chassis Model
Card Modules
All Software/Firmware Versions

For software based DUTs, include:
Software Version
Server hardware specifications
Server OS and/or hypervisor version and Configuration Information

The report MUST clearly indicate each Conformance Profile for which testing was
performed. Profiles are defined in this document under section 3.1 Conformance Profiles.

The report MUST clearly state the result and indicate all relevant profiles for each
MANDATORY and OPTIONAL test case that was executed.

Test case numbers MUST be included and match the test case numbers as described in this
document to avoid ambiguity in the results reporting.

The report MUST clearly indicate whether or not the DUT has passed conformance testing
for each profile tested.

It is OPTIONAL to include additional caveat, recommendation or assessment information.

OpenFlow Switch Test Suite

114 © 2013 Open Networking Foundation

Bugs should be reported separately to the ONF Testing and Interop Working Group.

8 Appendix A: References
1. OpenFlow Switch Specification 1.0.0
2. OpenFlow Switch Specification Errata v1.0.1
3. RFC 2119, “Key words for use in RFCs to Indicate Requirement Levels”, S. Bradner,
http://www.ietf.org/rfc/rfc2119.txt
4. Reference Test Code - https://github.com/InCNTRE/oftest
5. ONF Certified Test Labs - <insert link>
6. ONF Member Trademark Terms and Conditions

9 Appendix B: Credits
Spec Contributions, in Alphabetical Order:

Uwe Dahlmann, Michael Haugh, Zoltan Lajos Kis, Ronald Milford, Shreya Pandita, Sibylle
Schaller, Rob Sherwood, Mark Tassinari

© Open Networking Foundation

Disclaimer

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY (“RANDZ”) LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS
OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

OpenFlow Switch Test Suite

	conformance-test-spec-openflow-1.0.1.pdf
	Randz disclaimer page.pdf
	OpenFlow Table Type Patterns v1.0.pdf

{

 "NDM_metadata": {

 "authority": "org.opennetworking.fawg",

 "type": "TTPv1",

 "name": "L2-L3-ACLs",

 "version": "1.0.0",

 "OF_protocol_version": "1.3.3",

 "doc": ["Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),",

 "and an ACL table."]

 },

 "security": {

 "doc": ["This TTP is not published for use by ONF. It is an example and for",

 "illustrative purposes only.",

 "If this TTP were published for use it would include",

 "guidance as to any security considerations in this doc member."]

 },

 "table_map": {

 "ControlFrame": 0,

 "IngressVLAN": 10,

 "MacLearning": 20,

 "ACL": 30,

 "L2": 40,

 "ProtoFilter": 50,

 "IPv4": 60,

 "IPv6": 80

 },

 "identifiers": [

 {"var": "<port_vid>",

 "doc": "A VLAN ID to be assigned to untagged or priority tagged frames received on a port."},

 {"var": "<local_vid>",

 "range": "1..4094",

 "doc": "A VLAN ID valid on the wire at a port."},

 {"var": "<relay_vid>",

 "doc": "A VLAN ID valid internal to the switch."},

 {"var": "<VID>",

 "doc": "A VLAN ID"},

 {"var": "<Router_MAC_DA>",

 "doc": "A unicast MAC address used to reach the L3 flow tables"},

 {"var": "<Group_MAC>",

 "doc": "A group (multicast) MAC address."},

 {"var": "<Router_IP>",

 "doc": ["An IP address used to reach L3 control functions,",

 "e.g. a loopback address in the Router."]}, {"var": "<LocalSubnet>",

 "doc": "An IP subnet (address prefix) allocated to a directly attached L2 network or link."},

 {"var": "<port_no>",

 "doc": "A valid port number on the logical switch."},

 {"var": "<local_MAC>",

 "doc": "The unicast MAC address of a Router port on which a new L2 frame is transmitted."},

 {"var": "<dest_MAC>",

 "doc": "The destination MAC address for a new L2 frame."},

 {"var": "<subnet_VID>",

 "doc": "The VLAN ID of a locally attached L2 subnet on a Router."},

 {"var": "<<group_entry_types:name>>",

 "doc": ["An OpenFlow group identifier (integer) identifying a group table entry",

