
OpenFlow Switch Errata
Version 1.0.1
June 7, 2012

ONF TS-001

OpenFlow Switch Errata Version 1.0.1

© Open Networking Foundation

ONF Document Type: OpenFlow Spec
ONF Document Name: openflow-spec-v1.0.1

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, ONF disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation
of this specification, and ONF disclaims all liability for cost of procurement of substitute goods
or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect,
or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of
use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectual property rights is granted herein.

Except that a license is hereby granted by ONF to copy and reproduce this specification for
internal use only.

Contact the Open Networking Foundation at https://www.opennetworking.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY (“RANDZ”) LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS
OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

http://www.opennetworking.org

OpenFlow Switch Errata Version 1.0.1

Contents

1 Introduction 2

2 Common implementation mistakes 2
2.1 Default behaviour on table-miss . 2

3 Clarification of ambiguous sections 3
3.1 Port number 0 . 3
3.2 No padding of error messages . 4
3.3 Matching packet with no VLAN header . 4
3.4 Ignoring fields in the match . 5
3.5 Generating flow removed messages . 5

4 Specification changes 6
4.1 Source Port for Controller Generated Packet . 6
4.2 Malformed packets . 8
4.3 Controller connection failure behaviour . 8

1 Introduction

This document describes version 1.0.1 of the OpenFlow specification. This version of the specification is
released as a set of erratum for version 1.0.0 of the OpenFlow switch specification. Those errata amend,
correct or supplement the text of that version of specification.

The original 1.0.0 specification can be found at the following URL :

http://www.openflow.org/wp/documents/

This document includes various issues found during implementation and interoperability testing of the 1.0.0
specification. The resolution of those issues was carefully designed to minimise specification changes and
compatibility issues with existing implementations of 1.0.0. Those issues are grouped in three main sections
based on their impact on the specification.

2 Common implementation mistakes

This section contains common implementation mistakes which are not due to specification problems. This
informative description highlights specific section of the specification. However they are not errata because
no specification change or clarification is included.

2.1 Default behaviour on table-miss

The 1.0.0 specification only defines a single behaviour for packet that do not match any flow in the flow
table, which is sending it to the controller using a packet-in message. This is specified in various places.

OpenFlow˜1.0.0, Section 2:

If no match is found, the packet is forwarded to the controller over the secure channel.

OpenFlow˜1.0.0, Section 3.4:

If no matching entry can be found for a packet, the packet is sent to the controller over the
secure channel.

2 c©2012 The Open Networking Foundation

http://www.openflow.org/wp/documents/

OpenFlow Switch Errata Version 1.0.1

OpenFlow˜1.0.0, Section 4.1.2:

Packet-in: For all packets that do not have a matching flow entry, a packet-in event is sent
to the controller (or if a packet matches an entry with a ”send to controller” action).

Many controllers and controller applications depend on the proper implementation of that behaviour, for
example to discover topology and traffic.

Other behaviour for table-miss may be supported as a vendor extension of OpenFlow, such as drop-
ping the packet or forwarding it using the normal pipeline. However, by default the switch must implement
the OpenFlow compliant behaviour specified in 1.0.0, without the need of any workaround or special flow
entry.

Some switches use a segregation mechanism outside OpenFlow to decide if packets are processed by
a specific OpenFlow instance or not. This segregation mechanism must be independent of the content of
the flow table and the flow table must offer a consistent abstraction when matching packets. For any packet
that can be matched by the flow table, if it does not match any flow entry in the flow table, it must be sent
to the controller. In other words, the segregation mechanism cannot be used to bypass this requirement.

3 Clarification of ambiguous sections

This section contains errata to the specification clarifying parts that are under-specified, ambiguous or
inconsistent. While those errata don’t change the intent of the specification, they invalidate some legitimate
interpretations of the specification.

3.1 Port number 0

The 1.0.0 specification defines that switch port enumeration start at the value 1. This is specified in two
places.

OpenFlow˜1.0.0, Section 5.2.1:

/* Port numbering. Physical ports are numbered starting from 1. */

OpenFlow˜1.0.0, Table 3:

Ingress Port : Numerical representation of incoming port, starting at 1.

The Changelog for version 0.9 says:

Previous releases of OpenFlow had port numbers start at 0, release 0.9 changes them to start
at 1.

However, some other section mention that 0 is a valid port. This could be interpreted as meaning that port
number 0 can be used by the switch as a physical port.

OpenFlow˜1.0.0, Section 5.3.3, section 5.3.5:

Note that to disable output port filtering, out_port must be set to OFPP_NONE, since 0 is a
valid port id.

