OPEN NETWORKING
FOUNDATION

OpenFlow Switch Specification

Version 1.0.0 (Wire Protocol 0x01)
December 31, 2009

ONF TS-001

A 4
c{OpenFlow

OpenFlow Switch Specification Version 1.0.0 (Wire Protocol 0x01)

ONF Document Type: OpenFlow Spec
ONF Document Name: openflow-spec-v1.0.0

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, ONF disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation
of this specification, and ONF disclaims all liability for cost of procurement of substitute goods
or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect,
or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of
use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectual property rights is granted herein.

Except that a license is hereby granted by ONF to copy and reproduce this specification for
internal use only.

Contact the Open Networking Foundation at https://www.opennetworking.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY (“RANDZ”) LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS

OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

© Open Networking Foundation

https://www.opennetworking.org

OpenFlow Switch Specification

Version 1.0.0 (Wire Protocol 0x01)
December 31, 2009

1 Introduction

This document describes the requirements of an OpenFlow Switch. We rec-
ommend that you read the latest version of the OpenFlow whitepaper before
reading this specification. The whitepaper is available on the OpenFlow Con-
sortium website (http://OpenFlowSwitch.org). This specification covers the
components and the basic functions of the switch, and the OpenFlow protocol
to manage an OpenFlow switch from a remote controller.

Version 1.0 of this document will be the first for which official vendor support
is expected. Versions before 1.0 will be marked “Draft”, and will include the
header: “Do not build a switch from this specification!” We hope to generate
feedback prior to Version 1.0 from switch designers and network researchers, so
that the set of features defined in Version 1.0 enables production deployments
on a variety of vendor hardware.

OpenFlow
Protocol A 4
I““‘
Secure & * Controller

Channel

Flow
Table

OpenFlow Switch

Figure 1: An OpenFlow switch communicates with a controller over a secure
connection using the OpenFlow protocol.

http://OpenFlowSwitch.org

OpenFlow Switch Specification Version 1.0.0

2 Switch Components

An OpenFlow Switch consists of a flow table, which performs packet lookup and
forwarding, and a secure channel to an external controller (Figure[)). The con-
troller manages the switch over the secure channel using the OpenFlow protocol.

The flow table contains a set of flow entries (header values to match pack-
ets against), activity counters, and a set of zero or more actions to apply to
matching packets. All packets processed by the switch are compared against
the flow table. If a matching entry is found, any actions for that entry are
performed on the packet (e.g., the action might be to forward a packet out a
specified port). If no match is found, the packet is forwarded to the controller
over the secure channel. The controller is responsible for determining how to
handle packets without valid flow entries, and it manages the switch flow table
by adding and removing flow entries.

Flow entries may forward packets to one or more OpenFlow ports. In gen-
eral, these are physical ports, but the protocol does not preclude abstractions
like port aggregations or VLAN traffic on a port appearing as an OpenFlow
port. OpenFlow ports have limited state such as “up”, “down” and whether
spanning tree flood packets should be forwarded out the port. Additional con-
figuration of ports may handled by the OpenFlow configuration protocol. There
are several OpenFlow virtual ports used to indicate, for example, flooding or

the ingress port (see|3.3).

3 Flow Table

This section describes the components of flow table entries and the process by
which incoming packets are matched against flow table entries.

] Header Fields \ Counters \ Actions ‘

Table 1: A flow entry consists of header fields, counters, and actions.

Each flow table entry (see Table (1)) contains:
e header fields to match against packets
e counters to update for matching packet

e actions to apply to matching packets

3.1 Header Fields

Table [2| shows the header fields an incoming packet is compared against. Each
entry contains a specific value, or ANY, which matches any value. If the switch
supports subnet masks on the IP source and/or destination fields, these can

OpenFlow Switch Specification Version 1.0.0

more precisely specify matches. The fields in the OpenFlow 12-tuple are listed
in Table [2| and details on the properties of each field are described in Table

Switch designers are free to implement the internals in any way convenient
provided that correct functionality is preserved. For example, while a flow may
have multiple forward actions, each specifying a different port, a switch de-
signer may choose to implement this as a single bitmask within the hardware
forwarding table.

3.2 Counters

Counters are maintained per-table, per-flow, per-port and per queue. OpenFlow-
compliant counters may be implemented in software and maintained by polling
hardware counters with more limited ranges.

Table [4] contains the required set of counters. Duration refers to the time the
flow has been installed in the switch. The Receive Errors field includes all ex-
plicitly specified errors, including frame, overrun, and CRC errors, plus any
others. Counters wrap around with no overflow indicator. In this document,
the phrase byte refers to 8-bit octets.

3.3 Actions

Each flow entry is associated with zero or more actions that dictate how the
switch handles matching packets. If no forward actions are present, the packet
is dropped. Action lists for inserted flow entries MUST be processed in the or-
der specified. However, there is no packet output ordering guaranteed within a
port. For example, an action list may result in two packets sent to two different
VLANS on a single port. These two packets may be arbitrarily re-ordered, but
the packet bodies must match those generated from a sequential execution of
the actions.

A switch may reject a flow entry if it cannot process the action list in the
order specified, in which case it should immediately return an unsupported flow
error (see . Ordering within a port may vary between vendor switch imple-
mentations.

A switch is not required to support all action types — just those marked “Re-
quired Actions” below. When connecting to the controller, a switch indicates

Ingress Ether| Ether| Ether| VLAN VLAN IP P 1P 1P TCP/| TCP/

Port | sourcqg dst type | id pri- src dst proto | ToS UDP | UDP
or- bits src dst
ity port | port

Table 2: Fields from packets used to match against flow entries.

OpenFlow Switch Specification

Version 1.0.0

Field Bits When applicable Notes
Ingress Port (Implementation All packets Numerical represen-
dependent) tation of incoming
port, starting at 1.
Ethernet source ad- | 48 All packets on en-
dress abled ports
Ethernet destina- | 48 All packets on en-
tion address abled ports
Ethernet type 16 All packets on en- | An OpenFlow
abled ports switch is required
to match the type
in both standard
Ethernet and 802.2
with a SNAP
header and OUI
of 0x000000. The
special value of
0x05FF is used to
match all 802.3
packets without
SNAP headers.
VLAN id 12 All packets of Eth-
ernet type 0x8100
VLAN priority 3 All packets of Eth- | VLAN PCP field
ernet type 0x8100
IP source address 32 All TP and ARP | Can be subnet
packets masked
IP destination ad- | 32 All TP and ARP | Can be subnet
dress packets masked
IP protocol 8 All TP and IP over | Only the lower 8
Ethernet, ARP | bits of the ARP op-
packets code are used
IP ToS bits 6 All IP packets Specify as 8-bit
value and place ToS
in upper 6 bits.
Transport source | 16 All TCP, UDP, and | Only lower 8 bits
port / ICMP Type ICMP packets used for ICMP
Type
Transport destina- | 16 All TCP, UDP, and | Only lower 8 bits
tion port / ICMP ICMP packets used for ICMP
Code Code

Table 3: Field lengths and the way they must be applied to flow entries.

OpenFlow Switch Specification Version 1.0.0

Counter [Bits
Per Table
Active Entries 32
Packet Lookups 64
Packet Matches 64
Per Flow
Received Packets 64
Received Bytes 64
Duration (seconds) 32
Duration (nanoseconds) 32
Per Port
Received Packets 64
Transmitted Packets 64
Received Bytes 64
Transmitted Bytes 64
Receive Drops 64
Transmit Drops 64
Receive Errors 64
Transmit Errors 64
Receive Frame Alignment Errors 64
Receive Overrun Errors 64
Receive CRC Errors 64
Collisions 64
Per Queue
Transmit Packets 64
Transmit Bytes 64
Transmit Overrun Errors 64

Table 4: Required list of counters for use in statistics messages.

OpenFlow Switch Specification Version 1.0.0

which of the “Optional Actions” it supports. OpenFlow-compliant switches
come in two types: OpenFlow-only, and OpenFlow-enabled.

OpenFlow-only switches support only the required actions below, while OpenFlow-
enabled switches, routers, and access points may also support the NORMAL
action. Either type of switch can also support the FLOOD action.

Required Action: Forward. OpenFlow switches must support forwarding
the packet to physical ports and the following virtual ones:

e ALL: Send the packet out all interfaces, not including the incoming in-
terface.

¢ CONTROLLER: Encapsulate and send the packet to the controller.
e LOCAL: Send the packet to the switchs local networking stack.

e TABLE: Perform actions in flow table. Only for packet-out messages.
e IN_PORT: Send the packet out the input port.

Optional Action: Forward. The switch may optionally support the following
virtual ports:

e NORMAL: Process the packet using the traditional forwarding path
supported by the switch (i.e., traditional L2, VLAN, and L3 processing.)
The switch may check the VLAN field to determine whether or not to
forward the packet along the normal processing route. If the switch can-
not forward entries for the OpenFlow-specific VLAN back to the normal
processing route, it must indicate that it does not support this action.

e FLOOD: Flood the packet along the minimum spanning tree, not includ-
ing the incoming interface.

The controller will only ask the switch to send to multiple physical ports simulta-
neously if the switch indicates it supports this behavior in the initial handshake

(see section [5.3.1)).

Optional Action: Engueue. The enqueue action forwards a packet through a
queue attached to a port. Forwarding behavior is dictated by the configuration
of the queue and is used to provide basic Quality-of-Service (QoS) support (see

section [5.2.2)).

Required Action: Drop. A flow-entry with no specified action indicates that
all matching packets should be dropped.

Optional Action: Modify-Field. While not strictly required, the actions shown
in Table [p| greatly increase the usefulness of an OpenFlow implementation. To
aid integration with existing networks, we suggest that VLAN modification ac-
tions be supported.

OpenFlow Switch Specification

Version 1.0.0

Action

Associated Data

Description

Set VLAN ID

12 bits

If no VLAN is present, a
new header is added with
the specified VLAN ID and
priority of zero.

If a VLAN header already
exists, the VLAN ID is re-
placed with the specified
value.

Set VLAN priority

3 bits

If no VLAN is present, a
new header is added with
the specified priority and a
VLAN ID of zero.

If a VLAN header already
exists, the priority field is
replaced with the specified
value.

Strip VLAN header

Strip VLAN header if
present.

Modify Ethernet source

MAC address

48 bits: Value with which
to replace existing source
MAC address

Replace the existing Eth-
ernet source MAC address
with the new value

Modify Ethernet destina-
tion MAC address

48 bits: Value with which to
replace existing destination
MAC address

Replace the existing Eth-
ernet destination MAC ad-
dress with the new value.

Modify IPv4 source address

32 bits: Value with which to
replace existing IPv4 source
address

Replace the existing IP
source address with new
value and update the IP
checksum (and TCP/UDP
checksum if applicable).
This action is only applica-
ble to IPv4 packets.

Modify
address

IPv4 destination

32 bits: Value with which to
replace existing IPv4 desti-
nation address

Replace the existing IP des-
tination address with new
value and update the IP
checksum (and TCP/UDP
checksum if applicable).
This action is only applied
to IPv4 packets.

Modify IPv4 ToS bits

6 bits: Value with which
to replace existing IPv4 ToS
field

Replace the existing IP ToS
field. This action is only ap-
plied to IPv4 packets.

