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1  Executive Summary 
This document considers the evolution of Software Defined Networking (which includes, but is 
not limited to, OpenFlow-based networking). The intent is to consider the technologies and 
standardized interfaces required to support new use cases, and the associated impact on the 
ecosystem, in order to facilitate ecosystem growth. 

The evolution process aims to retain the tenets of SDN, for example logically centralized control 
and support for the match/action model standardized by OpenFlow. It also aims to support new 
use cases, e.g. new services and applications like stateful firewalling, as well as new media, 
domains, and functionality like optical networking and OAM. It furthermore intends to introduce 
additional flexibility, for example by making provision for Protocol Independent Forwarding and 
flexibly programmed datapaths (leveraging languages like P4), and supporting mechanisms that 
enable a broader range of software interaction with datapaths. 

The aim is specifically to support backward compatibility with, and migration from, systems 
based on OpenFlow 1.x. The next generation run-time interface needs to be able to cope with 
flexibly defined dataplane protocols (e.g. protocols defined by a program) and associated 
behaviors while retaining the ability to interact with current SDN devices which only support the 
protocols and behaviors defined by the current OpenFlow 1.x standards. 

The OpenFlow specification currently defines the expected behavior of a switch (i.e. an abstract 
model for it), the dataplane protocols that can be matched and acted on, and an interface to the 
switch (e.g. to enable a controller to populate tables and retrieve statistics). Combining all of this 
in a single standard impedes adding support for new dataplane protocols and new use cases 
because the specification needs to be modified to introduce new protocols / behaviors. This 
initiative proposes to introduce the concept of a modular specification, whereby the specifics of 
dataplane protocols and behaviors are moved into extension modules that can be created and 
evolved independently from the core specification. It furthermore enables support for 
programmed datapaths where the program itself defines the dataplane protocols and behaviors. 
The intent is for these two mechanisms to coexist by enabling an abstract model describing how 
to interface to new protocols or behaviors to be constructed, irrespective of whether the 
implementation is opaque (with only a control interface being exposed) or whether it is visible as 
a datapath program (potentially written in a language like P4). 

Today OpenFlow makes provision for network traffic processing behavior to be either 
implemented within switches themselves or implemented in software running on the SDN 
controller (by leveraging OpenFlow's packet in and packet out messages). The aim is to 
introduce additional open and standardized interfaces to support the interaction of a wider range 
of software modules running in additional locations. Software in a switch could perform control 
and monitoring functions delegated to it by the controller, for example aggregating statistics and 
updating flow entries to block attacks if the statistics indicate that a denial of service attack is in 
progress. Software could also participate in the dataplane, performing exception path or even 
fastpath processing. The software could be located in the enclosure of a physical switch, running 
on the switch chip itself or on a general purpose CPU attached to the switch chip. The software 
could also form part of a virtual network function (VNF) running on a server, interacting with a 
virtual switch running on the server's CPU or on a smart NIC in the server. The interfaces 
between the software and the datapath need to support the performance required by the use case, 
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for example, high packet rates and flow update rates might be required, therefore callable 
interfaces must be considered to avoid the overhead associated with a protocol based interface 
like the existing OpenFlow. The intent is to create open and standardized interfaces to enable a 
broader range of software interaction with datapaths and to enable the software to be supplied by 
new ecosystem players. 

One needs to also consider the lifecycle implications of these new approaches. A flexibly 
programmed datapath for example introduces new concepts like a program, a programmer, a 
system compiling the program, a mechanism to distribute the program, as well as implications in 
time and space, for example co-existence of different programs and program versions in a 
network, and concerns associated with deploying, upgrading and migrating programs over time. 
The broader range of software interaction with the datapath introduces similar concerns. In 
essence, the lifecycle of each existing and newly introduced technology element (e.g. program, 
controller, or switch) needs to be considered, together with the interactions of these elements (e.g. 
deploying a new program may necessitate upgrading the hardware of the switch hosting the 
program). 

This document is intended to act as a catalyst for discussing the potential evolution of ONF SDN. 
As it presents a snapshot of an ongoing discussion, it is necessarily incomplete. Some items 
requiring further study are explicitly called out as such. All points made in the document are 
presented for discussion. Contributions and other feedback are appreciated. 

2  Overview 

2.1  Goals, Objectives, and Scope 
This document is intended to facilitate the ongoing discussion related to the evolution of 
Software Defined Networking and related ecosystems in general, and those ecosystems that are 
emerging around OpenFlow and Protocol Independent Forwarding / flexibly programmed 
datapaths in particular, by capturing and structuring the results of the discussion so far, and by 
presenting issues and other items that need to be considered in future. 

Especially noteworthy concerns or aspects requiring further discussion are highlighted using a 
paragraph border. 

The overall goal of the evolution process is to improve support for specific emerging 
technologies and use cases such as protocol independence and Network Functions Virtualisation, 
but also to facilitate the growth of the ecosystem comprising support for a wide variety of 
technologies and use cases, with a number of players (vendors, operators etc.). 

The document first outlines the motivations underlying the new technologies, use cases, and 
approaches. It proceeds to consider requirements associated with flexible (i.e. programmed) 
datapaths, for example, the construction and compilation / initial configuration of datapath 
programs, and their continued operation. The focus then shifts to the various datapath variants, 
considering various system and silicon types, as well as profiles and models to document their 
characteristics. Introducing the time dimension and interrelationships, the dynamics of the 
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broader ecosystem are then considered, with aspects like lifecycles and deployment 
considerations being elucidated. Shifting to the meta level, the processes associated with 
resolving these issues and with standards creation are covered. Finally, the proposals are 
measured against a specific use case, with conclusions being drawn. 

As the domain specific languages and other mechanisms to permit flexibly programming the 
datapath itself are covered in other forums (for example p4.org and OpenSourceSDN.org's 
Protocol Independent Forwarding activity), this document focuses on the wider considerations 
associated with these mechanisms as well as the run-time interface to these datapaths, not the 
intricacies of the datapaths themselves. 

2.2  Motivation for a Next Generation of OpenFlow: Flexibility and 
Ecosystem Growth 

2.2.1  Software Defined Networking and Logically Centralized Control 
The principle of logically centralized control of the network underpins many variants of 
Software Defined Networking. This principle is generally accepted and is expected to remain 
valid for the foreseeable future. It may be augmented and refined, for example by introducing 
virtualization, partitioning, selective delegation, federation of responsibility, as well as hybrids of 
SDN and traditional networking. 

2.2.2  OpenFlow, the Controller – Switch Interface (Southbound Interface) 
OpenFlow has since its inception been the premier standardized interface1 between SDN 
controllers and switches or other datapaths. It features support for a number of commonly used 
dataplane protocols ranging from Layer 2 to Layer 4, with packet classification being performed 
using stateless match tables, and packet processing operations (called actions or instructions) 
ranging from header modification, metering, QoS, packet replication (e.g. to implement multicast 
or link aggregation) and packet encapsulation/decapsulation. Various statistics are defined per 
port, per table, and per table entry. Information can be retrieved on demand or via notifications. 

OpenFlow is however not merely an interface. It also defines the expected behavior of the switch 
(and how the behavior can be customized using the interface). OpenFlow, therefore, represents a 
model and an architecture blueprint. 

As these aspects have proven useful, it is desirable to retain them. The aim is specifically to 
support co-existence of the current OpenFlow and the next generation of OpenFlow, as well as 
migration from the current to the next generation. 

2.2.3  Supporting Additional Use Cases 
The aim is furthermore to broaden the applicability of SDN by supporting additional use cases. 
This could involve introducing support for new services and applications (e.g. stateful 
firewalling), new networking domains or new media (e.g. optical or microwave), and/or legacy 

 
1 This interface is often referred to as the southbound (from the perspective of the controller) interface. 
2 Multiple presentations at the first P4 workshop (June 2015) confirmed this. 



ONF SDN Evolution  Version 1.0 

Page 9 of 47  © Open Networking Foundation 

functionality that is not supported yet (e.g. OAM). These, in turn, can require making provision 
for additions or changes to dataplane protocols as well as supporting new or changed switch 
and/or controller behavior. The following sections explore various approaches that can facilitate 
these enhancements. 

2.2.3.1  Standardizing Dataplane Protocols and Behavior using Specification 
Modules 

The practice of enshrining the complete set of supported dataplane protocols in a monolithic 
specification document needlessly impedes the introduction of new dataplane protocols or 
protocol variants. A monolithic specification document similarly constrains the evolution of 
behavior specifications. 

The concept of a modular specification, with the core describing common concepts and 
infrastructure, and with required behavior and protocol details being specified in separately 
developed modules, alleviates these concerns as behaviors and protocols can be defined by 
multiple parties in parallel in a more streamlined manner. 

2.2.3.2  Flexibly Programming Datapath Behavior and Dataplane Protocols 
While a few new dataplane protocols are expected2 to be introduced per year, the behavior of the 
datapath may need to be modified more often. Changes in behavior may not be associated with 
supporting new dataplane protocols, for example influencing the statistics retained by datapaths 
or introducing additional network monitoring and network debugging facilities may be required. 
The overall behavior of the datapath may furthermore need to change, for example, while the 
OpenFlow specification had to be amended to introduce the notion of egress tables, such 
specification changes would no longer be required given the ability to describe arbitrary control 
flows and arbitrary juxtapositions of primitive elements. 

Emerging initiatives permit datapath behavior and dataplane protocols to be defined in a flexible 
and in some cases quite dynamic manner without these aspects necessarily being defined by a 
formal standard. Such initiatives include Protocol Oblivious Forwarding (POF), Programming 
Protocol-Independent Packet Processors (P4), OpenFlow-Protocol Independent (OF-PI) and 
Protocol Independent Forwarding (PIF). With these initiatives, the required datapath behavior 
and dataplane protocols are either described in a standardized domain specific language (e.g. P4 
or the PIF Intermediate Representation), or are encoded in messages conveyed over a 
southbound interface. 