The intent of the specification is clear, switch port enumeration must start with port number 1.

However, we suggest that both switch and controller should avoid using port number 0 as a special

3 c©2012 The Open Networking Foundation

OpenFlow Switch Errata Version 1.0.1

indication (such as invalid), both internally and externally, to avoid compatibility issues with implementa-
tions that don’t implement properly this part of the specification.

The following text is added in the OpenFlow˜1.0.1 specification :

The switch physical ports are numbered starting from 1. Port number 0 is reserved by the
specification and must not be used for a switch physical port.

3.2 No padding of error messages

The 1.0.0 specification defines that, in the error message, the data field is of variable length, with no
minimum size. This means that it should not be padded.

OpenFlow˜1.0.0, Section 5.4.4:

The data is variable length and interpreted based on the type and code; in most cases this is
the message that caused the problem.

However, some language in that section is ambiguous, and could be read as requiring a minimum size of 64
bytes for that field.

OpenFlow˜1.0.0, Section 5.4.4:

The data field contains at least 64 bytes of the failed request.

The specification is ambiguous. This is fixed in subsequent version of the specification, version 1.1 of
the specification says that this field is not padded. There is no rationale for padding. Padding actually
decreases the efficiency of the protocol and may make it harder for the controller to figure out the message
that caused the error.

The intention for this field was to have no minimum size and no padding, and such padding could
have adverse consequences, therefore implementations of 1.0.0 must not pad the data portion of error
messages.

The following text is added in the OpenFlow˜1.0.1 specification :

The data field of the error message is variable length and interpreted based on the type and
code. Unless specified otherwise, the data field contains at least 64 bytes of the failed request
that caused the error message to be generated. If the failed request is shorter than 64 bytes it
should be the full request without any padding.

3.3 Matching packet with no VLAN header

The text of the specification does not explain how to match packets that don’t have a VLAN header. The
OpenFlow header file openflow.h, which is part of the specification, does define it.

openflow.h, line 364:

/* The VLAN id is 12 bits, so we can use the entire 16 bits to indicate
* special conditions. All ones is used to match that no VLAN id was
* set. */
#define OFP VLAN NONE 0xffff

4 c©2012 The Open Networking Foundation

OpenFlow Switch Errata Version 1.0.1

The content of the header file should be reflected properly in the text of the specification.

The following text is added in the OpenFlow˜1.0.1 specification :

Setting the OFPFW_DL_VLAN bit in the wildcards field specifies that a flow should match packets
regardless of whether they contain a VLAN tag. Setting the special value OFP_VLAN_NONE in the
dl_vlan field of the match specifies that a flow should match packets without a VLAN tag.

3.4 Ignoring fields in the match

The specification does not defines the rules by which fields of the match are used or ignored when doing
matching. It only defines which fields of the packets are used.

OpenFlow˜1.0.0, Section 3.4:

Header fields used for the table lookup depend on the packet type as described below. A
packet matches a flow table entry if the values in the header fields used for the lookup (as defined
above) match those defined in the flow table. If a flow table field has a value of ANY, it matches
all possible values in the header.

However, the fields used in the matching process not only depend on the packet headers, it also depend on
the match and in particular which match fields are wildcarded. In particular, when wildcarding a protocol,
all fields of that protocol must be ignored.

The following text is added in the OpenFlow˜1.0.1 specification :

Protocol-specific fields within ofp_match must be ignored when the corresponding protocol
is not specified in the match. The IP header and transport header fields must be ignored unless
the Ethertype is specified as either IPv4 or ARP. The tp_src and tp_dst fields must be ignored
unless the network protocol is set to TCP, UDP or ICMP. The dl_vlan_pcp field must be ignored
when the OFPFW_DL_VLAN wildcard bit is set or when the dl_vlan value is set to OFP_VLAN_NONE.
Fields that are ignored don’t need to be wildcarded and should be set to 0.

3.5 Generating flow removed messages

A first issue is that the 1.0.0 specification contains ambiguous text that could be interpreted as the
generation of a flow removed message when deleting a message being an optional operation.

OpenFlow˜1.0.0, Section 4.1.2:

The flow modify message also specifies whether the switch should send a flow removed message
to the controller when the flow expires. Flow modify messages which delete flows may also cause
flow removed messages.

The generation of such message is dictated by a flag associated with the flow entry.