Modify
port

transport source

16 bits: Value with which
to replace existing TCP or
UDP source port

Replace the existing
TCP/UDP source port
with new value and update
the TCP/UDP checksum.
This action is only applica-
ble to TCP and UDP pack-
ets.

Modify transport destina-
tion port

16 bits: Value with which
to replace existing TCP or
UDP destination port

Replace the existing
TCP/UDP destination
port with new value and
update the TCP/UDP
checksum

This action is only applied
to TCP and UDP packets.

Table 5: Field-modify actions.

7

OpenFlow Switch Specification Version 1.0.0

3.4 Matching

rTTTTTTTTTT TS
| "
. | Optional | Parse header
Packetinfom Lt gop 1gsTP L—a| fields Mateh table Apply actions
network | " ! 07
| processing | (see below)
i

Match table

Send to
controller via
Secure Channel

Figure 2: Packet flow in an OpenFlow switch. As discussed in Section [£.5]
support for 802.1D is optional.

Initialize Headers
Setinput port,
Ethernet source,
destination, and type;
set all others to zero

Set VLAN ID and
Eihtype = CP. Use

OX81007 encapsulated Eth

type for next Eth no
type check

4 \ Set IP source,
/7 Ethtype = N} destination from
* 0x08067 within ARP
packet
Set IP source, Use UDP/TCP
Eth type = destination, Not IP IP Proto = 'source and
0x0800? protocol, and Fragment? 6or7? destination for
oS fields

Use ICMP
type and code

IP Proto =
12
for L4 fields

Packet Lookup

Use assigned
| header fields I

Figure 3: Flowchart showing how header fields are parsed for matching.

On receipt of a packet, an OpenFlow Switch performs the functions shown
in Figure 2] Header fields used for the table lookup depend on the packet type
as described below (and shown in Figure [3)).

e Rules specifying an ingress port are matched against the physical port
that received the packet.

e The Ethernet headers as specified in Table 2] are used for all packets.

OpenFlow Switch Specification Version 1.0.0

e If the packet is a VLAN (Ethernet type 0x8100), the VLAN ID and PCP
fields are used in the lookup.

e (Optional) For ARP packets (Ethernet type equal to 0x0806), the lookup
fields may also include the contained IP source and destination fields.

e For IP packets (Ethernet type equal to 0x0800), the lookup fields also
include those in the IP header.

e For IP packets that are TCP or UDP (IP protocol is equal to 6 or 17),
the lookup includes the transport ports.

e For IP packets that are ICMP (IP prototcol is equal to 1), the lookup
includes the Type and Code fields.

e For IP packets with nonzero fragment offset or More Fragments bit set,
the transport ports are set to zero for the lookup.

A packet matches a flow table entry if the values in the header fields used for
the lookup (as defined above) match those defined in the flow table. If a flow
table field has a value of ANY, it matches all possible values in the header.

To handle the various Ethernet framing types, matching the Ethernet type is
handled in a slightly different manner. If the packet is an Ethernet II frame, the
Ethernet type is handled in the expected way. If the packet is an 802.3 frame
with a SNAP header and Organizationally Unique Identifier (OUI) of 0x000000,
the SNAP protocol id is matched against the flows Ethernet type. A flow entry
that specifies an Ethernet type of 0x05FF, matches all Ethernet 802.2 frames
without a SNAP header and those with SNAP headers that do not have an OUI
of 0x000000.

Packets are matched against flow entries based on prioritization. An entry that
specifies an exact match (i.e., it has no wildcards) is always the highest priority.
All wildcard entries have a priority associated with them. Higher priority entries
must match before lower priority ones. If multiple entries have the same priority,
the switch is free to choose any ordering. Higher numbers have higher priorities.

For each packet that matches a flow entry, the associated counters for that
entry are updated. If no matching entry can be found for a packet, the packet
is sent to the controller over the secure channel.

4 Secure Channel

The secure channel is the interface that connects each OpenFlow switch to a
controller. Through this interface, the controller configures and manages the
switch, receives events from the switch, and send packets out the switch.

OpenFlow Switch Specification Version 1.0.0

Between the datapath and the secure channel, the interface is implementation-
specific, however all secure channel messages must be formatted according to
the OpenFlow protocol.

Support for multiple simultaneous controllers is currently undefined.

4.1 OpenFlow Protocol Overview

The OpenFlow protocol supports three message types, controller-to-switch, asyn-
chronous, and symmetric, each with multiple sub-types. Controller-to-switch
messages are initiated by the controller and used to directly manage or inspect
the state of the switch. Asynchronous messages are initiated by the switch and
used to update the controller of network events and changes to the switch state.
Symmetric messages are initiated by either the switch or the controller and sent
without solicitation. The message types used by OpenFlow are described below.

4.1.1 Controller-to-Switch

Controller /switch messages are initiated by the controller and may or may not
require a response from the switch.

Features: Upon Transport Layer Security (TLS) session establishment, the
controller sends a features request message to the switch. The switch must re-
ply with a features reply that specifies the capabilities supported by the switch.

Configuration: The controller is able to set and query configuration parame-
ters in the switch. The switch only responds to a query from the controller.

Modify-State: Modify-State messages are sent by the controller to manage
state on the switches. Their primary purpose is to add/delete and modify flows
in the flow tables and to set switch port properties.

Read-State: Read-State messages are used by the controller to collect statis-
tics from the switchs flow-tables, ports and the individual flow entries.

Send-Packet: These are used by the controller to send packets out of a speci-
fied port on the switch.

Barrier: Barrier request/reply messages are used by the controller to ensure
message dependencies have been met or to receive notifications for completed
operations.

4.1.2 Asynchronous

Asynchronous messages are sent without the controller soliciting them from
a switch. Switches send asynchronous messages to the controller to denote a

10

OpenFlow Switch Specification Version 1.0.0

packet arrival, switch state change, or error. The four main asynchronous mes-
sage types are described below.

Packet-in: For all packets that do not have a matching flow entry, a packet-in
event is sent to the controller (or if a packet matches an entry with a “send
to controller” action). If the switch has sufficient memory to buffer packets
that are sent to the controller, the packet-in events contain some fraction of
the packet header (by default 128 bytes) and a buffer ID to be used by the
controller when it is ready for the switch to forward the packet. Switches that
do not support internal buffering (or have run out of internal buffering) must
send the full packet to the controller as part of the event.

Flow-Removed: When a flow entry is added to the switch by a flow mod-
ify message, an idle timeout value indicates when the entry should be removed
due to a lack of activity, as well as a hard timeout value that indicates when
the entry should be removed, regardless of activity. The flow modify message
also specifies whether the switch should send a flow removed message to the
controller when the flow expires. Flow modify messages which delete flows may
also cause flow removed messages.

Port-status: The switch is expected to send port-status messages to the con-
troller as port configuration state changes. These events include change in port
status (for example, if it was brought down directly by a user) or a change in
port status as specified by 802.1D (see Section for a description of 802.1D
support requirements).

Error: The switch is able to notify the controller of problems using error mes-
sages.

4.1.3 Symmetric
Symmetric messages are sent without solicitation, in either direction.

Hello: Hello messages are exchanged between the switch and controller upon
connection startup.

Echo: Echo request/reply messages can be sent from either the switch or the
controller, and must return an echo reply. They can be used to indicate the
latency, bandwidth, and/or liveness of a controller-switch connection.

Vendor: Vendor messages provide a standard way for OpenFlow switches to
offer additional functionality within the OpenFlow message type space. This is
a staging area for features meant for future OpenFlow revisions.

11

OpenFlow Switch Specification Version 1.0.0

4.2 Connection Setup

The switch must be able to establish the communication at a user-configurable
(but otherwise fixed) IP address, using a user-specified port. Traffic to and from
the secure channel is not checked against the flow table. Therefore, the switch
must identify incoming traffic as local before checking it against the flow table.
Future versions of the protocol specification will describe a dynamic controller
discovery protocol in which the IP address and port for communicating with
the controller is determined at runtime.

When an OpenFlow connection is first established, each side of the connection
must immediately send an OFPT_HELLO message with the version field set to
the highest OpenFlow protocol version supported by the sender. Upon receipt
of this message, the recipient may calculate the OpenFlow protocol version to
be used as the smaller of the version number that it sent and the one that it
received.

If the negotiated version is supported by the recipient, then the connection pro-
ceeds. Otherwise, the recipient must reply with an OFPT_ERROR message with a
type field of OFPET_HELLO_FAILED, a code field of OFPHFC_COMPATIBLE, and
optionally an ASCII string explaining the situation in data, and then terminate
the connection.

4.3 Connection Interruption

In the case that a switch loses contact with the controller, as a result of a echo
request timeout, TLS session timeout, or other disconnection, it should attempt
to contact one or more backup controllers. The ordering of the controller IP
addresses is not specified by the protocol.

If some number of attempts to contact a controller (zero or more) fail, the
switch must enter “emergency mode” and immediately reset the current TCP
connection. In emergency mode, the matching process is dictated by the emer-
gency flow table entries (those marked with the emergency bit when added to
the switch). All normal entries are deleted when entering emergency mode.

Upon connecting to a controller again, the emergency flow entries remain. The
controller then has the option of deleting all flow entries, if desired.

The first time a switch starts up, it is considered to be in emergency mode.
Configuration of the default set of flow entries is outside the scope of the Open-
Flow protocol.

12

OpenFlow Switch Specification Version 1.0.0

4.4 Encryption

The switch and controller communicate through a TLS connection. The TLS
connection is initiated by the switch on startup to the controller’s server, which
is located by default on TCP port 6633 . The switch and controller mutually au-
thenticate by exchanging certificates signed by a site-specific private key. Each
switch must be user-configurable with one certificate for authenticating the con-
troller (controller certificate) and the other for authenticating to the controller
(switch certificate).

4.5 Spanning Tree

OpenFlow switches may optionally support 802.1D Spanning Tree Protocol.
Those switches that do support it are expected to process all 802.1D packets
locally before performing flow lookup. A switch that implements STP must
set the OFPC_STP bit in the 'capabilities’ field of its OFPT_FEATURES_REPLY mes-
sage. A switch that implements STP must make it available on all of its physical
ports, but it need not implement it on virtual ports (e.g. OFPP_LOCAL).

Port status, as specified by the spanning tree protocol, is then used to limit
packets forwarded to the OFP_FLOOD port to only those ports along the span-
ning tree. Port changes as a result of the spanning tree are sent to the controller
via port-update messages. Note that forward actions that specify the outgoing
port or OFP_ALL ignore the port status set by the spanning tree protocol. Pack-
ets received on ports that are disabled by spanning tree must follow the normal
flow table processing path.

Switches that do not support 802.1D spanning tree must allow the controller to
specify the port status for packet flooding through the port-mod messages.

4.6 Flow Table Modification Messages

Flow table modification messages can have the following types:

enum ofp_flow_mod_command {

OFPFC_ADD, /* New flow. */

OFPFC_MODIFY, /* Modify all matching flows. */
OFPFC_MODIFY_STRICT, /* Modify entry strictly matching wildcards */
OFPFC_DELETE, /* Delete all matching flows. */

OFPFC_DELETE_STRICT /* Strictly match wildcards and priority. */
}

For ADD requests with the OFPFF_CHECK_OVERLAP flag set, the switch must
first check for any overlapping flow entries. Two flow entries overlap if a sin-
gle packet may match both, and both entries have the same priority. If an
overlap conflict exists between an existing flow entry and the ADD request,
the switch must refuse the addition and respond with an ofp_error_msg with
OFPET_FLOW_MOD_FAILED type and OFPFMFC_OVERLAP code.