Although terms like PIF and POF continue to be used for historic reasons, the understanding is 
that the new mechanisms permit flexibly defining (i.e. “programming”) the datapath, not merely 
introducing support for new dataplane protocols. 

2.2.3.3  Facilitating Interactions Between Software and Datapaths 
Some datapaths are implemented using software running on general purpose processors (located 
for example in datacenter servers or on service blades) or networking focused processors 
(located for example in line cards in a chassis or on intelligent network interface cards). Other 

 
2 Multiple presentations at the first P4 workshop (June 2015) confirmed this. 
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datapaths may be implemented on less expressive devices, for example, switches or gateways 
based on pipelines. In either case, the need for software to interact with the datapath arises. 

Such software may be hosted within the switch device or server platform, running on the control 
CPU of the switch / the host CPU of the server, or on the switch / NIC fastpath hardware itself. It 
may also be located near the switch or server, for example in the same chassis or rack. It may 
also be positioned further afield, for example on the SDN controller. This leads to the notions of 
the dataplane fastpath, a medium speed path, a slower speed path, etc., with the lower speed 
paths being located further away from the fastpath hardware, and being used for rarely occurring 
traffic (for example exception path traffic). 

Another perspective arises when considering the deployment of Virtual Network Functions or 
L4-L7 Services. Either of these may need to be furnished with traffic, leading to the notion of a 
service chain comprising multiple VNFs or instances of services. The VNFs or L4-L7 Services 
may be packaged in virtual appliances / virtual machine images, container images, or as regular 
applications. They may be hosted on the server / gateway / middlebox containing the fastpath 
hardware (e.g. switch or intelligent NIC), or be hosted elsewhere in the network, leading to the 
notion of steering traffic over the network to the VNF or L4-L7 Service (often by employing a 
tunnel). 

In all of these cases, the software implementing the specific function needs to be able to interact 
with the network overall and specifically with the fastpath in the networking device(s) feeding 
traffic to it. These interactions may be limited to the control plane, with software for example 
obtaining statistics or influencing the forwarding behavior by populating match-action tables (i.e. 
downloading so-called rules). Such interactions need to either be routed via the SDN controller 
or be coordinated with the SDN controller by employing notions like selective delegation and 
access permissions for the affected data structures in the fastpath. The interactions may also 
extend to the dataplane, with the software being able to forward, originate, terminate, drop, or 
modify traffic. 

The interactions may be restricted to certain phases associated with the datapath, for example 
some interactions may only be supported shortly after system (re-)initialization (e.g. datapath 
instantiation or the downloading of programs may need to occur at this time), while other 
interactions (e.g. querying of statistics) may be supported subsequently or at any time. This leads 
to the notions of configuration time vs. run time respectively. Further delineations are 
conceivable. 

The interfaces used by software to accomplish the aforegoing may be defined as protocols, in 
which case the invoking software needs to implement the interfaces directly or (more typically) 
by employing protocol stacks implemented in libraries. It is significantly more convenient for 
software authors however if the interfaces are available directly as standardized callable APIs 
with various language bindings. 

The overall motivation for considering all of these types of software interacting with the datapath, 
as well as the mechanisms to support such interaction, is to support new use cases while 
simplifying the development process and permitting the emergence of new ecosystem players for 
existing and new use cases. 
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2.2.4  Deployment and Lifecycle Considerations  
In addition to considering the technologies that enable packets to be matched and acted on (“day 
in the life of a packet”), and the technologies that enable a switch to be programmed, configured 
and operated (“day in the life of a switch / controller / program” etc.), there are important 
considerations related to deployment and the full lifecycle of these technologies. These need to 
be considered in order to ensure that the technologies make provision for all the scenarios that 
may arise. Lifecycle considerations include understanding the preparation of the technology (pre-
deployment), for example the construction of a datapath program and corresponding SDN 
controller and application software or at least data to enable the program to be used, the 
deployment of the technology (in greenfield or brownfield environments – also considering 
upgrading and migration), as well as the re-use of technology. These need to be considered for 
each technology element in isolation as well as for a certain permutation of technologies, for 
example, upgrading a program to a new version may require a concomitant upgrade to the 
hardware of a programmed switch. 

2.2.5  Facilitating Ecosystem Growth 
Facilitating ecosystem growth is a key motivating factor underlying the entire SDN Evolution 
effort as well as the PIF effort. This includes expanding the addressable market and applicability 
for existing technologies and ecosystem players as well as enabling new ecosystem players / new 
categories of players and new technologies to emerge.  

Understanding all the deployment and lifecycle related considerations enables the technologies 
and recommended processes to be optimized in order to promote ecosystem growth. The growth 
of the ecosystem also requires understanding and documenting all the actors and roles in the 
ecosystem as well as their interactions. This enables the interactions to be optimized and 
provision to be made for additional ecosystem players. 
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2.3  Terminology 

Term / Acronym Definition 

API Application Programming Interface 

ASIC Application-Specific Integrated Circuit 

ASSP Application-Specific Standard Product 

CPU Central Processing Unit 

DSL Domain-Specific Language 

FPGA Field-Programmable Gate Array 

HLL High-Level Language 

ID Identifier 

IP Internet Protocol 

IR Intermediate Representation 

ISPU In-Service Pipeline Upgrade 

LAN Local Area Network 

LOM LAN On Motherboard 

MAC Media Access Control 

NDM Negotiable Datapath Model 

NIC Network Interface Card 

OAM Operations, Administration, and Maintenance 

OF-PI OpenFlow-Protocol Independent 

ONF Open Networking Foundation 

OS Operating System 

OXM OpenFlow eXtensible Match 

OpenFlow, OF-Switch A controller to switch (“southbound”) interface being standardized 
by the ONF 
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Term / Acronym Definition 

P4 Programming Protocol-Independent Packet Processors, a domain 
specific language to enable datapaths to be programmed 

PIF Protocol Independent Forwarding 

POF Protocol Oblivious Forwarding 

QoS Quality of Service 

RPC Remote Procedure Call 

SBI SouthBound Interface 

SDN Software Defined Networking 

ToR Top of Rack 

TR Technical Report 

TTP Table Type Pattern 

UDP User Datagram Protocol 

VLAN Virtual LAN 

VXLAN Virtual eXtensible LAN 
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3  Flexible Datapaths: Configuration and Run Time 
This section describes the two main phases associated with programming datapaths: 

1. configuration time, involving the preparation, translation/compilation, downloading 
and starting of a datapath program; and 

2. run time, involving ongoing interaction with the program. 
 

Note that although these are described as distinct perspectives in the interest of separation of 
concerns, they may share technology, for example it is conceivable for the program to be 
downloaded using the same protocol (e.g. OF-Switch) that is used to interact at run time with the 
datapath program, and it is even conceivable to modify the entire program or parts of the 
program at run time.  

As unifying these perspectives is potentially problematic and controversial, further discussion 
of this aspect is required. 

3.1  Configuration Time: Programming the Datapath 

3.1.1  Datapath Programs 
Datapath programs, in essence, describe the expected behavior of the datapath. This is mostly 
done from the perspective of a “day in the life of a packet”, for example, the program covers the 
aspects depicted in Figure 2-1 below: 

1. parsing the packet (implying declaring the header fields per supported protocol as 
well as the parse tree) - orange in the diagram; 

2. matching the packet (implying some declaration of the supported tables or other 
matching data structures and the control flow between them) - green in the diagram; 

3. performing actions on the packet according to the result of matching (implying 
declaration of the actions) - green in the diagram; 

4. performing traffic management / QoS operations - purple in the diagram; and 
5. performing monitoring related operations, for example maintaining counters. 
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Figure 2-1: Switch Executing a Datapath Program 

Datapath programs can also define behavior unrelated to packets, for example, tasks that need to 
be executed periodically such as aggregation of statistics. 

In order to enable this to be achieved by the program, underlying infrastructure objects can also 
be declared and used. These include for example per-packet metadata and per-table / global state 
objects – light blue in Figure 2-1. 

Although the diagram depicts parsing and match/action table processing as distinct operations, 
parsing need not be a distinct operation performed at ingress. It can be combined with 
match/action table processing, and it can (and, for some protocols, must) be performed 
incrementally, e.g. just before the parsing results are required. 

In OpenFlow 1.x, the required behavior is in effect specified as a combination of the standard 
behavior expressed in the OpenFlow specification, and the information downloaded via the 
OpenFlow protocol. The specification, for example, defines the supported protocols / header 
fields. Actions and instructions expressed using the OpenFlow protocol conversely define the 
actions to be performed when table entries are matched, and the flow of control between tables. 

With datapath programs, the notion of pre-defining some behavior in the program is added. The 
sequence of actions to be performed when a table entry is matched could, for example, be 
predefined in the program as in effect a subroutine / macro, with matching operations invoking 
this subroutine / macro with appropriate parameters (e.g. packet header fields or packet 
metadata). Control flow between tables can be influenced by the matching process, but the 
permissible paths can also be explicitly defined in the program. 

Required standard behavior can continue to be documented in a specification (expressed using 
human comprehensible natural languages), but it can also be documented in standard libraries 
(using machine and human readable domain specific languages). 

The required behavior can in principle continue to be defined using the run-time interface (e.g. a 
successor of OpenFlow) as well. Permitting extensive flexibility w.r.t. run-time specification of 
behavior enables controllers to dynamically change behavior without introducing downtime by 
forcing programs to be recompiled. It may, however, increase the burden on implementers to 
achieve high performance. 
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The extent to which behavior needs to be dynamically defined by the run-time interface vs. to 
which it can be predefined in the datapath program needs to be discussed / determined. 