OpenFlow˜1.0.0, Section 4.6:

For DELETE requests, if flow entries match, and must be deleted, then each normal entry with
the OFPFF_SEND_FLOW_REM flag set should generate a flow removed message. Deleted emergency
flow entries generate no flow removed messages.

5 c©2012 The Open Networking Foundation

OpenFlow Switch Errata Version 1.0.1

The intent of the specification is clear, the generation of flow removed messages when the flow is deleted is
mandated when the flag is set.

A related issue is that the 1.0.0 specification does not define if a flow removed message is generated
when a flow is removed due to the insertion of an identical flow.

OpenFlow˜1.0.0, Section 4.6:

For valid (non-overlapping) ADD requests, or those with no overlap checking, the switch must
insert the flow entry. If a flow entry with identical header fields and priority already resides in any
table, then that entry, including its counters, must be removed, and the new flow entry added.

The generation of flow removed messages is explicitly described when a flow expires (section 4.7) or when
the controller deletes flows (section 4.6). The specification also specifies that the removal of emergency flows
does not generates flow removed messages (section 4.6). Flow removed messages are not generated in all
cases of flow removal. The specification does not defines if they are generated when a flow is removed due
to the insertion of an identical flow, and it could be interpreted both ways.

Subsequent version of the specification explicitly state that no flow removed is generated when a
flow is removed due to the insertion of an identical flow. Most existing implementations will not generate a
flow removed message in that case.

The following text is added in the OpenFlow˜1.0.1 specification :

When a flow entry is removed, either by the controller deleting the flow or the flow expiry
mechanism, the switch must check the flow entry’s OFPFF_SEND_FLOW_REM flag. If this flag is
set, the switch must send a flow removed message to the controller.

No flow-removed message is generated for the flow entry eliminated as part of an add
request; if the controller wants a flow-removed message it should explicitly send a delete request
for the old flow entry prior to adding the new one.

4 Specification changes

This section contains errata to the specification changing the intent of the specification. The errata are
specifying behaviour and features which are not compliant with the OpenFlow switch specification version
1.0.0.

4.1 Source Port for Controller Generated Packet

When the controller sends a packet using a Packet-out message, the Packet-out message includes a field to
specify the input port that should be associated with the packet.

The first issue is that the 1.0.0 specification only defines the use of that field with the OFPP_TABLE

virtual port.

OpenFlow˜1.0.0, Section 5.3.6:

If OFPP_TABLE is specified as the output port of an action, the in_port in the packet_out

message is used in the flow table lookup.

6 c©2012 The Open Networking Foundation

OpenFlow Switch Errata Version 1.0.1

This cannot be correct, because this field must be used when processing the packet via the OFPP_IN_PORT,
OFPP_NORMAL, OFPP_FLOOD, and OFPP_ALL virtual ports, and also when sending packet to a physical output
port, because most of those actions prevent a packet being sent to its incoming interface.

The 1.0.0 specification says that this field may be set with the packet input port, or OFPP_NONE.

OpenFlow˜1.0.0, Section 5.3.6:

uint16 t in port; /* Packet’s input port (OFPP NONE if none). */

The specification does not define what are the valid packet’s input port, this may be interpreted to include
other virtual ports or not.

Some controller implementations of 1.0.0 do use OFPP_CONTROLLER as the input port for controller
generated packets, which conforms to some interpretation of the specification text, but is contrary to its
intent. Other controller implementation use OFPP_NONE.

Similarly, there is variation amongst switch implementations of 1.0.0. Some do not accept OFPP_CONTROLLER
and some do not accept OFPP_NONE as the packet input port. The controller must be prepared to generate
one or the other depending on the switch.

The usage of OFPP_NONE is potentially problematic for the input port for controller generated pack-
ets. OFPP_NONE is not a real port, it is a special value used to wildcard the egress port when requesting flow
statistics, and to request port statistics for all ports. For these reasons, some implementation may not allow
to set OFPP_NONE in the match, and therefore they do not offer a way to match those packets generated by
the controller.

Similarly, usage of OFPP_TABLE, OFPP_NORMAL, OFPP_FLOOD and OFPP_ALL as the packet input port is
potentially problematic, as those are not real ports.

The usage of OFPP_CONTROLLER is more logical, which is why many implementations started using it
even if it is contrary to the intent of the 1.0 specification.

Subsequent versions of the OpenFlow specification fixed many of those issues. This erratum changes
the specification behaviour to be closer to the behaviour of subsequent version. Those changes should help
more predictable implementations and easier forward compatibility to later versions of the spec.