13

OpenFlow Switch Specification Version 1.0.0

For valid (non-overlapping) ADD requests, or those with no overlap checking,
the switch must insert the flow entry at the lowest numbered table for which the
switch supports all wildcards set in the flow_match struct, and for which the
priority would be observed during the matching process. If a flow entry with
identical header fields and priority already resides in any table, then that entry,
including its counters, must be removed, and the new flow entry added.

If a switch cannot find any table in which to add the incoming flow entry,
the switch should send an ofp_error_msg with OFPET_FLOW_MOD_FAILED type
and OFPFMFC_ALL_TABLES_FULL code.

If the action list in a flow mod message references a port that will never be valid
on a switch, the switch must return an ofp_error_msg with OFPET_BAD_ACTION
type and OFPBAC_BAD_OUT_PORT code. If the referenced port may be valid in the
future, e.g. when a linecard is added to a chassis switch, or a port is dynamically
added to a software switch, the switch may either silently drop packets sent to
the referenced port, or immediately return an OFPBAC_BAD_QUT_PORT error and
refuse the flow mod.

For MODIFY requests, if a flow entry with identical header fields does not
current reside in any table, the MODIFY acts like an ADD, and the new flow
entry must be inserted with zeroed counters. Otherwise, the actions field is
changed on the existing entry and its counters and idle time fields are left un-
changed.

For DELETE requests, if no flow entry matches, no error is recorded, and no
flow table modification occurs. If flow entries match, and must be deleted, then
each normal entry with the OFPFF_SEND_FLOW_REM flag set should generate a
flow removed message. Deleted emergency flow entries generate no flow removed
messages.

MODIFY and DELETE flow mod commands have corresponding _STRICT
versions. Without _STRICT appended, the wildcards are active and all flows
that match the description are modified or removed. If .STRICT is appended,
all fields, including the wildcards and priority, are strictly matched against the
entry, and only an identical flow is modified or removed. For example, if a mes-
sage to remove entries is sent that has all the wildcard flags set, the DELETE
command would delete all flows from all tables, while the DELETE_STRICT
command would only delete a rule that applies to all packets at the specified
priority.

For non-strict MODIFY and DELETE commands that contain wildcards, a
match will occur when a flow entry exactly matches or is more specific than the
description in the flow_mod command. For example, if a DELETE command
says to delete all flows with a destination port of 80, then a flow entry that is
all wildcards will not be deleted. However, a DELETE command that is all

14

OpenFlow Switch Specification Version 1.0.0

wildcards will delete an entry that matches all port 80 traffic. This same inter-
pretation of mixed wildcard and exact header fields also applies to individual
and aggregate flows stats.

DELETE and DELETE_STRICT commands can be optionally filtered by out-
put port. If the out_port field contains a value other than OFPP_NONE, it intro-
duces a constraint when matching. This constraint is that the rule must contain
an output action directed at that port. This field is ignored by ADD, MODIFY,
and MODIFY_STRICT messages.

Emergency flow mod messages must have timeout values set to zero. Other-
wise, the switch must refuse the addition and respond with an ofp_error_msg
with OFPET_FLOW_MOD_FAILED type and OFPFMFC_BAD_EMERG_TIMEQUT code.

If a switch cannot process the action list for any flow mod message in the
order specified, it MUST immediately return an OFPET_FLOW_MOD_FAILED :
OFPFMFC_UNSUPPORTED error and reject the flow.

4.7 Flow Removal

Each flow entry has an idle_timeout and a hard_timeout associated with it. If
no packet has matched the rule in the last idle_timeout seconds, or it has been
hard_timeout seconds since the flow was inserted, the switch removes the entry
and sends a flow removed message. In addition, the controller is able to actively
remove entries by sending a flow message with the DELETE or DELETE_STRICT
command. Like the message used to add the entry, a removal message contains
a description, which may include wild cards.

5 Appendix A: The OpenFlow Protocol

The heart of the OpenFlow spec is the set of structures used for OpenFlow
Protocol messages.

The structures, defines, and enumerations described below are derived from
the file include/openflow/openflow.h, which is part of the standard Open-
Flow distribution. All structures are packed with padding and 8-byte aligned,
as checked by the assertion statements. All OpenFlow messages are sent in
big-endian format.

5.1 OpenFlow Header
Each OpenFlow message begins with the OpenFlow header:
/* Header on all OpenFlow packets. */

struct ofp_header {
uint8_t version; /* OFP_VERSION. */

15

OpenFlow Switch Specification Version 1.0.0

uint8_t type; /* One of the OFPT_ constants. */
uinti6_t length; /* Length including this ofp_header. */
uint32_t xid; /* Transaction id associated with this packet.

Replies use the same id as was in the request
to facilitate pairing. */

}

OFP_ASSERT (sizeof (struct ofp_header) == 8);

The version specifies the OpenFlow protocol version being used. During the
current draft phase of the OpenFlow Protocol, the most significant bit will be
set to indicate an experimental version and the lower bits will indicate a revision
number. The current version is 0x01 . The final version for a Type 0 switch
will be 0x00. The length field indicates the total length of the message, so no
additional framing is used to distinguish one frame from the next. The type can
have the following values:

enum ofp_type {
/* Immutable messages. */

OFPT_HELLO, /* Symmetric message */
OFPT_ERROR, /* Symmetric message */
OFPT_ECHO_REQUEST, /* Symmetric message */
OFPT_ECHO_REPLY, /* Symmetric message */
OFPT_VENDOR, /* Symmetric message */

/* Switch configuration messages. */

OFPT_FEATURES_REQUEST, /* Controller/switch message */
OFPT_FEATURES_REPLY, /* Controller/switch message */
OFPT_GET_CONFIG_REQUEST, /* Controller/switch message */
OFPT_GET_CONFIG_REPLY, /* Controller/switch message */
OFPT_SET_CONFIG, /* Controller/switch message */

/* Asynchronous messages. */

OFPT_PACKET_IN, /* Async message */
OFPT_FLOW_REMOVED, /* Async message */
OFPT_PORT_STATUS, /* Async message */

/* Controller command messages. */

OFPT_PACKET_OUT, /* Controller/switch message */
OFPT_FLOW_MOD, /* Controller/switch message */
OFPT_PORT_MOD, /* Controller/switch message */

/* Statistics messages. */
OFPT_STATS_REQUEST, /* Controller/switch message */
OFPT_STATS_REPLY, /* Controller/switch message */

/* Barrier messages. */
OFPT_BARRIER_REQUEST, /* Controller/switch message */
OFPT_BARRIER_REPLY, /* Controller/switch message */

/* Queue Configuration messages. */
OFPT_QUEUE_GET_CONFIG_REQUEST, /* Controller/switch message */
OFPT_QUEUE_GET_CONFIG_REPLY /* Controller/switch message */

16

OpenFlow Switch Specification Version 1.0.0

5.2 Common Structures

This section describes structures used by multiple messages.

5.2.1 Port Structures
Physical ports are described with the following structure:

/* Description of a physical port */
struct ofp_phy_port {
uintl6_t port_no;
uint8_t hw_addr [OFP_ETH_ALEN];
char name [0OFP_MAX_PORT_NAME_LEN]; /* Null-terminated */

uint32_t config; /* Bitmap of OFPPC_* flags. */
uint32_t state; /* Bitmap of OFPPS_* flags. */

/* Bitmaps of OFPPF_* that describe features. All bits zeroed if
* unsupported or unavailable. */

uint32_t curr; /* Current features. */

uint32_t advertised; /* Features being advertised by the port. */
uint32_t supported; /* Features supported by the port. */
uint32_t peer; /* Features advertised by peer. */

};
OFP_ASSERT (sizeof (struct ofp_phy_port) == 48);

The port_no field is a value the datapath associates with a physical port. The
hw_addr field typically is the MAC address for the port; OFP_MAX_ETH_ALEN is
6. The name field is a null-terminated string containing a human-readable name
for the interface. The value of OFP_MAX_PORT_NAME_LEN is 16.

The config field describes spanning tree and administrative settings with the
following structure:

/* Flags to indicate behavior of the physical port. These flags are

* used in ofp_phy_port to describe the current configuration. They are
* used in the ofp_port_mod message to configure the port’s behavior.

*/

enum ofp_port_config {

OFPPC_PORT_DOWN =1 << 0, /* Port is administratively down. */
OFPPC_NO_STP =1 << 1, /* Disable 802.1D spanning tree on port. */
OFPPC_NO_RECV =1 << 2, /* Drop all packets except 802.1D spanning
tree packets. */
OFPPC_NO_RECV_STP = 1 << 3, /* Drop received 802.1D STP packets. */
OFPPC_NO_FLOOD = 1 << 4, /* Do not include this port when flooding. */
OFPPC_NO_FWD =1 << 5, /* Drop packets forwarded to port. */
OFPPC_NO_PACKET_IN = 1 << 6 /* Do not send packet-in msgs for port. */

};

The port config bits indicate whether a port has been administratively brought
down, options for handling 802.1D spanning tree packets, and how to handle
incoming and outgoing packets. These bits, configured over multiple switches,
enable an OpenFlow network to safely flood packets along either a custom or

17

OpenFlow Switch Specification Version 1.0.0

802.1D spanning tree.

The controller may set OFPPFL_NO_STP to 0 to enable STP on a port or to
1 to disable STP on a port. (The latter corresponds to the Disabled STP port
state.) The default is switch implementation-defined; the OpenFlow reference
implementation by default sets this bit to 0 (enabling STP).

When OFPPFL_NO_STP is 0, STP controls the OFPPFL_NO_FLOOD and OFPPFL_STP_*
bits directly. OFPPFL_NO_FLOOD is set to 0 when the STP port state is Forward-
ing, otherwise to 1. The bits in OFPPFL_STP_MASK are set to one of the other
OFPPFL_STP_* values according to the current STP port state.

When the port flags are changed by STP, the switch sends an OFPT_PORT_STATUS

message to notify the controller of the change. The OFPPFL_NO_RECV, OFPPFL_NO_RECV_STP,
OFPPFL_NO_FWD, and OFPPFL_NO_PACKET_IN bits in the OpenFlow port flags

may be useful for the controller to implement STP, although they interact poorly

with in-band control.

The state field describes the spanning tree state and whether a physical link
is present, with the following structure:

/* Current state of the physical port. These are not configurable from
* the controller.
*/
enum ofp_port_state {
OFPPS_LINK_DOWN = 1 << 0, /* No physical link present. */

/* The OFPPS_STP_* bits have no effect on switch operation. The

* controller must adjust OFPPC_NO_RECV, OFPPC_NO_FWD, and

* OFPPC_NO_PACKET_IN appropriately to fully implement an 802.1D spanning
* tree. */
OFPPS_STP_LISTEN
OFPPS_STP_LEARN
OFPPS_STP_FORWARD
0FPPS_STP_BLOCK
OFPPS_STP_MASK

<< 8, /* Not learning or relaying frames. */
<< 8, /* Learning but not relaying frames. */
8, /* Learning and relaying frames. */

<< 8, /* Not part of spanning tree. */

<< 8 /+* Bit mask for OFPPS_STP_* values. */

wonononon
W wN = O
A
A

};

All port state bits are read-only, representing spanning tree and physical link
state.