 

3.1.2  Compilation 

 

Figure 2-2: Language / Target Specific Compilation 

Figure 2-2 depicts the process of compilation using a few examples. The P4 to A compiler 
translates the P4 language to whatever object code is required to execute it on the platform from 
vendor A, whereas the XYZ to B compiler performs this task for the XYZ language and the 
platform from vendor B. 

In Figure 2-3 below, an Intermediate Representation is introduced to avoid an individual 
compiler being required for every high-level language – target platform combination. The 
various high-level language front-end compilers target the common Intermediate Representation, 
with target specific back-end compilers from the IR to the object code for the target being 
created. This is feasible if the IR is abstracted at the appropriate level to enable it to be targeted 
by multiple high-level languages, while remaining vendor independent. 
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Figure 2-3: Compilation to Intermediate Representation and Vendor Specific Representation 

3.1.3  Ecosystem 
For each of the new components (datapath program – high-level / low-level language, front-end / 
back-end compilers), we need to consider: 

l What is standardized or not, and where / how, e.g. the OpenSourceSDN PIF project 
evolves the Intermediate Representation via an open source project, leading to a 
specification. 

l Who supplies what and who consumes it, e.g. one option would be for the industry to 
adopt a common open/closed source HLL to IR compiler, with individual vendors 
supplying device / target specific back-end compilers. 

3.1.4  Existing Technologies 
The following existing projects, languages, and technologies are relevant to this effort. Which in 
each category ends up being adopted remains to be seen. Details w.r.t. each of them should be 
considered to determine the broader implications and other considerations associated with the 
concepts and their usage and evolution. 

l P4, a domain specific high-level language being standardized by the P4 Consortium 
(p4.org) 

l PacketC, a domain specific high-level language resembling C, originated by CloudShield, 
acquired by LookingGlass (www.apress.com/9781430241584) 
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l Protocol Independent Forwarding (PIF) open source project, standardizing an 
intermediate representation (OpenSourceSDN.org) 

l Protocol Oblivious Forwarding (POF) intermediate representation and 
configuration/runtime interface, defined by Huawei (poforwarding.org) 

l eBPF (extended Berkeley Packet Filter) Virtual Machine, present in the Linux kernel 
(www.kernel.org/doc/Documentation/networking/filter.txt and iovisor.org)  

l PX, a domain specific high-level language defined by Xilinx (www.xilinx.com/sdnet) 
l NetASM, an assembler / intermediate representation level language 

(www.cs.princeton.edu/~mshahbaz/sites/netasm) 

3.2  Run Time: Interacting with the Datapath (Southbound Interface) 
This section describes the considerations that arise during operation of a (logical) switch, i.e. 
after it has been instantiated and (where applicable) furnished with a suitable datapath program. 

3.2.1  Run-Time Interaction via Southbound Interface 
 

 

Figure 2-4: Run-time – Southbound Interface from Controller to Switch 

Figure 2-4 depicts the run-time interaction between an SDN controller (in this case an OpenFlow 
controller) and various types of switches. 

The switch on the left is a pre-programmed (non-protocol-independent) OpenFlow switch, with 
the controller interacting with it using the existing OpenFlow 1.x (OF-Switch 1.x) protocol. In 
this case, the program compilation aspect of configuration time does not apply, however, 
configuration time as a broader concept is still relevant. A logical switch needs to, for example, 

Datapath 
Program  
In HL lang 

Config 
time 

Compiler back end 

Datapath 
Program 

in IR 

Compiler front end 

OpenFlow OpenFlow++ 
OpenFlow 
Controller 

Run 
time 

Run 
time 



ONF SDN Evolution  Version 1.0 

Page 19 of 47  © Open Networking Foundation 

be instantiated on the hardware (i.e. a capable switch) prior to the logical switch being accessible 
using OpenFlow, and this is performed during configuration time. 

The switch on the right is furnished with a datapath program during the configuration and 
compilation process. Once the datapath program has been started, the run-time interface is used 
to interact with it. 

In either case, the run-time interface enables interaction between the controller and aspects like 
the following on the switch: 

• Table entries or other data structures consulted during the classification process. 
• Statistics and other elements reporting status or monitored information, for example, 

event queues. 
• Sending exception path packets to the controller, or enabling it to inject packets into the 

network, for example for network topology discovery. 
 
These interactions are similar at a high level in both cases. Where custom protocols are defined 
by the program, the details may differ, because the packet header fields cannot be predefined by 
a standard. The southbound protocol may need to be extended to accommodate this (hence 
referring to it as “OpenFlow++” in the diagram). One may, for example, need to dynamically 
allocate OpenFlow Extensible Match (OXM) IDs to each newly defined protocol header field.  

In cases where custom protocol fields are not created, and where the behavior of the switch 
(expressed in the datapath program) conforms to the OpenFlow specification, the southbound 
protocol would not need to be extended, as depicted in Figure 2-5 below. 

 

Figure 2-5: Datapath Program Implementing OpenFlow 1.x Switch 

It could, however, be nontrivial to express the full functionality of OpenFlow in such a datapath 
program. OpenFlow, for example, permits the control flow, i.e. the path taken from table to table, 
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as well as the specific actions to be taken when entries match to be defined at arbitrary times 
using flow modification messages. Datapath programming languages do not necessarily permit 
these to be changed during the run-time phase, as they may need to be pre-defined at 
configuration time. Similarly, the fields matched by each table may also need to be defined at 
configuration time. The implementation may therefore need to detect that a new control flow 
path, match table pattern, action list pattern etc. are being used, and dynamically regenerate and 
recompile the program to take this into account. The compilation time and the difficulty to restart 
the program with state being preserved may impose significant burdens on the implementers and 
users of such a system. 

It is therefore advisable to either restrict the flexibility supported by the switch using a Table 
Typing Pattern (TTP) which is locked in during configuration time and/or to amend the 
OpenFlow specification to require predefining the problematic aspects during configuration time. 
Although this would arguably offer less dynamic flexibility than the existing OpenFlow, note 
that this would for most practical scenarios not result in overall functionality regressing when 
considering the combination of configuration time and run time. One would merely need to pre-
declare the relevant aspects at configuration time, with references (bindings) to them being 
introduced at run-time. The additional constraints w.r.t. dynamic behavior may actually facilitate 
performance optimizations. 

Further investigation is required to ascertain whether this reduction in dynamic capability 
proves to be a problem in practice for actual use cases. 
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3.2.2  Southbound Interface Concerns 

3.2.2.1  Alignment between OF-Config and OF-Switch 

 
Figure 2-6: OF-Switch vs. OF-Config 

Several distinct protocols are currently employed between SDN controllers and SDN switches. 
Logical switches are for example instantiated using OF-Config or OVSDB, whereas table entries 
in the logical switches are populated using OF-Switch (a.k.a. OpenFlow). 

When considering the evolution of OpenFlow, the extent to which these protocols can and 
should be aligned needs to be considered. As a starting point for this discussion, Figure 2-6 
summarizes various attributes of the existing OF-Switch and OF-Config protocols, as well as the 
corresponding attributes of a hypothetical merged protocol, called OF-Switch Next Generation 
here. The next sections explore specific considerations in more detail. 

3.2.2.2  Automatic Interface Generation and Callable APIs 
The current OF-Switch specification defines the southbound interface as a protocol, with the 
protocol details being comprehensively defined from first principles, i.e. all details of the 
messages on the underlying stream transport (TCP or TLS) are specified. This imposes a burden 
on implementers of the specification, as each implementation needs to include in effect an 
OpenFlow protocol stack. 

Another approach would be to take advantage of existing distributed system infrastructure 
technologies. In this case, the controller and the switch would communicate via Remote 
Procedure Calls (RPCs), with the “remoting” of the calls being handled by the existing 
infrastructure, or they would at least use existing marshaling technologies to generate and parse 
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the messages that constitute the protocol. This approach would also enable various language 
bindings to be automatically generated by the infrastructure. 

Figure 2-7 explores an extension of this concept, whereby the callable run-time API is 
standardized, not the wire protocol itself. This enables the wire protocol to be evolved without 
affecting the remaining controller or switch software components. 

 

Figure 2-7: Callable Run-Time API vs. Run-Time Interface as Protocol 

The callable interface could be fairly generic (independent of the program being executed in the 
switch). In this case, specific API calls would need to be supplied to detect the data structures 
(e.g. match tables and protocol fields) exposed by the datapath program in the switch. This 
process is referred to as introspection. 

A unique callable interface could also be generated from the datapath program itself. While this 
would enable the interface to conveniently permit access to the program’s data structures, it 
would also necessitate recompiling the client (e.g. the controller) invoking the run-time interface 
whenever the program’s interface changes. This may be impractical in controllers that need to 
support many switch types, programs, and program versions. 

When datapath program specific generated run-time interfaces are appropriate vs. when generic 
run-time interfaces are appropriate needs to be discussed. This is related to whether or not 
controllers need to be datapath program agnostic. 

3.2.2.3  Alignment with Northbound Interface 
The interface northbound of the controller is necessarily different to the interface southbound 
from the controller. If this were not the case, the controller would only fulfill a partitioning and 
virtualization role, whereas it actually translates a higher level network-wide intent into a lower 
level set of instructions (e.g. table entries) targeted to a specific logical switch. 

It is nevertheless worth considering to which degree the underlying infrastructure for the 
northbound interface can be aligned with the southbound interface. Similar RPC and automated 
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marshaling technologies could, for example, be employed. Furthermore, there are data elements 
that are common between the interfaces, e.g. ports, speeds, links, node addresses, etc. 