 "of the type indicated by the variable name"]}

],

 "features": [

 {"feature": "ext187",

 "doc": "Flow entry notification Extension – notification of changes in flow entries"},

 {"feature": "ext235",

 "doc": "Group notifications Extension – notification of changes in group or meter entries"}

],

 "meter_table": {

 "meter_types": [

 {"name": "ControllerMeterType",

 "bands": [{"type": "DROP", "rate": "1000..10000", "burst": "50..200"}]

 },

 {"name": "TrafficMeter",

 "bands": [{"type": "DSCP_REMARK", "rate": "10000..500000", "burst": "50..500"},

 {"type": "DROP", "rate": "10000..500000", "burst": "50..500"}]

 }

],

 "built_in_meters": [

 {"name": "ControllerMeter", "meter_id": 1,

 "type": "ControllerMeterType", "bands": [{"rate": 2000, "burst": 75}]},

 {"name": "AllArpMeter", "meter_id": 2,

 "type": "ControllerMeterType", "bands": [{"rate": 1000, "burst": 50}]}

]

 },

 "flow_tables": [

 {

 "name": "ControlFrame",

 "doc": ["Filters L2 control reserved destination addresses and",

 "may forward control packets to the controller.",

 "Directs all other packets to the Ingress VLAN table."],

 "flow_mod_types": [

 {

 "name": "Frame-To-Controller",

 "doc": ["This match/action pair allows for flow_mods that match on either",

 "ETH_TYPE or ETH_DST (or both) and send the packet to the",

 "controller, subject to metering."],

 "match_set": [

 {"field": "ETH_TYPE", "match_type": "all_or_exact"},

 {"field": "ETH_DST", "match_type": "exact"}

],

 "instruction_set": {"exactly_one": [

 [

 {"instruction": "METER", "meter_name": "ControllerMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller"]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]

 }],

 [

 {"instruction": "APPLY_ACTIONS",

 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]

 }]

]}

 }

],

 "built_in_flow_mods": [

 {

 "name": "Control-Frame-Filter",

 "doc": "Mandatory filtering of control frames with C-VLAN Bridge reserved DA.",

 "priority": 1,

 "match_set": [{"field":"ETH_DST","mask":"0xfffffffffff0","value":"0x0180C2000000"}],

 "instruction_set": []

 },

 {

 "name": "Non-Control-Frame",

 "doc": "Mandatory miss flow_mod, sends packets to IngressVLAN table.",

 "priority": 0,

 "match_set": [],

 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "IngressVLAN"}]

 }

]

 },

 {

 "name": "IngressVLAN",

 "doc": ["Ingress VID processing table, including:",

 " - accepting or blocking untagged and priority tagged frames",

 " - accepting or blocking VLAN tagged frames",

 " - ingress VID filtering control",

 " - (optional) ingress VID translation"],

 "flow_mod_types": [

 {"all": [

 {

 "name": "Block-Untagged",

 "priority": "2..3",

 "doc": "Block untagged traffic on a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}

],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "Allow-Untagged",

 "priority": 3,

 "doc": "Allow untagged traffic.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "PUSH_VLAN"},

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "name": "Block-Priority-Tagged",

 "priority": "5..7",

 "doc": "Block priority tagged traffic on a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "Allow-Priority-Tagged",

 "priority": "6..7",

 "doc": "Allow priority tagged traffic on a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 }

],

 "zero_or_more": [

 {

 "name": "Enable-Ingress-VID-Filter",

 "priority": "2..3",

 "doc": "Used to enable ingress VID filtering on all ports or a specific port.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "Disable-Ingress-VID-Filter",

 "priority": 3,

 "doc": "Used to disable ingress VID filtering on a specific port.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "exact"},

 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "name": "Ingress-VID-Allow",

 "priority": 4,

 "doc": "Used to allow a specific VID to ingress at a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<local_vid>"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "opt_tag": "VID-X",