The port numbers use the following conventions:

/* Port numbering. Physical ports are numbered starting from 1. */
enum ofp_port {

/* Maximum number of physical switch ports. */

OFPP_MAX = 0xff00,

/* Fake output "ports". x/

OFPP_IN_PORT = 0xfff8, /* Send the packet out the input port. This
virtual port must be explicitly used
in order to send back out of the input

18

OpenFlow Switch Specification Version 1.0.0

port. */

OFPP_TABLE = 0xfff9, /* Perform actions in flow table.
NB: This can only be the destination
port for packet-out messages. */

OFPP_NORMAL = Oxfffa, /* Process with normal L2/L3 switching. */

OFPP_FLOOD = Oxfffb, /* All physical ports except input port and
those disabled by STP. */

OFPP_ALL = Oxfffc, /* All physical ports except input port. */

OFPP_CONTROLLER = Oxfffd, /* Send to controller. */

OFPP_LOCAL = Oxfffe, /* Local openflow "port". */

OFPP_NONE = Oxffff /* Not associated with a physical port. */

};

The curr, advertised, supported, and peer fields indicate link modes (10M
to 10G full and half-duplex), link type (copper/fiber) and link features (autone-
gotiation and pause). Port features are represent by the following structure:

/* Features of physical ports available in a datapath. */

enum ofp_port_features {
OFPPF_10MB_HD =1 << 0, /* 10 Mb half-duplex rate support. */
OFPPF_10MB_FD 1 << 1, /* 10 Mb full-duplex rate support. */
OFPPF_100MB_HD = 1 << 2, /* 100 Mb half-duplex rate support. */
OFPPF_100MB_FD = 1 << 3, /* 100 Mb full-duplex rate support. */
OFPPF_1GB_HD =1<< 4, /* 1 Gb half-duplex rate support. */
OFPPF_1GB_FD =1<< 5, /x 1 Gb full-duplex rate support. */
OFPPF_10GB_FD =1<< 6, /* 10 Gb full-duplex rate support. */
OFPPF_COPPER =1 << 7, /* Copper medium. */
OFPPF_FIBER =1 << 8, /* Fiber medium. */
OFPPF_AUTONEG =1 << 9, /% Auto-negotiation. */
OFPPF_PAUSE = 1 << 10, /* Pause. */
OFPPF_PAUSE_ASYM = 1 << 11 /* Asymmetric pause. */

};

Multiple of these flags may be set simultaneously.

5.2.2 Queue Structures

An OpenFlow switch provides limited Quality-of-Service support (QoS) through
a simple queuing mechanism. One (or more) queues can attach to a port and
be used to map flows on it. Flows mapped to a specific queue will be treated
according to that queue’s configuration (e.g. min rate).

A queue is described by the ofp_packet_queue structure:

/* Full description for a queue. */
struct ofp_packet_queue {

uint32_t queue_id; /* id for the specific queue. */
uinti6_t len; /* Length in bytes of this queue desc. */
uint8_t pad[2]; /* 64-bit alignment. */

struct ofp_queue_prop_header properties[0]; /* List of properties. */
};
OFP_ASSERT (sizeof (struct ofp_packet_queue) == 8);

Each queue is further described by a set of properties, each of a specific type
and configuration.

19

OpenFlow Switch Specification Version 1.0.0

enum ofp_queue_properties {
OFPQT_NONE = O, /* No property defined for queue (default). */
OFPQT_MIN_RATE, /* Minimum datarate guaranteed. */
/* Other types should be added here
* (i.e. max rate, precedence, etc). */

}s
Each queue property description starts with a common header:

/* Common description for a queue. */

struct ofp_queue_prop_header {
uint16_t property; /* One of OFPQT_. */
uintl6_t len; /* Length of property, including this header. */
uint8_t pad[4]; /* 64-bit alignemnt. */

}

OFP_ASSERT (sizeof (struct ofp_queue_prop_header) == 8);

Currently, there is only a minimum-rate type queue, described by the ofp_queue_prop_min_rate
structure:

/* Min-Rate queue property description. */

struct ofp_queue_prop_min_rate {
struct ofp_queue_prop_header prop_header; /* prop: OFPQT_MIN, len: 16. */
uint16_t rate; /* In 1/10 of a percent; >1000 -> disabled. */
uint8_t padl[6]; /* 64-bit alignment */

};

OFP_ASSERT (sizeof (struct ofp_queue_prop_min_rate) == 16);

5.2.3 Flow Match Structures
When describing a flow entry, the following structure is used:

/* Fields to match against flows */
struct ofp_match {
uint32_t wildcards; /*
uint16_t in_port; /*
uint8_t dl_src[OFP_ETH_ALEN];
uint8_t dl_dst[0FP_ETH_ALEN];
uint16_t dl_vlan; /*
uint8_t dl_vlan_pcp; /*
uint8_t padi[1]; /*
uint16_t dl_type; /*
uint8_t nw_tos; /* IP ToS (actually DSCP field, 6 bits). */
uint8_t nw_proto; /* IP protocol or lower 8 bits of
* ARP opcode. */

Wildcard fields. */

Input switch port. x/

/* Ethernet source address. */
/* Ethernet destination address.
Input VLAN id. */

Input VLAN priority. */

Align to 64-bits */

Ethernet frame type. */

*/

} .

uint8_t pad2[2];
uint32_t nw_src;
uint32_t nw_dst;
uintl6_t tp_src;
uint16_t tp_dst;

Align to 64-bits */

IP source address. */
IP destination address.
TCP/UDP source port. */
TCP/UDP destination port. */

*/

OFP_ASSERT (sizeof (struct ofp_match) == 40);

The wildcards field has a number of flags that may be set:

/* Flow wildcards. */
enum ofp_flow_wildcards {

20

OpenFlow Switch Specification Version 1.0.0

OFPFW_IN_PORT = 1 << 0, /* Switch input port. */
OFPFW_DL_VLAN =1 << 1, /% VLAN id. */

OFPFW_DL_SRC =1 << 2, /* Ethernet source address. */
OFPFW_DL_DST = 1 << 3, /* Ethernet destination address. */
OFPFW_DL_TYPE = 1 << 4, /* Ethernet frame type. */
OFPFW_NW_PROTO = 1 << 5, /% IP protocol. */

OFPFW_TP_SRC = 1 << 6, /* TCP/UDP source port. */
OFPFW_TP_DST =1<< 7, /* TCP/UDP destination port. */

/* IP source address wildcard bit count. O is exact match, 1 ignores the

* LSB, 2 ignores the 2 least-significant bits, ..., 32 and higher wildcard
* the entire field. This is the *opposite* of the usual convention where
* e.g. /24 indicates that 8 bits (not 24 bits) are wildcarded. */
OFPFW_NW_SRC_SHIFT = 8,

OFPFW_NW_SRC_BITS = 6,

OFPFW_NW_SRC_MASK = ((1 << OFPFW_NW_SRC_BITS) - 1) << OFPFW_NW_SRC_SHIFT,
OFPFW_NW_SRC_ALL = 32 << OFPFW_NW_SRC_SHIFT,

/* IP destination address wildcard bit count. Same format as source. */
OFPFW_NW_DST_SHIFT = 14,

OFPFW_NW_DST_BITS = 6,

OFPFW_NW_DST_MASK = ((1 << OFPFW_NW_DST_BITS) - 1) << OFPFW_NW_DST_SHIFT,
OFPFW_NW_DST_ALL = 32 << OFPFW_NW_DST_SHIFT,

OFPFW_DL_VLAN_PCP = 1 << 20, /* VLAN priority. */
OFPFW_NW_TOS = 1 << 21, /% IP ToS (DSCP field, 6 bits). */

/* Wildcard all fields. */
OFPFW_ALL = ((1 << 22) - 1)
};

If no wildcards are set, then the ofp_match exactly describes a flow, over the
entire OpenFlow 12-tuple. On the other extreme, if all the wildcard flags are
set, then every flow will match.

The source and destination netmasks are each specified with a 6-bit number
in the wildcard description. It is interpreted similar to the CIDR suffix, but
with the opposite meaning, since this is being used to indicate which bits in the
IP address should be treated as “wild”. For example, a CIDR suffix of 724”
means to use a netmask of “255.255.255.0”. However, a wildcard mask value of
“24” means that the least-significant 24-bits are wild, so it forms a netmask of
“255.0.0.0”.

5.2.4 Flow Action Structures

A number of actions may be associated with flows or packets. The currently
defined action types are:

enum ofp_action_type {

OFPAT_OUTPUT, /* Output to switch port. */

OFPAT_SET_VLAN_VID, /* Set the 802.1q VLAN id. */
OFPAT_SET_VLAN_PCP, /* Set the 802.1q priority. */
OFPAT_STRIP_VLAN, /* Strip the 802.1q header. */
OFPAT_SET_DL_SRC, /* Ethernet source address. */

21

OpenFlow Switch Specification Version 1.0.0

OFPAT_SET_DL_DST, /* Ethernet destination address. */
OFPAT_SET_NW_SRC, /* IP source address. */
OFPAT_SET_NW_DST, /* IP destination address. */
OFPAT_SET_NW_TOS, /* IP ToS (DSCP field, 6 bits). */
OFPAT_SET_TP_SRC, /* TCP/UDP source port. */
OFPAT_SET_TP_DST, /* TCP/UDP destination port. */
OFPAT_ENQUEUE, /* Output to queue. */

OFPAT_VENDOR = Oxffff
};

Output and enqueue actions are described in Section while Field-Modify
actions are described in Table 5] An action definition contains the action type,
length, and any associated data:

/* Action header that is common to all actions. The length includes the
* header and any padding used to make the action 64-bit aligned.
* NB: The length of an action *must* always be a multiple of eight. */
struct ofp_action_header {
uint16_t type; /* One of OFPAT_x. x/
uint16_t len; /* Length of action, including this
header. This is the length of action,
including any padding to make it
64-bit aligned. */
uint8_t pad[4];
};
OFP_ASSERT (sizeof (struct ofp_action_header) == 8);

An action_output has the following fields:

/* Action structure for OFPAT_OUTPUT, which sends packets out ’port’.
* When the ’port’ is the OFPP_CONTROLLER, ’max_len’ indicates the max
* number of bytes to send. A ’max_len’ of zero means no bytes of the
* packet should be sent.*/

struct ofp_action_output {

uintl16_t type; /* OFPAT_OUTPUT. */
uint16_t len; /* Length is 8. */
uint16_t port; /* Output port. */
uint16_t max_len; /* Max length to send to controller. */

};
OFP_ASSERT (sizeof (struct ofp_action_output) == 8);

The max_len indicates the maximum amount of data from a packet that should
be sent when the port is OFPP_CONTROLLER. If max_len is zero, the switch must
send a zero-size packet_in message. The port specifies the physical port from
which packets should be sent.