Aligning the interfaces as far as possible would facilitate developing software that can be 
repositioned to execute either on the controller or on a switch. This is non-trivial, as it requires 
provision to be made for delegation of responsibility from the controller to the switch. 

Further study is required to explore the feasibility of alignment of the northbound and 
southbound interfaces, as well as the implications of repositionable software modules and the 
infrastructure required to support delegation. 

3.2.2.4  Evolution of the Southbound Interface 
The current OpenFlow southbound interface expresses desired behavior at the level of specific 
match/action table entries. It is theoretically possible to define the southbound interface to be a 
higher-level interface, where the responsibility of translating the high-level intent 
(communicated to the controller via a northbound interface) to details is partially delegated to the 
switch. This needs to be considered with due care, as burdening the switches with network-wide 
considerations may be a regression vs. the simplicity of logically centralized control. 
Furthermore relying on extensive data and complex algorithms being present in switches may 
reduce flexibility vs. locating this intelligence in the controller. 

Further consideration of the appropriate level of abstraction of the southbound interface is 
required. 

3.2.2.5  Ecosystem Considerations 
For each component or interface, we need to consider what is standardized vs. what is defined 
via open source code, and what remains vendor-specific. 

4  Target Platform Considerations 

4.1  Platform Types and Capabilities 
This section illustrates the wide variation in the capabilities offered by the various target 
platforms by considering the various datapath architecture types, silicon device types, and system 
types. The sections do not contain exhaustive lists, as the intent is to illustrate the spectrum that 
needs to be considered by presenting examples. 

4.1.1  Datapath Architecture and Degree of Programmability 
For devices that perform packet processing (e.g. packet parsing, header matching, and actions 
involving header modification), the following main datapath architectures and corresponding 
degrees of programmability can be identified. 

• Control flow centric stereotype: 

◦ Random packet access 
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◦ Run to completion 

◦ Generalized execution units and datapaths 

◦ High programmability through instructions 

• Data flow centric stereotype: 

◦ Linear packet access 

◦ Pipelined 

◦ Specialized function units and datapaths 

◦ Varied programmability through configurations 

• Hybrids of the above are also possible. 
Devices that do not perform packet processing (for example optical transport devices) do not fall 
into these categories. 

4.1.2  Silicon Device Types 
Typical examples of silicon types are listed in this section, in increasing order of 
programmability and decreasing order of performance. 

What some refer to as the “switching chip” can be a virtual concept. It describes the abstract 
forwarding model being employed. It may be implemented using a combination of physical 
devices (i.e. silicon device types). This section focuses on the actual silicon device types. 

4.1.2.1  Traditional ASIC/ASSP Switch 
The traditional switch has a set of built-in protocols as well as switching capabilities based on 
these protocols’ packet fields. There is some degree of configuration of switch instances, but this 
does not extend to adding or subtracting protocols or known packet fields. 

4.1.2.2  Protocol Independent Flexible ASIC/ASSP Switch 
A new generation of switch offers programmability that allows the addition or subtraction of 
protocols under runtime control. This includes programmable parsing of packets and updating of 
packets at various stages in a fixed packet processing datapath architecture. 

4.1.2.3  Programmable Logic (FPGA) 
The FPGA allows custom packet processing datapaths to be defined using programmable 
hardware. Furthermore, these datapaths may have runtime programmable features. Together, 
these capabilities allow programmability of the datapath architecture itself, and of datapath 
architecture instances. 

4.1.2.4  Networking Focused Processor (Network Processor, Flow Processor) 
The networking-focused processor, which may have a multicore processor architecture or a more 
specialized pipelined processor architecture, is programmed using a proprietary instruction set. It 
may be able to accommodate custom packet datapaths, and it is capable of supporting 
programmed protocol packet handling in the datapath. 
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4.1.2.5  General Purpose Processor (Software Switch) 
The general-purpose processor can emulate any switch datapath, with features programmed as 
desired. This allows protocols to be added and subtracted as software updates, or as software 
configuration updates. 

4.1.2.6  Finer Grained Classification / Supporting Devices  
In some cases, additional silicon devices need to be deployed to enable the silicon devices of 
each aforementioned type to perform their functions. In other cases, the aforementioned types are 
implemented using individual devices with the following subtypes. 

• Forwarding related silicon, performing packet parsing and forwarding, e.g. fabric devices. 

• Processing related silicon, enabling packet modification (header editing, encryption etc.). 

• Classification related silicon, performing lookups or matching. 

• Storage related silicon, storing table entries or packets. 
A further distinction can be drawn between silicon with predefined functionality / logic and 
programmable logic. 
In all cases, at least a small general purpose processor is present, to enable firmware to be 
downloaded / updated, or to implement the control plane and perform exception path processing. 

4.1.3  System Type 
One or more silicon devices (potentially belonging to several of the categories listed in the 
previous section) are assembled on one or more printed circuit boards to form systems. This 
section describes the frequently encountered types of systems. Each type can furthermore occur 
in various sizes and footprints, for example, small or large pizza box, modular chassis with few 
or many blades, fixed-configuration units that can be stacked, etc. Some of these may be more or 
less appropriate to be deployed at certain locations, e.g. smaller integrated devices are frequently 
preferred at the customer premises for cost / power consumption reasons, while larger and more 
flexibly configurable units are deployed in access and core networks / datacenters. 

4.1.3.1  Switch / Router 
A traditional switch / router is furnished with multiple dataplane networking ports (at least two - 
but typically 4 to 96 or more) and optionally out of band control / management networking ports 
as well. These may occur in various form factors, for example, pizza box Top of Rack (ToR) 
switch, modular chassis, stackable units, etc. The difference between a switch / router and an 
appliance / middlebox is that the general purpose processor and software is typically only used 
for the control plane in a switch / router, with forwarding being delegated to purpose-designed 
silicon, whereas in the appliance / middlebox case, substantial capabilities to inspect and process 
(not merely forward) traffic exists, either as specialized hardware or as general purpose / 
networking focused processors with sufficient capabilities to be used for the dataplane. 

4.1.3.2  Appliance / Middlebox 
A networking appliance, sometimes called a middlebox, is a device comprising networking 
hardware / software which interacts with the dataplane in more complex ways than by merely 
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forwarding the traffic. It often fulfills security functions or hosts L4-L7 services. It is often 
physically a standard server or a server augmented with network acceleration hardware or other 
alterations to improve support for networking (e.g. an integrated switch, front-facing ports, 
modular network interfaces supporting various media types or speeds, fail-to-wire hardware, 
etc.). The distinction is not absolute, as switch / routers can also enforce security policies (e.g. 
implement Access Control Lists). 

4.1.3.3  (Endpoint) Server with Network Interface Card (NIC) or LAN on 
Motherboard (LOM) 

This system type comprises the following sub-types: 

• Switch or virtual switch software running on the server CPU using basic (unaccelerated) 
network interface hardware. 

• Embedded (virtual) switch running entirely on the network interface card hardware, 
without the host server system needing to participate in switching traffic. 

• Accelerated (virtual) switch, with the host server performing switching of a subset of the 
traffic, but with some functionality delegated to intelligent network interface hardware 
(either all processing of another subset of the traffic, or some / all match processing, or 
some / all action processing). 

Here the term “virtual switch” is used to connote that software is implementing the switching, i.e. 
that physical switch hardware is not present. The simpler term “switch” can also be used, as 
some hardware always needs to be involved to host software, and as the use of acceleration 
hardware blurs the lines between “virtual” switches implemented purely in software and 
“physical” switches implemented with the assistance of some switching / networking specific 
hardware. 

4.1.4  Non-Packet-Switching Devices, e.g. Optical and Microwave Transport 
While OpenFlow tends to have a packet switch focus, it is applicable to other data network 
systems such as optical switching. Extensions to support Optical Transport networks were 
prepared by the Open Transport Working Group3. Some features were introduced in OpenFlow 
version 1.4 to enable control and status monitoring of optical devices4. These features, combined 
with the concept of logical ports and OpenFlow’s provisions for extensibility, have been proven 
to function in systems other than packet switches. The new concepts outlined in this Technical 
Recommendation should further enhance capabilities for such systems. 

 
3 Refer to http://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/Optical_Transport_Protocol_Extensions_V1.0.pdf  
4 Refer to https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.4.0.pdf  
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4.2  Profiles and Models 

4.2.1  Modeling Run-Time Capabilities in Detail 
Developing a Software Defined Network requires an understanding of the run-time capabilities 
of the switches to be used to build the network. This understanding can be derived from the 
capabilities of available switches or it can represent required capabilities to be provided by 
(programmed into) programmable switches. In either case, the switches must deliver the flow 
controls and other behaviors required by the services the network is designed to support. The 
run-time capabilities of a switch can be expressed as a datapath model (or control profile) that 
defines switch behaviors and the associated controls offered to the SDN Controller. 

One tool for defining SDN switch capabilities is an OpenFlow-based datapath model called a  
Table Type Pattern (TTP)5. The core of a TTP is a set of match-action table definitions. Each 
table definition specifies the type(s) of entries that can be put into the table. A table entry type is 
defined as a match type and an associated action to be taken if the entry is selected at run-time. 
Network flow processing is thus defined by the order in which tables may be visited and the 
entry types that may be selected for execution at each table. These models are formal and 
rigorous to enable them to be machine and human readable. 

