OPEN NETWORKING
FOUNDATION

Optical Transport Protocol
Extensions

Versionl.0
March 15, 2015

ONF TS-022

Cf#’Open Flow

Optical Transport Protocol Extensions Version 1.0

ONF Document Type: Technical Specification
ONF Document Name: Optical Transport Protocol Extensions

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS1S” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, ONF disclaims al liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation
of this specification, and ONF disclaims all liability for cost of procurement of substitute goods
or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect,
or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of
use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectua property rightsis granted herein.

Except that alicense is hereby granted by ONF to copy and reproduce this specification for
internal use only.

Contact the Open Networking Foundation at https.//www.opennetworking.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION ("ONF") ISSUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY ("RANDZ") LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS

OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONFSMEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

Page 2 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

Table of Contents

A [oY oo (U Yox 110 o [T 4
S ToTo] o LI T o @ o1 =Y o3 1Y SRS 4
1.2 Common Terms and ADDIEVIAtIONScoiii it a e 4
2 Initial Extensions to OpenFIow-SwitCh ProtoColc..evvveiiiiiciiiiiic e e 4
2.1 Basis in Optical TransSport REQUIFEMENTSccoiiiuiiiiiie ettt e e e et e e e e e et ree e e e e e e e e anbeaeeeaeas 5
2.2 Match/Action for Support of OTN Optical and Electrical Connectionsccccccvvvvveeeeviicvenvnnnnnn. 5
2.3 Port Attributes for Support of OTN Optical and Electrical Connectionsccccvvvveeeviivvvvnnnnnn. 6
2.4 AQJACENCY DISCOVEIY....ciii ittt ettt e ettt e e e e e ettt ettt et e e e e e s a b be et e e e e e e e nbbbeeeseeaaeeaanbnneaeaens 6
2.5 FUIUIE WOTK ..o 8
3 OF-S Protocol Extensions for Optical TranSPOIt.......uuiiieiiiiiieii e e e e nnnare e 8
3.1 Flow Match Fields and ACLIONSccoiiiiiiiiiiie ittt st e e e sbeee e e e anes 8
3.2 Port Description EXtensions for OTN POISooiiiiiiiiiiiea et 10
3.3 Port extensions for AdJaCeNCY DISCOVEIYccciiiiuriuiieeeeiiiiiieiiieeeeeessssieareeeesssssnnesnaeeeeessesnnnens 16
4 Use of OpenFlow for Optical TranSPOIt ..o e e e e e e s s e ereeeeeenns 18
4.1 [Initial SeSSION EStabliSNMENTcoc.iiiiiiiie e 18
4.2 POrt Capability DISCOVEIYccii ittt ettt e e e ettt e e e e e s e anbbbe e e e e e e s aannbbaeeaneaaaeaanns 18
G T Ao [= Lo =T Ty YA I =Yoo 1V =Y o S OOUPPERR 18
4.4 Setup Of @ tranSPOrt CONNECTHIONciiiii ittt ettt e e e e e st e e e e e s e sanbbeeeaaeeeannrenes 19
A5 FIOW REIEVAL ..ottt e e e ettt e e e e e et e e bt ee e e e e e sannbbeeeaaeaeannn 19
G o (o TV L= =T (o o PSPPI 20
4.7 EChO REQUESI/REPIY ...ttt ettt ettt e e e e e e bbb et e e e e e e e s e nnbeneeaaeeaanns 21
T 0T (=R U o o] o (PSP PRERR 21
4.9 Barrier MESSAQE SUPPOM ...ciieiiiittieiieee e e ittt et et e e e e e st be et e e e e e s e abebeeaseeeaaasaaansbeeaeaeesaannbsseeaseeaaaaans 22
B REFERENCES ... oottt ettt e e e ettt e e et b e e e e et e e e e st bbe e e e anbe e e e e sbeeeeantaeeeenrrees 23
A. Appendix I: OF1.3-based Prototype Implementation for Optical Transportcccccoeccvveveeernnnns 24
1.1 Simplifying Assumptions on the Basic Interoperability OF1.3 proposalcccccccvveeeiiicvvveennnnn. 24
1.2 OPENFIOW HEAUET ...ttt ettt e e e e s ettt e e e e e e s nn b e b e beeeaaeeeannbeneeeaens 24
1.3 SeSSIoN eStabliSNMENTeiii e 24

List of Figures

Figure 1: OTN Layer Stack With OAM ENLItIES [A]...eeveeeeiiiiiiieiiee e s e e e s s e e e e e e e e ennnrnneeeees 7
Figure.2: OF1.3 Session EStabliSNMENT ... 25

List of Tables
Table 1: Trail Message and Trail Trace Identifier (TTI) by CONNECIONcoooiiiiiiiiiiiiiii e 7

Page 3 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

1 Introduction

1.1 Scope and Objectives

This document specifies a set of recommended extensions to the OpenFlow-Switch protocol to
support the requirements for control of optical transport networks and equipment. The
requirements have been identified in [1].