The enqueue action maps a flow to an already-configured queue, regardless of
the TOS and VLAN PCP bits. The packet should not change after an enqueue
action. If the switch needs to set the TOS/PCP bits for internal handling, the
original values should be restored before sending the packet out.

A switch may support only queues that are tied to specific PCP/TOS bits.
In that case, we cannot map an arbitrary flow to a specific queue, therefore the

22

OpenFlow Switch Specification Version 1.0.0

action ENQUEUE is not supported. The user can still use these queues and
map flows to them by setting the relevant fields (TOS, VLAN PCP).

The enqueue action has the following fields:

/* OFPAT_ENQUEUE action struct: send packets to given queue on port. */
struct ofp_action_enqueue {

uint16_t type; /* OFPAT_ENQUEUE. */
uint16_t len; /* Len is 16. */
uint16_t port; /* Port that queue belongs. Should

refer to a valid physical port
(i.e. < OFPP_MAX) or OFPP_IN_PORT. */
uint8_t padl[6]; /* Pad for 64-bit alignment. */
uint32_t queue_id; /* Where to enqueue the packets. */
}
OFP_ASSERT (sizeof (struct ofp_action_enqueue) == 16);

An action_vlan_vid has the following fields:

/* Action structure for OFPAT_SET_VLAN_VID. */
struct ofp_action_vlan_vid {

uint16_t type; /* OFPAT_SET_VLAN_VID. */
uint16_t len; /* Length is 8. */
uint16_t vlan_vid; /* VLAN id. */

uint8_t padl[2];
};
OFP_ASSERT (sizeof (struct ofp_action_vlan_vid) == 8);

The vlan_vid field is 16 bits long, when an actual VLAN id is only 12 bits.
The value 0xffff is used to indicate that no VLAN id was set.

An action_vlan_pcp has the following fields:

/* Action structure for OFPAT_SET_VLAN_PCP. */
struct ofp_action_vlan_pcp {

uintl6_t type; /* OFPAT_SET_VLAN_PCP. */
uint16_t len; /* Length is 8. */
uint8_t vlan_pcp; /* VLAN priority. */

uint8_t pad[3];
};
OFP_ASSERT (sizeof (struct ofp_action_vlan_pcp) == 8);

The vlan_pcp field is 8 bits long, but only the lower 3 bits have meaning.

An action_strip_vlan takes no arguments and consists only of a generic
ofp_action_header. This action strips the VLAN tag if one is present.

An action_dl_addr has the following fields:

/* Action structure for OFPAT_SET_DL_SRC/DST. */

struct ofp_action_dl_addr {
uintl6_t type; /* OFPAT_SET_DL_SRC/DST. */
uint16_t len; /* Length is 16. */
uint8_t dl_addr [0OFP_ETH_ALEN]; /* Ethernet address. */

23

OpenFlow Switch Specification Version 1.0.0

uint8_t padl[6];
};
OFP_ASSERT (sizeof (struct ofp_action_dl_addr) == 16);

The d1_addr field is the MAC address to set.

An action_nw_addr has the following fields:

/* Action structure for OFPAT_SET_NW_SRC/DST. */
struct ofp_action_nw_addr {

uintl6_t type; /* OFPAT_SET_TW_SRC/DST. */
uint16_t len; /* Length is 8. */
uint32_t nw_addr; /* IP address. */

};
OFP_ASSERT (sizeof (struct ofp_action_nw_addr) == 8);

The nw_addr field is the IP address to set.

An action_nw_tos has the following fields:

/* Action structure for OFPAT_SET_NW_TO0S. */
struct ofp_action_nw_tos {

uint16_t type; /* OFPAT_SET_TW_SRC/DST. */
uint16_t len; /* Length is 8. */
uint8_t nw_tos; /* IP ToS (DSCP field, 6 bits). */

uint8_t pad[3];
};
OFP_ASSERT (sizeof (struct ofp_action_nw_tos) == 8);
The nw_tos field is the 6 upper bits of the ToS field to set, in the original bit
positions (shifted to the left by 2).

An action_tp_port has the following fields:

/* Action structure for OFPAT_SET_TP_SRC/DST. */
struct ofp_action_tp_port {

uinti6_t type; /* OFPAT_SET_TP_SRC/DST. */
uint16_t len; /* Length is 8. */
uint16_t tp_port; /* TCP/UDP port. */

uint8_t pad[2];
}s
OFP_ASSERT (sizeof (struct ofp_action_tp_port) == 8);

The tp_port field is the TCP/UDP /other port to set.

An action_vendor has the following fields:

/* Action header for OFPAT_VENDOR. The rest of the body is vendor-defined. */
struct ofp_action_vendor_header {

uint16_t type; /* OFPAT_VENDOR. */
uint16_t len; /* Length is a multiple of 8. */
uint32_t vendor; /* Vendor ID, which takes the same form

as in "struct ofp_vendor_header". */
}s
OFP_ASSERT (sizeof (struct ofp_action_vendor_header) == 8);
The vendor field is the Vendor ID, which takes the same form as in struct
ofp_vendor.

24

OpenFlow Switch Specification Version 1.0.0

5.3 Controller-to-Switch Messages
5.3.1 Handshake

Upon TLS session establishment, the controller sends an 0FPT_FEATURES_REQUEST
message. This message does not contain a body beyond the OpenFlow header.
The switch responds with an OFPT_FEATURES_REPLY message:

/* Switch features. */
struct ofp_switch_features {
struct ofp_header header;
uint64_t datapath_id; /* Datapath unique ID. The lower 48-bits are for
a MAC address, while the upper 16-bits are
implementer-defined. */

uint32_t n_buffers; /* Max packets buffered at once. */
uint8_t n_tables; /* Number of tables supported by datapath. */
uint8_t pad[3]; /* Align to 64-bits. */

/* Features. */
uint32_t capabilities; /* Bitmap of support "ofp_capabilities". */
uint32_t actioms; /* Bitmap of supported "ofp_action_type"s. */

/* Port info.x/
struct ofp_phy_port ports[0]; /* Port definitions. The number of ports
is inferred from the length field in
the header. */
};
OFP_ASSERT (sizeof (struct ofp_switch_features) == 32);

The datapath_id field uniquely identifies a datapath. The lower 48 bits are
intended for the switch MAC address, while the top 16 bits are up to the imple-
menter. An example use of the top 16 bits would be a VLAN ID to distinguish
multiple virtual switch instances on a single physical switch. This field should
be treated as an opaque bit string by controllers.

The n_tables field describes the number of tables supported by the switch,
each of which can have a different set of supported wildcard bits and number of
entries. When the controller and switch first communicate, the controller will
find out how many tables the switch supports from the Features Reply. If it
wishes to understand the size, types, and order in which tables are consulted,
the controller sends a OFPST_TABLE stats request. A switch must return these
tables in the order the packets traverse the tables, with all exact-match tables
listed before all tables with wildcards.

The capabilities field uses the following flags:

/* Capabilities supported by the datapath. */
enum ofp_capabilities {
OFPC_FLOW_STATS
OFPC_TABLE_STATS
OFPC_PORT_STATS

1 << 0, /* Flow statistics. */
1 << 1, /* Table statistics. */
1 << 2, /* Port statistics. */

25

OpenFlow Switch Specification Version 1.0.0

OFPC_STP
OFPC_RESERVED
OFPC_IP_REASM
OFPC_QUEUE_STATS
OFPC_ARP_MATCH_IP

<< 3, /* 802.1d spanning tree. */

<< 4, /* Reserved, must be zero. */

/* Can reassemble IP fragments. */

<< 6, /* Queue statistics. */

<< 7 /% Match IP addresses in ARP pkts. */

w o nonwon
R R e e
A
A
&

};

The actions field is a bitmap of actions supported by the switch. The list of
actions is found in Section 3.3} all actions marked Required must be supported.
Vendor actions should not be reported via this bitmask. The bitmask uses the
values from ofp_action_type as the number of bits to shift left for an asso-
ciated action. For example, O0FPAT_SET_DL_VLAN would use the flag 0x00000002.

The ports field is an array of ofp_phy_port structures that describe all the
physical ports in the system that support OpenFlow. The number of port ele-
ments is inferred from the length field in the OpenFlow header.

5.3.2 Switch Configuration

The controller is able to set and query configuration parameters in the switch

with the OFPT_SET_CONFIG and OFPT_GET_CONFIG_REQUEST messages, respec-

tively. The switch responds to a configuration request with an OFPT_GET_CONFIG_REPLY
message; it does not reply to a request to set the configuration.

There is no body for OFPT_GET_CONFIG_REQUEST beyond the OpenFlow header.
The OFPT_SET_CONFIG and.OFPT_GET_CONFIG_REPLY’u&athefbﬂomdng:

/* Switch configuration. */
struct ofp_switch_config {
struct ofp_header header;

uinti6_t flags; /* OFPC_* flags. */
uint16_t miss_send_len; /* Max bytes of new flow that datapath should
send to the controller. */
};
OFP_ASSERT (sizeof (struct ofp_switch_config) == 12);

The configuration flags include the following:

enum ofp_config_flags {
/* Handling of IP fragments. */
OFPC_FRAG_NORMAL 0, /* No special handling for fragments. */
OFPC_FRAG_DROP 1, /* Drop fragments. */
OFPC_FRAG_REASM 2, /* Reassemble (only if OFPC_IP_REASM set). */
OFPC_FRAG_MASK 3

};

The OFPC_FRAG_x* flags indicate whether IP fragments should be treated nor-
mally, dropped, or reassembled. “Normal” handling of fragments means that an
attempt should be made to pass the fragments through the OpenFlow tables.
If any field is not present (e.g., the TCP/UDP ports didn’t fit), then the packet
should not match any entry that has that field set.

26

OpenFlow Switch Specification Version 1.0.0

The miss_send_len field defines the number of bytes of each packet sent to
the controller as a result of both flow table misses and flow table hits with
the controller as the destination. If this field equals 0, the switch must send a
zero-size packet_in message.

5.3.3 Modify State Messages

Modify Flow Entry Message Modifications to the flow table from the con-
troller are done with the OFPT_FLOW_MOD message:

/* Flow setup and teardown (controller -> datapath). */
struct ofp_flow_mod {
struct ofp_header header;
struct ofp_match match; /* Fields to match */
uint64_t cookie; /* Opaque controller-issued identifier. */

/* Flow actions. */

uint16_t command; /* One of OFPFC_x*. */
uint16_t idle_timeout; /* Idle time before discarding (seconds). */
uint16_t hard_timeout; /* Max time before discarding (seconds). */
uint16_t priority; /* Priority level of flow entry. */
uint32_t buffer_id; /* Buffered packet to apply to (or -1).

Not meaningful for OFPFC_DELETE*. */
uint16_t out_port; /* For OFPFC_DELETE* commands, require

matching entries to include this as an
output port. A value of OFPP_NONE
indicates no restriction. */
uint16_t flags; /* One of OFPFF_x. x/
struct ofp_action_header actions[0]; /* The action length is inferred
from the length field in the
header. */
}
OFP_ASSERT (sizeof (struct ofp_flow_mod) == 72);

The cookie field is an opaque data value that is set by the controller. It is not
used in any matching functions, and thus does not need to reside in hardware.
The value -1 (OxfHHHITT) is reserved and must not be used. It is required
that when command is OFPC_MODIFY or OFPC_MODIFY_STRICT that matched flows
have their cookie field updated appropriately.