4.2.2  Expressing Device Categories and Capability Categories Using Profiles 
A higher-level definition of capabilities would permit classification of devices into specific 
categories based on the device behavior and/or the market segment addressed by the device. 
Examples of categories would be traditional product / market segments like L2/L3 switch, 
firewall, and load balancer, or newly defined segments like high touch NFV platform vs. 
forwarding platform. Here the capabilities would be described at a higher level than the datapath 
model / TTP level - potentially using natural language descriptions that are not machine readable. 
The higher-level categorization could prove useful as an initial filter of products to be considered 
when procurement decisions are made. 

Conformance certification necessitates specifying requirements with sufficient formality and in 
sufficient detail to permit unambiguously determining whether or not candidate devices comply. 
A high-level description of requirements expressed in natural language is therefore by itself not 
sufficient to support conformance certification. Instead of inventing a new formalism to support 
rigorous definition of requirements, it is advisable to map each higher-level capability category 
to a number of individual detailed datapath models / TTPs that need to be supported. The 
datapath models may need to be extended using for example specific test vectors to further 
reduce ambiguity and promote automated conformance testing. 

Certain devices with programmable hardware can fulfill the requirements of multiple higher-
level categories, with the downloaded program determining the platform’s behavior. In this case, 
the downloaded program would need to be included in the conformance test suite (if it is 
expressed in a vendor-independent language) or supplied by the vendor (if it contains vendor / 
device specific details). 

 
5 Refer to https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf  
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4.2.3  Device Type and Application Area Profiles 
OpenFlow TTPs can be used in several contexts to define controllable datapath behavior. These 
include defining the controllable behaviors: 

• of a particular switch platform (box-level product or its underlying ASSP chip), 

• associated with a particular networking protocol/technology, or 

• required of a switch playing a particular role in a network design. 
Each of these can be useful in an appropriate context. 
The first type of TTP (a “Platform” or “Device” TTP) can be used to define a flexible 
(OpenFlow) interface to a family of products. This can provide a stable model for run-time 
control of these products. 

In the context of SDN Controller development, the last two are particularly useful. Controller 
developers can maximize software reuse by implementing libraries for specific networking 
technologies and implementing subsystems for particular network application areas. These 
models are (or should be) independent of any particular switch platform and thus define an open 
and portable interface for run-time control. 

Technology specific TTPs are most useful in the form of reusable TTP fragments (since few 
network applications employ only one network technology). A TTP for a particular network role 
is called an “Application Area” TTP. An Application Area TTP is expected to be useful across a 
range of related network applications that rely on a common set of capabilities. 

4.2.4  Table Type Patterns (TTPs) 
When establishing a control relationship between an SDN Controller and a Logical Switch, there 
must be a common understanding of the datapath controls that are provided by the switch and 
thus available to the controller. This understanding may substantially precede the establishment 
of the control relationship (e.g., the controller may have been designed assuming a datapath 
model and the switch selected to conform to that assumption). Alternatively, the understanding 
may be developed (or refined) at the time the control relationship is established via a negotiation 
process. Either party to the negotiation can be flexible (or not). The controller may be able to 
take advantage of a range of available behaviors that might be offered by the switch. The switch 
may be able to support a range of datapath models and adopt a model requested by the controller. 

Mechanisms have been defined for negotiating a TTP between an OpenFlow Configuration Point 
and OpenFlow Capable Switch (using ) as well as between an OpenFlow Controller and 
OpenFlow Logical Switch (using an ). These mechanisms provide some flexibility in the 
selection of the run-time control model in varied operational scenarios. 

4.2.4.1  Defining the Datapath Model 
While some flexibility in datapath model selection at run-time can be useful, defining the 
datapath model in advance allows implementations to be stabilized to enhance interoperability, 
ensure security and optimized to improve performance. Datapath models can define the run-time 
controls for: 
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• a switch platform (box-level product or its underlying ASSP chip), 

• a datapath program/configuration (e.g., a P4 program), or 

• an application area (network role). 
In the first two cases, a Device TTP is derived from the functions provided by the datapath in 
question. The model may hide some implementation details to define run-time controls in 
OpenFlow terms (i.e., match-action tables); however, some platform or implementation related 
aspects6 may remain in the resulting model. The goal is to define an OpenFlow control model for 
the specific platform or program that can be used across the range of applications it can support. 

In the last case, an Application Area TTP (AA TTP) is developed without regard to platform or 
implementation details. The goal is to define a model that is portable across platforms and 
captures the controls required by the application area. 
 

 

Figure 3-1: Application Area (Use Case) vs. Device TTPs 

Both Device TTPs and Application Area TTPs play a role in SDN development. Controller 
subsystems may be written against Application Area models to enable portability across switch 
platforms. OpenFlow switches may be delivered with built-in Device models that enable their 
use across a spectrum of applications supported by the switch. A mapping driver can bridge the 
gap between controller subsystems written to Application Area models and OpenFlow switches 
with built-in Device models. The various mapping layers that are required to achieve this are 
 
6 The capabilities exposed by the switch platform (box) are almost always a subset of the capabilities of the 
underlying ASIC/ASSP (chip), therefore the capabilities of the platform represent the intersection of the capabilities 
of the underlying silicon and what the switch platform vendor has elected to expose. 
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depicted in Figure 3-1 above. This figure shows a software architecture that uses code generated 
from an AA TTP to validate flow objective requests from controller applications. This ensures 
the flow objective requests conform to the AA TTP (otherwise the request will be rejected). For 
devices that do not directly support the AA TTP datapath model (e.g., devices whose datapath 
model is based on a Device TTP) additional mapping code is required to translate the AA TTP 
flow entry types into the correct Device TTP table entries. 

Generally, mapping between an Application Area model and a Device model that is capable of 
supporting the application area is straightforward. Since the required behaviors and controls are 
functionally aligned the mapping mainly involves adjusting syntax and structure. If the scopes of 
the two models differ, there may be a need to create default configuration for areas that cannot be 
mapped but require some configuration for the datapath to operate correctly. 

As tools are developed to write and manipulate TTPs it may be feasible to generate the required 
mapping code between a given AA TTP and a particular Device TTP that is capable of 
supporting the required application and relevant constraints of the particular application. In the 
meantime, a switch vendor or other motivated party can easily write mapping code to support an 
application without changing the Device TTP supported in the switch. 

To support programmable dataplanes, the OpenFlow TTP language should provide convenient 
mechanisms for associating a datapath model (run-time control) with a corresponding datapath 
program (configuration). For example, a mechanism should be provided for associating 
OpenFlow code points with match fields, pipeline fields, and actions defined in a datapath 
program. Since a datapath program is different from a run-time control model, the relationship 
between these two constructs must be well understood to enable automated code generation. This 
code generation could operate in either direction: generating run-time control model (Device 
TTP) from a datapath program, or generating a datapath program skeleton from a run-time 
control model (AA TTP). 

4.2.5  Conformance Testing and Certification Profiles 
Another class of profile can be defined to facilitate conformance testing and conformance 
certification. Products would be certified to conform to requirements associated with one or more 
of these profiles. 

These conformance testing and certification profiles map to the profiles and models mentioned in 
the previous sections in potentially a many to many fashion. High-level device capability profiles 
(e.g. product / market segment category profiles) may map to one or a few conformance testing 
profiles. Many individual application type profiles (application TTPs) could be required by a 
specific conformance testing and certification profile. Multiple conformance testing and 
certification profiles could invoke a specific device capability or application type profile. 

The mapping between these can be even more complex when either the conformance testing and 
certification profiles become modular, or the high-level device capability / application profiles 
become modular, as a certain combination of the one would then need to map to a set of 
combinations of the other. 

When highly flexible devices are considered, conformance testing becomes challenging, as one 
needs to certify that the device is able to run a defined class of program, versus it being equipped 
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with specific pre-defined functionality. A number of individual programs will need to be 
developed to explore the space of functionality that needs to be supported. This would roughly 
resemble a compiler test suite, but it will need to address aspects not typically addressed in suites 
covering individual functions, for example, program complexity and data structure capacity 
limits need to also be considered. As this is quite complex and as many other issues associated 
with programmable devices need to be addressed first, investigating the implications of this 
scenario is deferred at this stage. 

4.2.6  Profiles and Next Generation SDN 
TTPs and related profiles that this section describes were developed relative to OpenFlow 1.x 
constructs. Nevertheless, they foreshadow concepts that will be needed for the next generation of 
SDN. Pipeline description languages will have control profiles associated with them and a 
common understanding of the control mechanisms will be needed in the next-gen networks just 
as they are needed now. In addition, as individual SDN networks are transitioning from the 
current generation to the next generation, adoption of next-gen architecture will be simplified if 
it is possible to deploy a network architecture that supports both old-gen and next-gen elements 
simultaneously. This is especially true since one of the promises of SDN is scale; upgrades of 
very large networks will be much simpler (and lower risk) if they can be done piecemeal. 

A network architecture that supports old-gen and next-gen also allows next-gen efforts to focus 
on specific features or network elements that especially benefit from next-gen capabilities. If old-
gen SDN networks have to be replaced wholesale, then more products and features will need to 
be developed, and riskier upgrades will be required. 

In summary, it will behoove the next-gen SDN toolchain architects and implementers to consider 
migration and/or compatibility mechanisms as they develop the next-gen SDN ecosystem.  
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5  Lifecycles and Deployment 

5.1  Lifecycles 

5.1.1  Actors and their Interaction 
The following actors / roles (amongst others) are involved in the use of programmable packet 
forwarding: 

• Switch providers: supply of programmable capabilities; 

• Application providers: use of programmable capabilities; 

• Controller providers: configuration and control of programmed capabilities; 

• Compiler providers: tool flow for expressing and mapping programs; 

• Library providers: libraries of pre-programmed components; 

• Operators: deploying and managing programmed capabilities; 

• Researchers: experimentation with new programmable capabilities; 

• Test specifiers and test bodies: conformance testing of programming flows and 
programmed capabilities; 

• Standardization bodies: standard mechanisms for programming flows and control of 
programmed capabilities. 