 "name": "Ingress-VID-Translate",

 "priority": "4..5",

 "doc": "Used to translate specific VIDs at ingress at a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<local_vid>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<relay_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 }

]}

],

 "built_in_flow_mods": [

 {

 "name": "Default-Allow-Untagged",

 "priority": 1,

 "doc": "Default to allow untagged traffic on all ports, default port VID is 1.",

 "match_set": [

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "PUSH_VLAN"},

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "name": "Default-Allow-Priority-Tagged",

 "priority": 4,

 "doc": ["Default flow_mod to allow priority tagged traffic on all ports,",

 "default port VID is 1."],

 "match_set": [

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "name": "Default-Disable-Ingress-VID-Filter",

 "priority": 1,

 "doc": "Default to disable ingress VID filtering on all ports.",

 "match_set": [

 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 }

],	

 "table_subsets": [

 {"name": "IV-pass",

 "subset": ["Allow-Untagged", "Allow-Priority-Tagged", "Disable-Ingress-VID-Filter",

 "Ingress-VID-Allow", "Ingress-VID-Filter", "Ingress-VID-Translate",

 "Default-Allow-Untagged", "Default-Allow-Priority-Tagged",

 "Default-Disable-Ingress-VID-Filter"]

 },

 {"name": "IV-drop",

 "subset": ["Block-Untagged", "Block-Priority-Tagged", "Enable-Ingress-VID-Filter",

 "MISS"]

 }

]

 },

 {

 "name": "MacLearning",

 "doc": ["By default sends packets whose Source MAC address is ",

 "received on a new IN_PORT to controller for learning.",

 "The controller is expected to install flow_mods for learned",

 "addresses, and remove stale entries when required.",

 "The controller may also disable MAC learning for a VLAN ",

 "by installing a flow_mod to simply go to the next table."],

 "flow_mod_types": [

 {

 "name": "Known-MAC",

 "priority": 2,

 "doc": "Type used to create an entry for a learned MAC",

 "match_set": [

 {"field": "IN_PORT"},

 {"field": "VLAN_VID"},

 {"field": "ETH_SRC"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 },

 {

 "name": "Disable-MAC-Learning",

 "priority": 2,

 "doc": "Type used to disable MAC learning on a VLAN",

 "match_set": [{"field": "VLAN_VID"}],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 },

 {

 "name": "MAC-Miss-limit",

 "doc": "Send unknown MACs to the controller, subject to metering.",

 "priority": 1,

 "match_set": [],

 "instruction_set": [

 {"instruction": "METER", "meter_name": "ControllerMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller"]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}

]

 },

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 }

],

 "built_in_flow_mods": [

 {

 "name": "MAC-Miss",

 "doc": "Send unknown MACs to the controller.",

 "priority": 0,

 "match_set": [],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}

]

 },

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 }

]

 },

 {

 "name": "ACL",

 "doc": "Simple 5-tuple firewalling ACL table.",

 "flow_mod_types": [

 {

 "name": "IP5-Tuple-Block",

 "doc": ["This type allows matching on an IP 5-tuple and",

 "dropping packets."],

 "match_set": [{

 "exactly_one": [

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

]

]

 }],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "IP-5Tuple-Intercept",

 "doc": ["This type allows matching on an IP 5-tuple and",

 "forwarding to the controller."],

 "match_set": [{

 "exactly_one": [

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

]

]

 }],

 "instruction_set": [

 {"instruction": "METER", "meter_name": "ControllerMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller"]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 },

 {

 "name": "IP-5Tuple-Allow",

 "doc": ["This type allows matching on an IP 5-tuple and",

 "sending on to the L2 table, overriding a lower",

 "priority block or intercept."],

 "match_set": [{

 "exactly_one": [

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

]

]

 }],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "L2"}

]

 }

],

 "built_in_flow_mods": [

 {

 "name": "ACL-skip",

 "doc": "Mandatory miss flow mod, sends packets to L2 table.",

 "priority": 0,

 "match_set": [],

 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "L2"}]

 }

]