The command field must be one of the following:

enum ofp_flow_mod_command {

OFPFC_ADD, /* New flow. */

OFPFC_MODIFY, /* Modify all matching flows. */
OFPFC_MODIFY_STRICT, /* Modify entry strictly matching wildcards */
OFPFC_DELETE, /* Delete all matching flows. */

OFPFC_DELETE_STRICT /* Strictly match wildcards and priority. */
};

The differences between OFPFC_MODIFY and OFPFC_MODIFY_STRICT are explained
in Section[4.6]and differences between OFPFC_DELETE and OFPFC_DELETE_STRICT

27

OpenFlow Switch Specification Version 1.0.0

are explained in Section
The idle_timeout and hard_timeout fields control how quickly flows expire.

If the idle_timeout is set and the hard_timeout is zero, the entry must ex-
pire after idle_timeout seconds with no received traffic. If the idle_timeout
is zero and the hard_timeout is set, the entry must expire in hard_timeout
seconds regardless of whether or not packets are hitting the entry.

If both idle_timeout and hard_timeout are set, the flow will timeout after
idle_timeout seconds with no traffic, or hard_timeout seconds, whichever
comes first. If both idle_timeout and hard_timeout are zero, the entry is
considered permanent and will never time out. It can still be removed with a
flow_mod message of type OFPFC_DELETE.

The priority field is only relevant for flow entries with wildcard fields. The pri-
ority field indicates table priority, where higher numbers are higher priorities; the
switch must keep the highest-priority wildcard entries in the lowest-numbered
(fastest) wildcard table, to ensure correctness. It is the responsibility of each
switch implementer to ensure that exact entries always match before wildcards
entries, regardless of the table configuration.

The buffer_id refers to a buffered packet sent by the OFPT_PACKET_IN message.

The out_port field optionally filters the scope of DELETE and DELETE_STRICT
messages by output port. If out_port contains a value other than OFPP_NONE,
it introduces a constraint when matching. This constraint is that the rule
must contain an output action directed at that port. Other constraints such
as ofp_match structs and priorities are still used; this is purely an additional
constraint. Note that to disable output port filtering, out_port must be set to
OFPP_NONE, since 0 is a valid port id. This field is ignored by ADD, MODIFY,
and MODIFY_STRICT messages.

The flags field may include the follow flags:

enum ofp_flow_mod_flags {
OFPFF_SEND_FLOW_REM

1 << 0, /* Send flow removed message when flow

* expires or is deleted. */
1 << 1, /% Check for overlapping entries first. */
1 <2 /* Remark this is for emergency. */

OFPFF_CHECK_OVERLAP
OFPFF_EMERG

};

When the OFPFF_SEND_FLOW_REM flag is set, the switch must send a flow re-
moved message when the flow expires. The default is for the switch to not send
flow removed messages for newly added flows.

When the OFPFF_CHECK_OVERLAP flag is set, the switch must check that there
are no conflicting entries with the same priority. If there is one, the flow mod

28

OpenFlow Switch Specification Version 1.0.0

fails and an error code is returned.

When the OFPFF_EMERG_ flag is set, the switch must consider this flow entry as
an emergency entry, and only use it for forwarding when disconnected from the
controller.

Port Modification Message The controller uses the OFPT_PORT_MOD mes-
sage to modify the behavior of the physical port:

/* Modify behavior of the physical port */
struct ofp_port_mod {
struct ofp_header header;
uint16_t port_no;
uint8_t hw_addr [OFP_ETH_ALEN]; /* The hardware address is not
configurable. This is used to
sanity-check the request, so it must
be the same as returned in an
ofp_phy_port struct. */

uint32_t config; /* Bitmap of OFPPC_x* flags. */

uint32_t mask; /* Bitmap of OFPPC_* flags to be changed. */

uint32_t advertise; /* Bitmap of "ofp_port_features"s. Zero all
bits to prevent any action taking place. */

uint8_t pad[4]; /* Pad to 64-bits. */

};
OFP_ASSERT (sizeof (struct ofp_port_mod) == 32);

The mask field is used to select bits in the config field to change. The advertise
field has no mask; all port features change together.

5.3.4 Queue Configuration Messages

Queue configuration takes place outside the OpenFlow protocol, either through
a command line tool or through an external dedicated configuration protocol.

The controller can query the switch for configured queues on a port using the
following structure:

/* Query for port queue configuration. */
struct ofp_queue_get_config_request {
struct ofp_header header;

uint16_t port; /* Port to be queried. Should refer
to a valid physical port (i.e. < OFPP_MAX) */
uint8_t pad[2]; /* 32-bit alignment. */

};
OFP_ASSERT (sizeof (struct ofp_queue_get_config_request) == 12);

The switch replies back with an ofp_queue_get_config_reply command, con-
taining a list of configured queues.

/* Queue configuration for a given port. */
struct ofp_queue_get_config_reply {
struct ofp_header header;

29

OpenFlow Switch Specification Version 1.0.0

uint16_t port;

uint8_t pad[6];

struct ofp_packet_queue queues[0]; /* List of configured queues. */
};
OFP_ASSERT (sizeof (struct ofp_queue_get_config_reply) == 16);

5.3.5 Read State Messages

While the system is running, the datapath may be queried about its current
state using the OFPT_STATS_REQUEST message:

struct ofp_stats_request {
struct ofp_header header;

uint16_t type; /* One of the OFPST_* constants. */
uint16_t flags; /* OFPSF_REQ_* flags (none yet defined). */
uint8_t body[0]; /* Body of the request. */

}s
OFP_ASSERT (sizeof (struct ofp_stats_request) == 12);

The switch responds with one or more OFPT_STATS_REPLY messages:

struct ofp_stats_reply {
struct ofp_header header;

uintl6_t type; /* One of the OFPST_* constants. */
uint16_t flags; /* OFPSF_REPLY_x* flags. */
uint8_t body[0]; /* Body of the reply. */

};
OFP_ASSERT (sizeof (struct ofp_stats_reply) == 12);

The only value defined for flags in a reply is whether more replies will follow
this one - this has the value 0x0001. To ease implementation, the switch is
allowed to send replies with no additional entries. However, it must always send
another reply following a message with the more flag set. The transaction ids
(xid) of replies must always match the request that prompted them.

In both the request and response, the type field specifies the kind of infor-
mation being passed and determines how the body field is interpreted:

enum ofp_stats_types {
/* Description of this OpenFlow switch.
* The request body is empty.
* The reply body is struct ofp_desc_stats. */
OFPST_DESC,

/* Individual flow statistics.

* The request body is struct ofp_flow_stats_request.

* The reply body is an array of struct ofp_flow_stats. */
OFPST_FLOW,

/* Aggregate flow statistics.

* The request body is struct ofp_aggregate_stats_request.
* The reply body is struct ofp_aggregate_stats_reply. */
OFPST_AGGREGATE,

30

OpenFlow Switch Specification Version 1.0.0

/* Flow table statistics.

* The request body is empty.

* The reply body is an array of struct ofp_table_stats. */
OFPST_TABLE,

/* Physical port statistics.

* The request body is struct ofp_port_stats_request.

* The reply body is an array of struct ofp_port_stats. */
OFPST_PORT,

/* Queue statistics for a port

* The request body defines the port

* The reply body is an array of struct ofp_queue_stats */
OFPST_QUEUE,

/* Vendor extension.
* The request and reply bodies begin with a 32-bit vendor ID, which takes
* the same form as in "struct ofp_vendor_header". The request and reply
* bodies are otherwise vendor-defined. */
OFPST_VENDOR = Oxffff
};

Description Statistics Information about the switch manufacturer, hard-
ware revision, software revision, serial number, and a description field is avail-
able from the OFPST_DESC stats request type:

/* Body of reply to OFPST_DESC request. Each entry is a NULL-terminated
* ASCII string. */
struct ofp_desc_stats {

char mfr_desc[DESC_STR_LEN] ; /* Manufacturer description. */

char hw_desc[DESC_STR_LEN]; /* Hardware description. */

char sw_desc[DESC_STR_LEN]; /* Software description. */

char serial_num[SERIAL_NUM_LEN]; /* Serial number. */

char dp_desc[DESC_STR_LEN]; /* Human readable description of datapath. */

};
OFP_ASSERT (sizeof (struct ofp_desc_stats) == 1056);

Each entry is ASCII formatted and padded on the right with null bytes (\0).
DESC_STR_LEN is 256 and SERTAL_NUM_LEN is 32 . Note: E] the dp_desc field is a
free-form string to describe the datapath for debugging purposes, e.g., “switch3
in room 3120”. As such, it is not guaranteed to be unique and should not be
used as the primary identifier for the datapath—use the datapath_id field from

the switch features instead (§75.3.1)).

Individual Flow Statistics Information about individual flows is requested
with the OFPST_FLOW stats request type:

/* Body for ofp_stats_request of type OFPST_FLOW. */
struct ofp_flow_stats_request {
struct ofp_match match; /* Fields to match. */
uint8_t table_id; /* ID of table to read (from ofp_table_stats),

TAdded to address concerns raised in https://mailman.stanford.edu/pipermail/
openflow-spec/2009-September/000504.html

31

https://mailman.stanford.edu/pipermail/openflow-spec/2009-September/000504.html
https://mailman.stanford.edu/pipermail/openflow-spec/2009-September/000504.html

OpenFlow Switch Specification Version 1.0.0

Oxff for all tables or Oxfe for emergency. */
uint8_t pad; /* Align to 32 bits. */
uintl6_t out_port; /* Require matching entries to include this
as an output port. A value of OFPP_NONE
indicates no restriction. */
}
OFP_ASSERT (sizeof (struct ofp_flow_stats_request) == 44);
The match field contains a description of the flows that should be matched and
may contain wildcards. This field’s matching behavior is described in Section
4.6l

The table_id field indicates the index of a single table to read, or Oxff for
all tables.

The out_port field optionally filters by output port. If out_port contains
a value other than OFPP_NONE, it introduces a constraint when matching. This
constraint is that the rule must contain an output action directed at that port.
Other constraints such as ofp_match structs are still used; this is purely an ad-
ditional constraint. Note that to disable output port filtering, out_port must
be set to OFPP_NONE, since 0 is a valid port id.

The body of the reply consists of an array of the following:

/* Body of reply to OFPST_FLOW request. */
struct ofp_flow_stats {

uint16_t length; /* Length of this entry. */
uint8_t table_id; /* ID of table flow came from. */
uint8_t pad;
struct ofp_match match; /* Description of fields. */
uint32_t duration_sec; /* Time flow has been alive in seconds. */
uint32_t duration_nsec; /* Time flow has been alive in nanoseconds beyond
duration_sec. */
uint16_t priority; /* Priority of the entry. Only meaningful
when this is not an exact-match entry. */
uintl6_t idle_timeout; /* Number of seconds idle before expiration. */
uint16_t hard_timeout; /* Number of seconds before expiration. */
uint8_t pad2[6]; /* Align to 64-bits. */
uint64_t cookie; /* Opaque controller-issued identifier. */
uint64_t packet_count; /* Number of packets in flow. */
uint64_t byte_count; /* Number of bytes in flow. */

struct ofp_action_header actions[0]; /* Actioms. */
}s
OFP_ASSERT (sizeof (struct ofp_flow_stats) == 88);
The fields consist of those provided in the flow_mod that created these, plus
the table into which the entry was inserted, the packet count, and the byte count.