Notable interactions between actors / roles include: 

• Switch providers and operators 

• Application providers and operators 

• Controller providers and operators 

• Application providers and switch providers 

• Controller providers and switch providers 
(In some contexts, it is helpful to make the distinction between the actor, i.e. the actual entity - 
organization or person - performing actions, and the role played by that actor, i.e. the entity’s 
behavior and responsibilities in the specific situation. This section does not need to draw these 
distinctions.) 
Some of the actors / roles that can be identified and the interactions between them are depicted in 
Figure 4-1 below. 
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Figure 4-1: Roles and Interactions 

5.1.2  Lifecycle Types and Constraints 
Next Generation Network Assumptions  
An implementation network consists of a number of forwarding devices, potentially in a variety 
of roles, e.g. Top-of-Rack switch, core switch, server-resident virtual switch, gateways, etc. For 
each distinct role, a high-level datapath program is written (e.g. in P4). (This is somewhat 
redundant: the different program suggests a different role, and vice versa.) The datapath program 
describes a pipeline with control points (flow tables are one example) that are manipulated via 
some control protocol, potentially a version of OpenFlow Switch Protocol. 

Architecturally, the control protocol is expected to be driven from one “logically centralized” 
SDN controller. In addition, there may also be applications northbound of SDN controller(s). 

The Pre-deployment Period 
For a production deployment, most or all of the activities below will happen pre-deployment. For 
lab environments, or demos, or proofs-of-concept, many of the steps may be skipped since 
agility will rank higher than stability and predictability. 

• Datapath program(s) written in high-level language (e.g. P4) 

◦ Probably generically compiled. Possibly compiled for specific target devices. 

◦ Simulation performed, code revised, etc. 

◦ Header Space Analysis performed. 
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◦ Signing / authentication of configuration files. 

• Specific program support is written for SDN Controller(s) 

◦ Abstraction code maps the controller APIs into southbound control messages 

▪ These may be new or previously existing APIs 

▪ Potentially, model driven abstraction layers may produce the API-to-SBI map 
code 

◦ Testing of driver/abstraction code with devices configured with datapath pipeline 

• Network applications will be (or were previously) developed on the APIs 

• Vendor Integrated Testing, debug 

• Conformance testing on various components may make sense (if tests have been defined) 

5.1.2.1  Production Programmable Datapath Greenfield Deployment 
This would be regarded the most straightforward mainstream use case. It is more complicated 
than experimental or demo or Proof-of-Concept scenarios, but simpler than upgrades or 
migration (from non-next-generation situation) deployments, which are operational (are running 
traffic), and also have variability in their “initial states”. The following activities will occur in 
this case. 

• Installation of equipment 

• Physical Configuration of equipment and power-up 

◦ Racking, cabling, power, cooling, etc. 

◦ Preliminary validation: Stuff runs, seems connected 

◦ Bare metal configuration etc. 

• Soft Configuration of equipment 

◦ Policy configuration, etc. 

◦ Self-configuration (topology discovery, etc.) 

◦ Validation of image compatibility with hardware and operating system versions 

• Preliminary testing 

◦ Pre-production execution of workloads 

• Go live! 

5.1.2.2  Upgrading a Next Generation Network to Use New Datapath Program(s) 
OpenFlow Next Generation has a concept of a “configuration phase” that precedes the 
“operation phase”. In the greenfield launch, we don’t think about whether the configuration 
phase will introduce downtime. In the upgrade case, when hardware pipelines must be 
reconfigured, we need to think about this question. There are two approaches, and a derivative 
approach that is something of a hybrid. 
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1) Long-term Traffic Diversion around upgrading device (simplest to implement) 
a) Through redundancy or another mechanism (such as moving workloads to 
other parts of the data center and shutting down all local VMs), traffic is steered 
away from the device being upgraded.  

b) Configure as in greenfield case 
i) Includes validation of image compatibility with hardware and OS 

versions 
c) Validate functionality  

d) Steer traffic back to the device 
2) “In-Service Pipeline Upgrade” (ISPU)7 means that the traffic running through the 
device is not noticeably interrupted. Changing a pipeline while traffic is running is not 
quite “science fiction” (similar notions exist today in some FPGA support), but is quite 
difficult and likely subject to certain constraints. 

a) Pipeline Configuration downloaded while traffic is active 

b) Validation of pipeline configuration signature with platform versions 
c) Likely halting or restricting of control table changes  

i) This would simplify pre-population of new tables 
ii) May also be needed for translation  

d) Pre-population of control tables directly from controller 
e) Translation of control table changes in prep for populating new tables 

i) Translation removes need for pre-population (which might be 
slow) 

ii) May need validation of translation (some translations may not be 
possible) 

f) Then toggle the pipeline to new configuration (non-disruptively) 
i) It should be noted that this is particularly tricky in the sense that 

any packet must fully transit in one configuration or the other. A 
non-disruptive toggle would need to be nearly instantaneous to not 
disrupt traffic. Interpacket gaps might be long enough, but 
interpacket gaps do not align across all ports. The point of 
mentioning this is to point out the likely need for supporting the 
other approaches. 

g) Control traffic is turned back on if it was paused 
3) A combination of the above that uses some of the mechanisms in #2 to minimize 
the traffic disruption. 

 
7    This resembles In-Service Software Upgrade, but we prefer avoiding that term as “network pipeline 
configuration” is not yet regarded as “software”). 
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a) Potentially pause control entry changes for pre-population / translation 
b) Before steering traffic around the device, download configuration and 

prepare new control entries 
c) Validate everything is compatible (new pipeline is compatible with 

hardware and software) 
d) Redirect traffic around this device 

e) Toggle to new pipeline configuration (and new control entries) 
f) Direct traffic through the device again 

Whatever mechanism is used for the upgrade, it must be recognized that any large network will 
have a large number of devices. Realistically, the devices will need to be upgraded mostly 
piecemeal (device-by-device, or rack-by-rack or possibly “pod-by-pod”) serially, as taking down 
a full data center is extremely disruptive and high risk. (If a device upgrade fails, your 
alternatives are less painful than if the datacenter upgrade fails.) 

Because of the piecemeal serial approach, during the upgrade cycle there will be both old and 
new configurations active in the network. Of course this means that the controller must be able to 
support both configurations in parallel, though perhaps for a (slightly?) constrained feature / 
traffic set. New features in the new configuration may not be available until after the full upgrade 
has completed. Potentially some features in the new configuration are implemented incompatibly 
with the old configuration, and those features may need to be temporarily disabled or avoided 
during the upgrade process.  

In short, each of the stages in the upgrade cycle, during which features may be disabled or 
constrained, represent a different “behavior mode” which will require separate validation and 
testing. Tools will be required to support this kind of validation / testing methodology for smooth 
production transitions. The larger SDN networks become, the more important it will be to pre-
validate and automate transition methodologies. 

5.1.2.3  Upgrading Network to Use New Physical Devices 
Physical upgrades will be similar to software upgrades in the sense that they will necessarily be 
piecemeal serial in some fashion, as in-service upgrade is not possible. Also, physical upgrades 
will no doubt require more time and potentially more testing as there will be more opportunities 
for cabling and other physical issues to arise than could occur with soft upgrades. The duration 
of the upgrade cycle will last longer and thus the ability to tolerate constrained features during 
the upgrade will be diminished. Predictable, physical upgrades will be more painful and thus 
more desirable to avoid. 

5.1.2.4  Upgrading Legacy Brownfield to Include Fully Programmable Datapaths 
In many discussions of OpenFlow Next Generation technologies, there is a tendency to ignore 
support for legacy (ASIC-based) devices and associated migration concerns. Doing so would 
mean that deployment would only work in greenfield situations, or in a model where OpenFlow 
Next Generation coexists with non-SDN-enabled devices (operating “over-the-top” for example). 
These scenarios are possible, but more likely the adopters of OpenFlow Next Generation were 
also adopters of SDN on ASIC-based devices. Indeed, operators that use such SDN will be more 
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prepared for SDN on OpenFlow Next Generation (familiar with controller-based network 
architectures) than other operators. 

At a minimum, upgrade scenarios might include replacing (in serial piecemeal fashion) all legacy 
SDN fixed-pipeline devices with new programmable pipeline devices. During that upgrade cycle, 
both legacy and flexible pipeline devices will be operational in parallel. 

Consequently, we recommend that OpenFlow Next Generation plan to include mechanisms that 
offer simultaneous support for OpenFlow Next Generation (programmable pipeline) devices as 
well as for legacy (fixed or largely fixed) pipelines.  

Mechanisms for supporting both OpenFlow Next Generation devices and current OpenFlow 
devices in parallel need to be discussed. 

 

5.1.3  Mechanisms to Facilitate Re-Use 

5.1.3.1  Libraries 
In this context, the term “libraries” refers to organized collections of constructs built from 
something lower level. Just as C libraries are themselves written in C, the OpenFlow Next 
Generation libraries should be somehow built using some OpenFlow Next Generation language. 

Here the library may contain the implementation itself, but it may actually only represent the 
interface to the functionality, not the implementation. The analogy in the case of C would be a 
header file (.h file) that enables code written in languages other than C (e.g. assembler or Pascal) 
to be invoked. Similarly, an interface written in the OpenFlow Next Generation language may 
represent the capabilities implemented in otherwise unspecified software or hardware 
components. 