 },

 {

 "name": "L2",

 "doc": ["MAC forwarding table"],

 "flow_mod_types": [

 {

 "name": "VID-flood",

 "priority": 1,

 "doc": "Flood frames with unknown DA.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<VIDflood>"}

]

 },

 {"zero_or_one": {"instruction": "GOTO_TABLE", "table": "ProtoFilter",

 "doc": "Include this instruction of the VID is registered on the Router port."}}

]

 },

 {

 "name": "L2-Unicast",

 "priority": 2,

 "doc": "Unicast forwarding entry.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"},

 {"field": "ETH_DST"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<EgressPort>"}

]

 }

]

 },

 {

 "name": "L2-Router-MAC",

 "priority": 2,

 "doc": "Router MAC address, so send toward IP flow tables.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"},

 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "ProtoFilter"}

]

 },

 {

 "name": "L2-Multicast",

 "priority": 2,

 "doc": "L2 Multicast forwarding entry.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"},

 {"field": "ETH_DST", "value": "<Group_MAC>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<L2Mcast>"}

]

 }

]

 }

],

 "built_in_flow_mods": [

 {

 "name": "L2-Drop",

 "priority": 0,

 "doc": ["Discard frames with no VID registration,",

 "i.e., VID without a <VIDflood> group and",

 "corresponding VIDflood flow table entry."],

 "match_set": [],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 }

],

 "table_subsets": [

 {"name": "L2-Forward",

 "subsets": ["VIDflood", "L2Unicast", "L2Multicast"]

 }

]

 },

 {

 "name": "ProtoFilter",

 "doc": ["Selects IP version flow table and forwards ARPs to controller."],

 "built_in_flow_mods": [

 {

 "name": "IPv4",

 "priority": 1,

 "doc": "Direct IPv4 packets to IPv4 flow table.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "GOTO_TABLE", "table": "IPv4"}

]

 },

 {

 "opt_tag": "IPv6",

 "name": "IPv6",

 "priority": 1,

 "doc": "Direct IPv6 packets to IPv6 flow table.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "GOTO_TABLE", "table": "IPv6"}

]

 },

 {

 "name": "Router-ARP",

 "priority": 2,

 "doc": "Direct targeted ARP packets to controller.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 2054},

 {"field": "ARP_TPA", "value": "<Router_IP>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 },

 {

 "name": "All-ARP",

 "priority": 1,

 "doc": "Direct ARP packets to controller.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 2054}

],

 "instruction_set": [

 {"instruction": "METER", "meter_name": "AllArpMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller. A separate controller meter is used",

 "here, with a lower rate than main controller meter, to limit ARPs",

 "before limiting other packets to the controller."]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 }

]

 },

 {

 "name": "IPv4",

 "doc": ["IPv4 unicast forwarding table. To achieve LPM the flow_mod",

 "priority must be the length of the prefix mask."],

 "flow_mod_types": [

 {

 "name": "v4-Unicast",

 "doc": ["LPM forwarding entry. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV4_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<NextHop>"}]

 }

]

 },

 {

 "name": "v4-Unicast-ECMP",

 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV4_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<L3ECMP>"}]

 }

]

 },

 {

 "name": "Local-ARP",

 "doc": ["Local subnet address needing ARP. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV4_DST", "value": "<LocalSubnet>", "match_type": "prefix"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 }

]

 },

 {

 "opt_tag": "IPv6",

 "name": "IPv6",

 "doc": ["IPv6 unicast forwarding table. To achieve LPM the flow_mod",

 "priority must be the length of the prefix mask."],

 "flow_mod_types": [

 {

 "name": "v6-Unicast",

 "doc": ["LPM forwarding entry. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV6_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<NextHop>"}]

 }

]

 },

 {

 "name": "v6-Unicast-ECMP",

 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV6_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<L3ECMP>"}]

 }

]

 },

 {

 "name": "Local-ND",

 "doc": ["Local subnet address needing Neighbor Discovery. Valid only",

 "if the priority value matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV6_DST", "value": "<LocalSubnet>", "match_type": "prefix"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }]

 }

]