The duration_sec and duration_nsec fields indicate the elapsed time the
flow has been installed in the switch. The total duration in nanoseconds can
be computed as duration_sec * 10° + duration_nsec. Implementations are
required to provide millisecond precision; higher precision is encouraged where
available.

32

OpenFlow Switch Specification Version 1.0.0

Aggregate Flow Statistics Aggregate information about multiple flows is
requested with the OFPST_AGGREGATE stats request type:

/* Body for ofp_stats_request of type OFPST_AGGREGATE. */
struct ofp_aggregate_stats_request {

struct ofp_match match; /* Fields to match. */

uint8_t table_id; /* ID of table to read (from ofp_table_stats)
Oxff for all tables or Oxfe for emergency. */

uint8_t pad; /* Align to 32 bits. */

uint16_t out_port; /* Require matching entries to include this

as an output port. A value of OFPP_NONE
indicates no restriction. */

};

OFP_ASSERT (sizeof (struct ofp_aggregate_stats_request) == 44);

The match field contains a description of the flows that should be matched and
may contain wildcards. This field’s matching behavior is described in Section
4.0

The table_id field indicates the index of a single table to read, or 0xff for
all tables.

The out_port field optionally filters by output port. If out_port contains
a value other than OFPP_NONE, it introduces a constraint when matching. This
constraint is that the rule must contain an output action directed at that port.
Other constraints such as ofp_match structs are still used; this is purely an ad-
ditional constraint. Note that to disable output port filtering, out_port must
be set to OFPP_NONE, since 0 is a valid port id.

The body of the reply consists of the following:

/* Body of reply to OFPST_AGGREGATE request. */
struct ofp_aggregate_stats_reply {

uint64_t packet_count; /* Number of packets in flows. */
uint64_t byte_count; /* Number of bytes in flows. */
uint32_t flow_count; /* Number of flows. */

uint8_t pad[4]; /* Align to 64 bits. */

};
OFP_ASSERT (sizeof (struct ofp_aggregate_stats_reply) == 24);

Table Statistics Information about tables is requested with the OFPST_TABLE
stats request type. The request does not contain any data in the body.

The body of the reply consists of an array of the following:

/* Body of reply to OFPST_TABLE request. */
struct ofp_table_stats {

uint8_t table_id; /* Identifier of table. Lower numbered tables
are consulted first. */

uint8_t padl[3]; /* Align to 32-bits. */

char name [OFP_MAX_TABLE_NAME_LEN];

uint32_t wildcards; /* Bitmap of OFPFW_* wildcards that are

33

OpenFlow Switch Specification Version 1.0.0

supported by the table. */
uint32_t max_entries; /* Max number of entries supported. */
uint32_t active_count; /* Number of active entries. */
uint64_t lookup_count; /* Number of packets looked up in table. */
uint64_t matched_count; /* Number of packets that hit table. */
};
OFP_ASSERT (sizeof (struct ofp_table_stats) == 64);

The body contains a wildcards field, which indicates the fields for which that
particular table supports wildcarding. For example, a direct look-up hash table
would have that field set to zero, while a sequentially searched table would have
it set to OFPFW_ALL. The entries are returned in the order that packets traverse
the tables.

OFP_MAX_TABLE_NAME_LEN is 32 .

Port Statistics Information about physical ports is requested with the OFPST_PORT
stats request type:

/* Body for ofp_stats_request of type OFPST_PORT. */
struct ofp_port_stats_request {
uintl6_t port_no; /* OFPST_PORT message must request statistics
* either for a single port (specified in
* port_no) or for all ports (if port_no ==
* OFPP_NONE). */
uint8_t padl[6];
};
OFP_ASSERT (sizeof (struct ofp_port_stats_request) == 8);

The port_no field optionally filters the stats request to the given port. To re-
quest all port statistics, port_no must be set to OFPP_NONE.

The body of the reply consists of an array of the following:

/* Body of reply to OFPST_PORT request. If a counter is unsupported, set
* the field to all ones. */
struct ofp_port_stats {

uint16_t port_no;

uint8_t padl[6]; /* Align to 64-bits. */

uint64_t rx_packets; /* Number of received packets. */

uint64_t tx_packets; /* Number of transmitted packets. */

uint64_t rx_bytes; /* Number of received bytes. */

uint64_t tx_bytes; /* Number of transmitted bytes. */

uint64_t rx_dropped; /* Number of packets dropped by RX. */

uint64_t tx_dropped; /* Number of packets dropped by TX. */

uint64_t rx_errors; /* Number of receive errors. This is a super-set

of more specific receive errors and should be
greater than or equal to the sum of all
rx_*_err values. */

uint64_t tx_errors; /* Number of transmit errors. This is a super-set
of more specific transmit errors and should be
greater than or equal to the sum of all
tx_*_err values (none currently defined.) */

uint64_t rx_frame_err; /* Number of frame alignment errors. */

34

OpenFlow Switch Specification Version 1.0.0

uint64_t rx_over_err; /* Number of packets with RX overrun. */
uint64_t rx_crc_err; /* Number of CRC errors. */
uint64_t collisions; /* Number of collisions. */

}s
OFP_ASSERT (sizeof (struct ofp_port_stats) == 104);

The switch should return a value of -1 for unavailable counters.

Queue Statistics The OFPST_QUEUE stats request message provides queue
statistics for one or more ports. The request body consists of a port_no
field identifying the port and a queue_id. OFPP_ALL refers to all ports, while
OFPQ_ALL refers to all queues configured at a port.

struct ofp_queue_stats_request {

uint16_t port_no; /* All ports if OFPT_ALL. */
uint8_t pad[2]; /* Align to 32-bits. */
uint32_t queue_id; /* All queues if OFPQ_ALL. */
}s
OFP_ASSERT (sizeof (struct ofp_queue_stats_request) == 8);

The body of the reply consists of an array of the following structure:

struct ofp_queue_stats {
uint16_t port_no;

uint8_t pad[2]; /* Align to 32-bits. */

uint32_t queue_id; /* Queue i.d */

uint64_t tx_bytes; /* Number of transmitted bytes. */

uint64_t tx_packets; /* Number of transmitted packets. */

uint64_t tx_errors; /* Number of packets dropped due to overrun. */

};
OFP_ASSERT (sizeof (struct ofp_queue_stats) == 32);

Vendor Statistics Vendor-specific stats messages are requested with the OFPST_VENDOR
stats type. The first four bytes of the message are the vendor identifier. The
rest of the body is vendor-defined.

The vendor field is a 32-bit value that uniquely identifies the vendor. If the
most significant byte is zero, the next three bytes are the vendor’s IEEE OUI.
If vendor does not have (or wish to use) their OUI, they should contact the
OpenFlow consortium to obtain one.

5.3.6 Send Packet Message

When the controller wishes to send a packet out through the datapath, it uses
the OFPT_PACKET_0UT message:

/* Send packet (controller -> datapath). */
struct ofp_packet_out {
struct ofp_header header;

uint32_t buffer_id; /* ID assigned by datapath (-1 if none). */
uint16_t in_port; /* Packet’s input port (OFPP_NONE if none). */
uint16_t actions_len; /* Size of action array in bytes. */

35

OpenFlow Switch Specification Version 1.0.0

struct ofp_action_header actions[0]; /* Actions. */
/* uint8_t datal0]; */ /* Packet data. The length is inferred
from the length field in the header.
(Only meaningful if buffer_id == -1.) %/
}
OFP_ASSERT (sizeof (struct ofp_packet_out) == 16);

The buffer_id is the same given in the of p_packet_in message. If the buffer_id
is -1, then the packet data is included in the data array. If OFPP_TABLE is spec-
ified as the output port of an action, the in_port in the packet_out message
is used in the flow table lookup.

5.3.7 Barrier Message

When the controller wants to ensure message dependencies have been met or

wants to receive notifications for completed operations, it may use an OFPT_BARRIER_REQUEST
message. This message has no body. Upon receipt, the switch must finish pro-

cessing all previously-received messages before executing any messages beyond

the Barrier Request. When such processing is complete, the switch must send

an OFPT_BARRIER_REPLY message with the xid of the original request.

5.4 Asynchronous Messages
5.4.1 Packet-In Message

When packets are received by the datapath and sent to the controller, they use
the OFPT_PACKET_IN message:

/* Packet received on port (datapath -> controller). */
struct ofp_packet_in {
struct ofp_header header;

uint32_t buffer_id; /* ID assigned by datapath. */

uint16_t total_len; /* Full length of frame. */

uinti6_t in_port; /* Port on which frame was received. */

uint8_t reason; /* Reason packet is being sent (one of OFPR_%*) */
uint8_t pad;

uint8_t datal0]; /* Ethernet frame, halfway through 32-bit word,

so the IP header is 32-bit aligned. The
amount of data is inferred from the length
field in the header. Because of padding,
offsetof (struct ofp_packet_in, data) ==
sizeof (struct ofp_packet_in) - 2. */

};

OFP_ASSERT (sizeof (struct ofp_packet_in) == 20);

The buffer_id is an opaque value used by the datapath to identify a buffered
packet. When a packet is buffered, some number of bytes from the message will
be included in the data portion of the message. If the packet is sent because
of a “send to controller” action, then max_len bytes from the action_output
of the flow setup request are sent. If the packet is sent because of a flow table
miss, then at least miss_send_len bytes from the OFPT_SET_CONFIG message
are sent. The default miss_send_len is 128 bytes. If the packet is not buffered,

36

OpenFlow Switch Specification Version 1.0.0

the entire packet is included in the data portion, and the buffer_id is -1.

Switches that implement buffering are expected to expose, through documen-
tation, both the amount of available buffering, and the length of time before
buffers may be reused. A switch must gracefully handle the case where a buffered
packet_in message yields no response from the controller. A switch should pre-
vent a buffer from being reused until it has been handled by the controller, or
some amount of time (indicated in documentation) has passed.

The reason field can be any of these values:

/* Why is this packet being sent to the controller? x*/
enum ofp_packet_in_reason {

OFPR_NO_MATCH, /* No matching flow. */

OFPR_ACTION /* Action explicitly output to controller. */
};

5.4.2 Flow Removed Message

If the controller has requested to be notified when flows time out, the datapath
does this with the OFPT_FLOW_REMOVED message:

/* Flow removed (datapath -> controller). */
struct ofp_flow_removed {
struct ofp_header header;

struct ofp_match match; /* Description of fields. */

uint64_t cookie; /* Opaque controller-issued identifier. */

uint16_t priority; /* Priority level of flow entry. */

uint8_t reason; /* One of OFPRR_*. */

uint8_t pad[1]; /* Align to 32-bits. */

uint32_t duration_sec; /* Time flow was alive in seconds. */

uint32_t duration_nsec; /* Time flow was alive in nanoseconds beyond
duration_sec. */

uintl6_t idle_timeout; /* Idle timeout from original flow mod. */

uint8_t pad2[2]; /* Align to 64-bits. */

uint64_t packet_count;
uint64_t byte_count;
};
OFP_ASSERT (sizeof (struct ofp_flow_removed) == 88);

The match, cookie, and priority fields are the same as those used in the flow
setup request.