Libraries offer the following benefits: 

• Avoid duplication: solve a problem once, in a common or standard way, then invoke that 
solution by reference; 

• Hide complexity; and 

• Provide well-defined interfaces. 
Layering is an important concept that can leverage libraries. Though many OpenFlow 
conversations seem to regard layering as a problem, if done correctly, layering provides leverage 
while also allowing mechanisms to operate at various layers. Layering can, for example, benefit 
the SDN developer as follows. If one were to create a new Layer 3 protocol, say IPv9 (an 
alternative to IPv4 or IPv6), it should be able to operate on top of Layer 2 protocols, for example, 
Ethernet. But there are many varieties of Ethernet, including untagged (no VLAN tag), tagged, 
dual tagged, etc. New Layer 3 protocols should not need to separately decode and implement all 
the Layer 2 functionality. 

Libraries also help address the “protocol dependence/independence” challenge. We want a 
protocol independent instruction set, but we want to be able to use that instruction to implement 
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protocol aware functions. Using layering libraries, we can use the protocol independent 
instruction set to insert a variable length Layer 3 header at the appropriate offset, whether the 
packet has one or two VLAN headers. 

Similarly, a protocol independent networking language should offer us mechanisms (potentially 
based on libraries) that allow us to refer to a Layer 3 header field when decrementing a time-to-
live field. Of course, the lower level primitives should be capable of implementing the decrement 
function (or the lower level primitives are inadequate). The high-level coder should not be 
required to recode that function each time. Also, there may be many different ways to code the 
“decrement field” function. Compilers for legacy “protocol aware” chips should be able to 
support a protocol-aware reference like “decrement ipv4ttl”, and not be forced to recognize all 
possible primitive sequences that are equivalent to it. If the networking language offers some 
mechanism for “decrement ipv4ttl”, then a compiler can recognize the “ipv4ttl” keyword and 
map the request to some equivalent function. Of course, the networking language should also 
allow other constructs like “decrement xyz” where “xyz” is some newly defined field. 

5.1.3.2  Abstractions for Extensibility and Inheritance 
Getting abstractions right can be difficult. One simplifying approach is to allow for derivative 
abstractions and subclassing schemes. Whether that makes sense in this context is not clear, but 
some mechanism for extensibility and inheritance is probably important.  

5.1.4  Conformance Testing 
OpenFlow has struggled with the challenges of conformance testing. The challenges are 
multidimensional. Part of the problem is that OpenFlow features are currently incorporated into a 
single all-encompassing OpenFlow. This is in contrast to Internet functionality that is described 
in RFCs without altering the RFCs that define, for example, IPv4. Occasionally a new RFC will 
replace an old one, but many other RFCs do not affect earlier RFCs. It is very desirable that a 
new networking language and intermediate representation be defined in a super extensible way 
such that new features can be added without changing the base language spec. (Indeed, it is 
desirable that OpenFlow 1.x might be recast/refactored to achieve this also.)  That is, new 
functionality can be defined in separate specs that leverage (potentially through the use of 
libraries) the base spec. 

Once the language and functionality specifications are correctly decoupled, then products that 
conform to the language specification will remain conformant even after some new feature is 
defined. (These language-conformant products may not necessarily conform to the new feature 
specification, however.)  

Presumably, one objective of OpenFlow had been to define a single specification to which all 
products would conform, in so doing creating a homogeneous product space. This objective 
might seem desirable, but it has turned out to be problematic. The OpenFlow specification has 
evolved, resulting in multiple versions. In practice, products have furthermore proven to not be 
homogeneous. Differences are even observed in software switches running on general purpose 
servers. 

Noting this diversity, how shall conformance testing work? Let’s imagine that at some point in 
the future we have a language like P4, and an intermediate representation IR, each with stable 
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specifications, and “generic” compilers to take P4 and generate IR. We also have libraries, 
potentially certified by related interest groups (perhaps blessed by the ONF, for example), and a 
variety of devices, with some device specific compilers. Some devices may be highly (but not 
infinitely) configurable, and others may mostly be fixed in configuration.  

The generic compiler should be fully compliant with the P4 language and IR. A complete 
language test is conceivable for a generic compiler. But there may be different ways to translate 
a given P4 program into IR, and testing should allow for that. How will that be done? 

Other products may be tested in concert. For example, a network device and the device-specific 
compiler would need to be tested together somehow. The device specific compilers may not be 
fully compliant with P4, but may be compliant in some constrained way, such as their ability to 
support known libraries, and also to generate appropriate error messages when unsupported 
structures are used. A library might include test cases (or “meta” test cases). The device and 
device-specific compiler should be testable in conformance to, for example, VXLAN or various 
IPv6 RFCs or 802.1q libraries. 

Further discussion is required to ponder the issues associated with conformance testing that 
relate to different compilers, intermediate representation (IR) models, and programmed 
switches. 
 

5.2  Deployment 

5.2.1  Configuration Possibilities for Datapath Elements 
Figure 4-2 below shows a typical packet forwarding path, annotated to show possibilities for 
configuration and/or programmability. 

It gives examples of different datapath configuration times, which may be possible depending on 
the underlying target technology: 

l … at installation; 
l … at initialization; 

l … during a pause in operation; and 
l … during operation, between packets. 

The technical focus of PIF is enabling more features to be configured during configuration and 
operation of equipment, rather than at the time of deployment of the equipment hardware. 

A more dynamic approach raises the issue of ordering dependencies related to safety and 
soundness of semantics. 
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Figure 4-2: Opportunities for Datapath Configuration and Programming 

5.2.2  Constraints 
The following constraints need to be considered. 

• Platform related technical constraints, including: 

◦ Technical constraints on datapath element configuration possibilities 

◦ Technical constraints on datapath configuration times 

• Network and operational constraints, including: 

◦ Operational constraints on datapath element configuration possibilities 

◦ Operational constraints on datapath configuration times 

• Business and adoption related constraints, including: 

◦ Business constraints on datapath element configuration possibilities 

◦ Business constraints on datapath configuration times 

Example: An operator may develop PIF-based network in a greenfield environment, or 
deployment may involve some legacy, such as an OpenFlow-controlled, ASIC-based device 
“brownfield” environment. 

The implications of these constraints need to be discussed and considered further. Addressing 
adoption constraints early will be helpful. 
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6  Standards Creation Process 

6.1  Standards vs. (Open Source) Software 
Expanding and improving the SDN ecosystem to include programmable dataplanes and more 
comprehensive support for SDN software development requires standards in key areas. These 
standards provide a common foundation and structure within which product development can 
proceed more effectively. In particular, products in different areas should be able to proceed 
relatively independently, allowing for concurrent innovation in many areas. For example, 
development of datapath models for optical transport networks and packet service networks can 
proceed in parallel. Development of new controller products and new dataplane products can 
proceed in parallel. 

The standards development process in ONF initially focused on the OpenFlow protocol. An open 
and flexible wire protocol standard was needed to enable the first SDN products and applications 
to be developed. Going forward the ONF is beginning to focus more on the development of an 
open source software ecosystem that provides tools for more rapid development of SDN 
products. This shift toward producing open source implementations before writing standards 
documents is intended to accelerate the path to products and deployment. It is also aimed at 
developing deeper experience with the challenges of SDN development and only then converting 
this experience into standards. 

6.2  Modular OpenFlow Specification 
One aspect of the evolution of ONF standards is the restructuring of the OpenFlow protocol 
specification to make it modular. The base specification should be datapath protocol agnostic. 
That is, it should not define or refer (except in examples) to specific datapath traffic formats or 
technology specific actions. Instead, it should retain only the features that define a run-time 
control protocol capable of carrying information related to a wide variety of datapath 
technologies. Additional specification modules can contain technology specific details. This 
structure will stabilize the base protocol specification and allow independent development of 
OpenFlow support for additional datapath technologies, carried out by groups with specific 
interests. 

6.3  Arriving at Standards for OpenFlow Next Generation and PIF 
A specific area of interest in the evolution of the SDN ecosystem is support for programmable 
dataplanes. One project already underway under the auspices of OpenSourceSDN.org is Protocol 
Independent Forwarding: an open source Intermediate Representation (IR) for datapath programs. 
This project is aimed at developing an intermediate representation for datapath configuration that 
can serve as a common representation between various high-level datapath programming 
languages and backend compilers that target specific programmable dataplanes. A standard 
datapath IR will enable independent development of front-end and back-end compilers for 
translating datapath programs into loadable images for a variety of dataplanes. 
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The work on PIF is being done as an open source project to prove the IR works before 
committing to writing a standard. This approach also provides real tools for SDN software 
developers to use, albeit somewhat experimental in nature for a while. 

The next generation of OpenFlow development may focus on an API (rather than just the wire 
protocol specification) and an open source implementation of an OpenFlow protocol driver. 
Moving the focus to a programming interface (API) will accelerate the development of SDN 
products using the OpenFlow run-time control model by providing a convenient API and 
associated software to handle the mundane details of marshaling the wire protocol. 

Similarly, the evolution the OpenFlow TTP language is expected to happen in the open source 
space. The next version of the TTP language will first be developed as a formal schema that can 
be used directly by authoring and validation tools. An English language specification will follow 
when the schema is deemed stable and useful. 

Finally, Application Area TTPs will be written for selected areas of interest and offered with the 
Flow Objectives API as a run-time control interface for controller subsystems to use. Switch 
vendors will be invited to implement mapping drivers for their OpenFlow switches that support 
these Application Area TTPs. Controller and switch vendors will be invited to validate and 
demonstrate interoperability at ONF AppFests. If an Application Area TTP gains sufficient 
interest and support the ONF will develop a conformance test suite for that application area 
based on the TTP and SDN test laboratories will be able to offer ONF certification for the 
application area. 

As these open source products mature and become stable they will be used as the basis for 
writing standards documents if these are needed. 