When a packet at the controller can be associated with a physical port of the switch, for example if
the packet was received via a packet-in, we recommend that the controller sets the in_port field of
the packet-out message with that physical port. We also recommend that controller uses OFPP_NONE in
preference to OFPP_CONTROLLER to be compatible with the intent of the 1.0.0 specification. Controller
should be ready to use OFPP_NONE with switches compliant with 1.0.0 that don’t support OFPP_CONTROLLER.

The following changes are made in the OpenFlow˜1.0.1 specification :

The virtual ports OFPP_IN_PORT, OFPP_TABLE, OFPP_NORMAL, OFPP_FLOOD, and OFPP_ALL

cannot be used as an input port.

The in_port field in the packet-out message is the input port that must be associ-
ated with the packet for OpenFlow processing. It must be set to either a switch physical port,
OFPP_LOCAL, OFPP_CONTROLLER or OFPP_NONE.

7 c©2012 The Open Networking Foundation

OpenFlow Switch Errata Version 1.0.1

4.2 Malformed packets

The 1.0.0 specification does not define the behaviour of the OpenFlow switch for malformed or corrupted
packets.

The only reasonable option is to define that this is not part of the specification, as no reasonable
behaviour can be defined for all cases and hardware will behave differently.

The following text is added in the OpenFlow˜1.0.1 specification :

This version of the specification does not define the expected behavior when a switch receives
a malformed or corrupted packet.

4.3 Controller connection failure behaviour

The 1.0.0 specification defines the behaviour for the OpenFlow switch when the controller connection fails
or is terminated and cannot connect to a backup controller. In such a case, the switch is mandated to go in
emergency mode.

OpenFlow˜1.0.0, Section 4.3:

If some number of attempts to contact a controller (zero or more) fail, the switch must
enter ”emergency mode” and immediately reset the current TCP connection. In emergency
mode, the matching process is dictated by the emergency flow table entries (those marked with
the emergency bit when added to the switch). All normal entries are deleted when entering
emergency mode.

There are various issues with emergency mode, some related to implementation and some related to specifi-
cation.

1. Emergency mode is not widely implemented, the only known implementation is the 1.0 reference
implementation. Most implementations of OpenFlow do not support it. This seems to imply that most
people deploying OpenFlow don’t see this feature as valuable enough to demand its implementation.

2. People familiar with implementation claim that it adds significant complexity to the implementation.
It is effectively a parallel flow table that need to be managed, and the rules for emergency flow entries
are different than regular flow entries, emergency flow entries have no timeout, they don’t generate
flow removed messages...

3. The transition from emergency mode to normal mode is poorly specified. There are two ways to
interpret how emergency mode might work. Either packets are directed into an alternate table (the
emergency flow table), or the emergency flow entries are copied into the main flow tables. The specifi-
cation actually hints at both interpretations. Both interpretations would behave quite differently when
the switch reconnects to a controller.

4. Some other feature interactions related to emergency mode are not properly specified. For example,
the specification does not specify if overlap checking takes into account emergency flow entries or not.

For those reasons, emergency mode was removed from later versions of the OpenFlow specification.
OpenFlow˜1.1 and later specifies the controller disconnection behaviour as either ”fail-secure” or ”fail-
standalone”. Fail-secure was also the behaviour for early OpenFlow specification, including 0.8.9. Fail-secure
is very simple to implement and is supported by the vast majority of OpenFlow implementations.

The current OpenFlow˜1.0.0 specification mandates the implementation of emergency mode, and does not

8 c©2012 The Open Networking Foundation

allow any alternative in handling failure of controller connection. OpenFlow˜1.0.1 makes emergency mode
optional and allow fail-secure as an alternative.

The following changes are made in the OpenFlow˜1.0.1 specification :

If some number of attempts to contact a controller (zero or more) fail, the switch must enter
either ”emergency mode” or ”fail-secure mode”, depending upon the switch implementation and
configuration, and immediately reset the current TCP connection. Other failure modes may be
implemented as a vendor extension, however the default failure mode must be either ”emergency
mode” or ”fail-secure mode”.

In ”fail secure mode”, the only change to switch behavior is that packets and mes-
sages destined to the controllers are dropped. Flow entries should continue to expire according
to their timeouts in ”fail secure mode”.

9

	Introduction
	Common implementation mistakes
	Default behaviour on table-miss

	Clarification of ambiguous sections
	Port number 0
	No padding of error messages
	Matching packet with no VLAN header
	Ignoring fields in the match
	Generating flow removed messages

	Specification changes
	Source Port for Controller Generated Packet
	Malformed packets
	Controller connection failure behaviour