The reason field is one of the following:

/* Why was this flow removed? */
enum ofp_flow_removed_reason {

OFPRR_IDLE_TIMEQUT, /* Flow idle time exceeded idle_timeout. */
OFPRR_HARD_TIMEOUT, /* Time exceeded hard_timeout. */
OFPRR_DELETE /* Evicted by a DELETE flow mod. */

};

37

OpenFlow Switch Specification Version 1.0.0

The duration_sec and duration_nsec fields are described in Section [5.3.5

The idle_timeout field is directly copied from the flow mod that created this
entry.

With the above three fields, one can find both the amount of time the flow
was active, as well as the amount of time the flow received traffic.

The packet_count and byte_count indicate the number of packets and bytes
that were associated with this flow, respectively.

5.4.3 Port Status Message

As physical ports are added, modified, and removed from the datapath, the
controller needs to be informed with the OFPT_PORT_STATUS message:

/* A physical port has changed in the datapath */
struct ofp_port_status {
struct ofp_header header;
uint8_t reason; /* One of OFPPR_x*. */
uint8_t padl[7]; /* Align to 64-bits. */
struct ofp_phy_port desc;
}
OFP_ASSERT (sizeof (struct ofp_port_status) == 64);

The status can be one of the following values:

/* What changed about the physical port */
enum ofp_port_reason {

OFPPR_ADD, /* The port was added. */
OFPPR_DELETE, /* The port was removed. */
OFPPR_MODIFY /* Some attribute of the port has changed. */

};

5.4.4 Error Message

There are times that the switch needs to notify the controller of a problem. This
is done with the OFPT_ERROR_MSG message:

/* OFPT_ERROR: Error message (datapath -> controller). */
struct ofp_error_msg {
struct ofp_header header;

uint16_t type;
uint16_t code;
uint8_t datal0]; /* Variable-length data. Interpreted based
on the type and code. */
};
OFP_ASSERT (sizeof (struct ofp_error_msg) == 12);

The type value indicates the high-level type of error. The code value is inter-
preted based on the type. The data is variable length and interpreted based

38

OpenFlow Switch Specification Version 1.0.0

on the type and code; in most cases this is the message that caused the problem.

Error codes ending in _EPERM correspond to a permissions error generated by
an entity between a controller and switch, such as an OpenFlow hypervisor.

Currently defined error types are:

/* Values for ’type’ in ofp_error_message. These values are immutable: they

* will not change in future versions of the protocol (although new values may
* be added). */

enum ofp_error_type {

OFPET_HELLO_FAILED, /* Hello protocol failed. */
OFPET_BAD_REQUEST, /* Request was not understood. */
OFPET_BAD_ACTION, /* Error in action description. */
OFPET_FLOW_MOD_FAILED, /* Problem modifying flow entry. */
OFPET_PORT_MOD_FAILED, /* Port mod request failed. */
OFPET_QUEUE_OP_FAILED /* Queue operation failed. */

};

For the OFPET_HELLO_FAILED error type, the following codes are currently de-
fined:

/* ofp_error_msg ’code’ values for OFPET_HELLO_FAILED. ’data’ contains an
* ASCII text string that may give failure details. */
enum ofp_hello_failed_code {
OFPHFC_INCOMPATIBLE, /* No compatible version. */
OFPHFC_EPERM /* Permissions error. */
};

The data field contains an ASCII text string that adds detail on why the error
occurred.

For the OFPET_BAD_REQUEST error type, the following codes are currently de-
fined:

/* ofp_error_msg ’code’ values for OFPET_BAD_REQUEST. ’data’ contains at least
* the first 64 bytes of the failed request. */
enum ofp_bad_request_code {

OFPBRC_BAD_VERSION, /* ofp_header.version not supported. */
OFPBRC_BAD_TYPE, /* ofp_header.type not supported. */
OFPBRC_BAD_STAT, /* ofp_stats_request.type not supported. */
OFPBRC_BAD_VENDOR, /* Vendor not supported (in ofp_vendor_header

* or ofp_stats_request or ofp_stats_reply). */
OFPBRC_BAD_SUBTYPE, /* Vendor subtype not supported. */
OFPBRC_EPERM, /* Permissions error. */
OFPBRC_BAD_LEN, /* Wrong request length for type. */
OFPBRC_BUFFER_EMPTY, /* Specified buffer has already been used. */
OFPBRC_BUFFER_UNKNOWN /* Specified buffer does not exist. */

};

The data field contains at least 64 bytes of the failed request.

For the OFPET_BAD_ACTION error type, the following codes are currently de-
fined:

39

OpenFlow Switch Specification Version 1.0.0

/* ofp_error_msg ’code’ values for OFPET_BAD_ACTION. ’data’ contains at least
* the first 64 bytes of the failed request. */
enum ofp_bad_action_code {

OFPBAC_BAD_TYPE, /* Unknown action type. */
OFPBAC_BAD_LEN, /* Length problem in actioms. */
OFPBAC_BAD_VENDOR, /* Unknown vendor id specified. */
OFPBAC_BAD_VENDOR_TYPE, /* Unknown action type for vendor id. */
OFPBAC_BAD_OUT_PORT, /* Problem validating output action. */
OFPBAC_BAD_ARGUMENT, /* Bad action argument. */

OFPBAC_EPERM, /* Permissions error. *x/
OFPBAC_TOO_MANY, /* Can’t handle this many actions. */
OFPBAC_BAD_QUEUE /* Problem validating output queue. */

};
The data field contains at least 64 bytes of the failed request.

For the OFPET_FLOW_MOD_FAILED error type, the following codes are currently
defined:

/* ofp_error_msg ’code’ values for OFPET_FLOW_MOD_FAILED. ’data’ contains
* at least the first 64 bytes of the failed request. */
enum ofp_flow_mod_failed_code {

OFPFMFC_ALL_TABLES_FULL, /* Flow not added because of full tables. */
OFPFMFC_OVERLAP, /* Attempted to add overlapping flow with

* CHECK_OVERLAP flag set. */
OFPFMFC_EPERM, /* Permissions error. */

OFPFMFC_BAD_EMERG_TIMEOUT, /* Flow not added because of non-zero idle/hard
* timeout. */

OFPFMFC_BAD_COMMAND, /* Unknown command. */

OFPFMFC_UNSUPPORTED /* Unsupported action list - cannot process in
* the order specified. */

}s
The data field contains at least 64 bytes of the failed request.

For the OFPET_PORT_MOD_FAILED error type, the following codes are currently
defined:

/* ofp_error_msg ’code’ values for OFPET_PORT_MOD_FAILED. ’data’ contains
* at least the first 64 bytes of the failed request. */
enum ofp_port_mod_failed_code {
OFPPMFC_BAD_PORT, /* Specified port does not exist. */
OFPPMFC_BAD_HW_ADDR, /* Specified hardware address is wrong. */
};

The data field contains at least 64 bytes of the failed request.

For the OFPET_QUEUE_OP_FAILED error type, the following codes are currently
defined:

/* ofp_error msg ’code’ values for OFPET_QUEUE_OP_FAILED. ’data’ contains
* at least the first 64 bytes of the failed request */
enum ofp_queue_op_failed_code {
OFPQOFC_BAD_PORT, /* Invalid port (or port does not exist). */

40

OpenFlow Switch Specification Version 1.0.0

OFPQOFC_BAD_QUEUE, /* Queue does not exist. */
OFPQOFC_EPERM /* Permissions error. */
};

The data field contains at least 64 bytes of the failed request.

If the error message is in response to a specific message from the controller, e.g.,
OFPET_BAD_REQUEST, OFPET_BAD_ACTION, or OFPET_FLOW_MOD_FAILED, then the
xid field of the header should match that of the offending message.

5.5 Symmetric Messages
5.5.1 Hello

The OFPT_HELLO message has no body; that is, it consists only of an OpenFlow
header. Implementations must be prepared to receive a hello message that
includes a body, ignoring its contents, to allow for later extensions.

5.5.2 Echo Request

An Echo Request message consists of an OpenFlow header plus an arbitrary-
length data field. The data field might be a message timestamp to check latency,
various lengths to measure bandwidth, or zero-size to verify liveness between
the switch and controller.

5.5.3 Echo Reply

An Echo Reply message consists of an OpenFlow header plus the unmodified
data field of an echo request message.

In an OpenFlow protocol implementation divided into multiple layers, the echo
request/reply logic should be implemented in the ”deepest” practical layer. For
example, in the OpenFlow reference implementation that includes a userspace
process that relays to a kernel module, echo request/reply is implemented in the
kernel module. Receiving a correctly formatted echo reply then shows a greater
likelihood of correct end-to-end functionality than if the echo request/reply were
implemented in the userspace process, as well as providing more accurate end-
to-end latency timing.

5.5.4 Vendor
The Vendor message is defined as follows:

/* Vendor extension. */
struct ofp_vendor_header {
struct ofp_header header; /* Type OFPT_VENDOR. */
uint32_t vendor; /* Vendor ID:
* - MSB 0: low-order bytes are IEEE OUI.
* - MSB != 0: defined by OpenFlow

41

OpenFlow Switch Specification Version 1.0.0

* consortium. */
/* Vendor-defined arbitrary additional data. */

};
OFP_ASSERT (sizeof (struct ofp_vendor_header) == 12);

The vendor field is a 32-bit value that uniquely identifies the vendor. If the
most significant byte is zero, the next three bytes are the vendor’s IEEE OUI
If vendor does not have (or wish to use) their OUI, they should contact the
OpenFlow consortium to obtain one. The rest of the body is uninterpreted.

If a switch does not understand a vendor extension, it must send an OFPT_ERROR
message with a OFPBRC_BAD_VENDOR error code and OFPET_BAD_REQUEST error

type.

6 Appendix B: Credits

Current Maintainer: Brandon Heller (brandonh@stanford.edu).
Spec contributions, in alphabetical order:

Ben Pfaff, Brandon Heller, Dan Talayco, David Erickson, Glen Gibb, Guido Ap-
penzeller, Jean Tourrilhes, Justin Pettit, KK Yap, Martin Casado, Masayoshi
Kobayashi, Nick McKeown, Peter Balland, Reid Price, Rob Sherwood, Yiannis
Yiakoumis.

42

	Introduction
	Switch Components
	Flow Table
	Header Fields
	Counters
	Actions
	Matching

	Secure Channel
	OpenFlow Protocol Overview
	Controller-to-Switch
	Asynchronous
	Symmetric

	Connection Setup
	Connection Interruption
	Encryption
	Spanning Tree
	Flow Table Modification Messages
	Flow Removal

	Appendix A: The OpenFlow Protocol
	OpenFlow Header
	Common Structures
	Port Structures
	Queue Structures
	Flow Match Structures
	Flow Action Structures

	Controller-to-Switch Messages
	Handshake
	Switch Configuration
	Modify State Messages
	Queue Configuration Messages
	Read State Messages
	Send Packet Message
	Barrier Message

	Asynchronous Messages
	Packet-In Message
	Flow Removed Message
	Port Status Message
	Error Message

	Symmetric Messages
	Hello
	Echo Request
	Echo Reply
	Vendor

	Appendix B: Credits