 }

],

 "group_entry_types": [

 {

 "name": "EgressPort",

 "doc": ["Output to a port, removing VLAN tag if needed.",

 "Entry per port, plus entry per untagged VID per port."],

 "group_type": "INDIRECT",

 "bucket_types": [

 {"name": "OutputTagged",

 "action_set": [{"action": "OUTPUT", "port": "<port_no>"}]

 },

 {"name": "OutputUntagged",

 "action_set": [{"action": "POP_VLAN"},

 {"action": "OUTPUT", "port": "<port_no>" }]

 },

 {"opt_tag": "VID-X",

 "name": "OutputVIDTranslate",

 "action_set": [{"action": "SET_FIELD", "field": "VLAN_VID", "value": "<local_vid>"},

 {"action": "OUTPUT", "port": "<port_no>" }]

 }

]

 },

 {

 "name": "VIDflood",

 "doc": ["Output to all ports registered for a VID (except IN_PORT).",

 "Entry per VID."],

 "group_type": "ALL",

 "bucket_types": [

 {"name": "VIDport",

 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]

 }

]

 },

 {

 "name": "L2Mcast",

 "doc": ["Output to all ports in a multicast tree (except IN_PORT).",

 "Entry per L2 group address."],

 "group_type": "ALL",

 "bucket_types": [

 {"name": "MCASTport",

 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]

 }

]

 },

 {

 "name": "NextHop",

 "doc": ["Decrement IP TTL and add L2 header for next hop.",

 "Entry per next hop IP address."],

 "group_type": "INDIRECT",

 "bucket_types": [

 {"name": "KnownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<EgressPort>"}]

 },

 {"name": "UnknownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<Flood>"}]

 }

]

 },

 {

 "name": "L3ECMP",

 "doc": ["Output to one port in an ECMP set.",

 "Entry per destination border node."],

 "group_type": "SELECT",

 "bucket_types": [

 {"name": "nextHopOption",

 "action_set": [{"action": "GROUP", "group_id": "<NextHop>"}]

 }

]

 },

 {"zero_or_more": {

 "name": "NextHopFF",

 "doc": ["Decrement IP TTL and add L2 header for next hop.",

 "Entry per next hop IP address.",

 "Fast Failover allows multiple buckets, picks first operational."],

 "group_type": "FF",

 "bucket_types": [

 {"name": "KnownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<EgressPort>"}]

 },

 {"name": "UnknownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<Flood>"}]

 }

]

 }}

],

 "parameters": [

 {"name": "ACL::TableSize", "type": "integer"},

 {"name": "L2::TableSize", "type": "integer"},

 {"name": "IPv4::TableSize", "type": "integer"},

 {"name": "IPv6::TableSize", "type": "integer"},

 {"name": "Meter::TableSize", "type": "integer",

 "doc": "Number of meters that can be configured in the switch."},

 {"name": "Meter::Accuracy", "type": "integer",

 "doc": "Accuracy of meters on the switch."},

 {"name": "OptFunc", "type": "array of opt_tag values",

 "doc": "Support for optional functions can be negotiated using the OptFunc parameter."}

],

 "flow_paths": [

 {"doc": ["This object contains just a few examples of flow paths, it is not",

 "a comprehensive list of the flow paths required for this TTP. It is",

 "intended that the flow paths array could include either a list of",

 "required flow paths or a list of specific flow paths that are not",

 "required (whichever is more concise or more useful."],

 "name": "L2-2",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Unicast",

 "EgressPort"]

 },

 {"name": "L2-3",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Multicast",

 "L2Mcast", ["EgressPort"]]

 },

 {"name": "L2-4",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACL-skip","VID-flood",

 "VIDflood", ["EgressPort"]]

 },

 {"name": "L2-5",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Drop"]

 },

 {"name": "v4-1",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",

 "IPv4","v4-Unicast",

 "NextHop", "EgressPort"]

 },

 {"name": "v4-2",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",

 "IPv4","v4-Unicast-ECMP",

 "L3ECMP", "NextHop", "EgressPort"]

 }

]

}