6.4  OF1.x to PIF Interworking and Transition 
The expectation is that OpenFlow 1.x will co-exist and need to interwork with flexibly 
programmed datapaths, i.e. PIF datapaths. It is understood that not all capabilities will be 
available on all datapaths (i.e. switches), for example until and unless OpenFlow 1.x is expanded 
to include support for protocol independence, the use of dynamically defined protocols will only 
be possible on PIF datapaths. 

It is expected that functionality available on traditional OpenFlow SDN switches and PIF SDN 
switches will need to be accessible from SDN controllers that are shared among these. This 
functionality may not necessarily be exposed via the same protocol or variant of the southbound 
interface (i.e. API or protocol between the controller and the switch), for example, 
communication with OpenFlow 1.x switches would probably use the OpenFlow protocol, while 
communication with PIF switches may be effected using a callable API with an off-the-shelf 
remote procedure call mechanism (e.g. Apache Thrift or Google Protocol Buffers) being 
employed to make it accessible over the network. 

TTPs currently enable the required and available subset of OpenFlow 1.x to be encoded. For 
flexible datapaths, an analog to a TTP could be developed, to enable the interface and overall 
model representing the PIF program (inherently, and once capacity data is included, as deployed 
on a switch) to be similarly encoded. Controllers and applications on them could then use these 
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TTPs as models to describe the available capabilities, irrespective of whether the capabilities are 
actually implemented using traditional OpenFlow 1.x capable datapaths or PIF capable flexible 
datapaths. This needs to be considered when driving the evolution of TTP related standards (and, 
in general, Negotiable Datapath Model standards). 

7  Conclusions  
This document is intended to provoke discussion and record the results of the ensuing debate. 
This version of the document represents a snapshot of work in progress. 
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10  Appendix: Use Cases 

10.1  Custom Tunnels 

10.1.1  Scenario 
A datacenter operator wants to define a custom tunnel format, e.g. Ethernet in a custom protocol 
in UDP in Ethernet, and program equipment to support this. 

10.1.2  Actors / Roles 
Developer (of software and of table entries to express custom tunnel), controller, switch, network 
nodes (sending/receiving traffic). 

10.1.3  Behavior / Lifecycle 
Developer produces “code / table entries” => compilation (if needed) => configuring switches 
=> downloading flow entries => enable dataplane traffic to start (across network). 

10.1.4  Gaps / Issues 
• OpenFlow 1.5 lacks support for custom header fields + nesting headers 
◦ PIF IR based system could support this (once implemented) 

• Need run-time protocol (southbound protocol) with support for field nesting and new 
header fields (OpenFlow 1.x derived vs. new) 
◦ Represent tunnel as logical port (opaque) vs. match / action structure (explicit) 
◦ Need library defining well-known header fields e.g. Ethernet, IP, UDP, with ability to 

include and nest them (include more than one instance of Ethernet) => could use 
templating to enable composing program 

• Switch and controller need to support PIF and e.g. required packet processing depth 
(TBD where to run front-end / back-end compiler) 

• Issue: deploy new / updated tunnel format 
◦ Easier if outer protocol is already supported (Ethernet-IP-UDP) - can then deploy 

customization at tunnel origination / termination point 
◦ Update all network elements before starting traffic 
◦ To upgrade tunnel format, either atomically upgrade network (version numbers in 

protocol detect errors), or let old and new tunnel formats coexist (introduce support 
for new version while retaining old version => encode which network node supports 
which version) 

10.1.5  PIF Impact 
• Reminder: we are assuming that the custom tunnel is layered on UDP / IPv4 
• Q: How is IPv4 / UDP support represented in a TTP? 
◦ By referencing a well-known library name, possibly also referencing field names 

defined by it? (This assumes a common, standardized library model.) 
◦ By referencing IETF RFCs? 
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◦ Both? One could, for example, invoke the RFC for the protocol overall, but also 
include references to UDP field names for layering. 

◦ => Standardized libraries should not be hard to write. Libraries can refer to RFCs. 
This avoids the need for different coordination mechanisms. However we need 
everyone including e.g. controllers to then understand at least the interfaces to such 
libraries. 

◦ Interim step: move protocol fields currently in a single monolithic OpenFlow 1.x 
specification to separate documents (i.e. create a modular specification). This can 
then be used by predefined protocol implementations (referring to a human readable 
description of protocol fields in the specification text). 

◦ Eventually one would have developed corresponding standard libraries for PIF (with 
machine readable description of protocol fields). 

• Q: How are custom tunnel fields represented in a TTP? 
◦ By referencing a well-known library name and/or fields in libraries? (Easier, but need 

agreement on naming.)  
▪ This is the preferred approach. 

◦ Use a canonical representation that contains the full path leading to a field as well as 
field widths etc.? (Harder – is this needed though?) 

• Q: How are custom tunnel actions (push/pop/set etc.) represented in a TTP? 
◦ By referencing a well-known library name and/or action “subroutine” names in 

libraries? (Easier, but need agreement on naming in interfaces.) 
◦ By invoking a canonical representation of the entire implementation? (Very difficult, 

without repeating implementation and being implementation dependent.) 
• Q: Representing tables referring to well defined and custom defined fields / actions 
◦ Similar to existing TTP, with new expressiveness (overall control flow including 

conditions) represented somehow (focusing on interface again)? 
◦ Derive from expressiveness in P4 language / PIF IR etc.? 

10.2  External Datapath Function 

10.2.1  Scenario 
A “black box” (or C program) with embedded state / unspecified behavior is linked into pipeline 
somehow (as a custom action or a virtual port etc.), and processes packets or events. 

Examples: OAM handler, embedded L4-L7 service like function, ICMP protocol handler. 

10.2.2  Actors / Roles 
Developer (of software and of table entries to feed traffic to software), controller, switch, 
network nodes (sending/receiving traffic). 

10.2.3  Behavior / Lifecycle 
Develop external function code => compile => distribute to switches => start (if separate 
process) or otherwise ensure ready for use. 
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Developer produces “code / table entries” feeding traffic to external function => compile => 
configure switches => install / start software => download flow entries => enable dataplane 
traffic to start (across network). 

10.2.4  Gaps / Issues 
• OpenFlow 1.5 lacks mechanism to send traffic to an external function running on switch 

(but can send to/from controller via packet in/out). 

◦ Various approaches have been proposed e.g. custom action (packet processor / task 
etc.), logical port representing software. 

◦ Interim: represent software as logical port tunnel (service chaining to software 
running locally) => low performance, no metadata yet, limited interaction with switch. 

◦ Interim: represent software as additional controller (use packet in / out) => terrible 
performance, some metadata, permits interaction with switch. 

• Supporting external functions (actions execution blocks etc.) is being discussed in PIF IR 
project. 

• For both - need standardized callable API to: 

◦ Hand traffic to / from software; 

◦ Enable software to interact with network (originate other traffic), flow / meter / group 
tables, QoS configuration etc.; 

◦ Permit software portability across operating systems (initially assume Linux or 
POSIX - covers most prevalent case). 

10.2.5  PIF Impact 
• Q: How can a TTP encode whether or not this is supported in principle? 

◦ Use well-known names - e.g. URL / DNS name based - to create a distributed 
“registry”? 

◦ The controller itself can be aware that invoking such a name will turn on certain 
behavior, or the controller can simply pass through the request to invoke it from a 
higher level app / OSS etc. 

• Q: How does the run-time protocol interact with it? 

◦ General RPC? 

◦ Specific messages to set/get parameters, entries in data structures e.g. tables? 

• Q: How does TTP encode run time protocol supported sub-features? 

◦ Well-known sub-names for behavior variations? 

◦ => Referring to entities (at interface level) is tractable, whereas machines comparing 
behaviors is not tractable. 



ONF SDN Evolution  Version 1.0 

Page 47 of 47  © Open Networking Foundation 

10.3  Network Data Analytics 

10.3.1  Scenario 
Having the capability of defining new forwarding protocols is an important feature of the next 
generation of open programmable data plane. Another equally important consideration is how 
the data plane can be programmed to enhance its visibility to control plane and management 
plane. Network data analytics has been proved an invaluable weapon for network monitoring and 
fault diagnosis, performance optimization, and security. But it must rely on the data plane to 
provide relevant and enough data in a timely fashion. This not only requires the dynamic 
reprogramming and reconfiguration capabilities to the next generation data plane, but also needs 
more programmable features that are not generally available in the current generation of data 
plane. 

10.3.2  Actors/Roles 
Network operator, controller, network nodes. 

10.3.3  Behavior/Lifecycle 
Operator (or application automatically) generates new data path configurations  => compile => 
re-configure network devices => application starts to consume data and events injected from 
network devices. 

10.3.4  Gaps/Issues 
First, data path partial reprogramming and reconfiguration should be able to be triggered by 
CLI/GUI or direct API called embedded in runtime applications. Due to the limited resource in 
data plane devices and the volatile application requirements, it is impossible to program the data 
path for just one time and satisfy all future data analytics requirements. Frequent changes may be 
needed and the changes may have strict time constraint.  

Second, the match-action table forwarding abstraction makes the flow filtering and aggregation 
relatively easy tasks, but to meet the data analytics and network optimization requirements, some 
other features are required as follows: 

• The data path needs to be able to be programmed to do some custom computing and 
algorithm implementations. 

• Data path needs to provide programmable timers and be able to generate time-based 
events. 

• Data path needs to be able to timestamp packets and events. The network wide 
synchronization mechanism needs to be defined. 

• Packet sampling and digest generation algorithms need to be defined. 

10.3.5  PIF Impact 
This use case strongly requires the near real-time and dynamic reconfiguration and 
reprogramming capability. It also involves important features that were neglected before. 