These extensions have been defined using the experimental extension mechanism supported in
OpenFlow-Switch to add messages and attributes to the base protocol specification. The
extensions are identified using the experimenter 1D assigned to the Optical Transport Working
Group. While these extensions are being specified in a standalone Technical Specification, they
may in future be merged into the main OpenFlow-Switch specification.

This document further specifies procedures for the use of OpenFlow-Switch base specification
features in the context of optical transport networks and equipment, including interpretation of
attributes that are described in the base specification using a packet switch framework.

This document does not consider OF-Config extensions at this time; however future versions
may also incorporate recommendations for extensions to OF-Config or other ONF protocols.

1.2 Common Terms and Abbreviations

NE Network Element FCS Frame Check Sequence
OAM Opgrations, Administration and och Optical Channel

Maintenance
OF OpenFlow OoDU Optical Data Unit
OH Overhead OoMS Optical Multiplex Section
OTWG | Optical Transport Working Group OPS Optical Physical Section
oul Organizationally Unique Identifier OoTS Optical Transmission Section
TCM Tandem Connection Monitoring OoTU Optical channel Transport Unit
TDM Time Division Multiplexing TTI Trail Trace Identifier

2 Initial Extensions to OpenFlow-Switch Protocol

This section presents initial extensions to OpenFlow-Switch protocol in support of Optical
Transport. Follow-up versions will address additional functions, such as control of
OAM/Monitoring, Protection and Multilayer Adaptation.

Page 4 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

2.1 Basis in Optical Transport Requirements

Note: Version 1.0 of this document addresses extensions to OF-Switch protocol, but not OF-
Config. While some functions addressed by the extensions involve OAM, no conclusion is made
asto whether similar functionality may be supported in OF-Config as well.

The recommendations defined in this document are based on requirements for OpenFlow/SDN
control of optical transport networks identified in [1]. Some of the key requirements that are
addressed are:

- Ability of the controller to support discovery and reporting of adjacent NEs through the
OF-Switch protocol. LO and L1 network elements switching on wavelengths or timeslots
do not insert or remove packets from the data and so do not support the
Packet_In/Packet_Out functionality by which discovery and reporting of adjacent
network elementsis possible in a packet network. (See[1] Section 4.3, R-4.3.1).

- Ability to support LO and L1 circuit technologies, as well as packet technologies,
including specification of appropriate match elements and port attributes for LO and L1
optical transport networks. Detailed attributes for LO and L1 technologies are captured in
the Information Model [IM]. (See[1] Section4.1, R-4.1.1, R-4.1.2 and R-4.1.4).

- Support of carrier reliability mechanisms for the dataplane such as monitoring and
protection mechanisms that can ensure that services meet service level agreements
negotiated between a carrier and its customers for transport networks. (See [1] Section
4.4, R-4.4.1).

- Support of network elements handling multiple technology layers according to transport
network layering models, for consistency with carrier network operations. Layer
relationships are captured in the Information Model [2]. (See[1] Section 4.1, R-4.1.3).

The recommended extensions in this document build on the work done in OpenFlow 1.4,
especially the extensions to alow definition of new port types and port attributes. However, the
extensions go beyond the optical port type defined in OpenFlow 1.4. The scope of the
extensionsis intended to be larger to cover many kinds of interfaces, including

- optical/L0O, TDM/L1, packet transport, OF 1.4 specifies an OPTICAL port type to model
optical characteristics

- line, section, path and client interfaces

- support of multiple layers of switching and signal adaptation with the ability to identify
supported clients and avail able adaptations

2.2 Match/Action for Support of OTN Optical and Electrical Connections

2.2.1 Description

Today’s networks support two different traffic modes: Packet and Circuit. Packet switching
identifiesasignal by fields in the packet header. Circuit switching identifiesasignal by its
position in time or space, often with the aid of defined header information in the case of digital
electrical signals such as OTN ODU.

While existing OpenFlow supports Packet switching technologies, it does not have support for
circuit switching. Extensions are necessary to identify a circuit-switched signal and execute
appropriate actions.

Page 5 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

The proposal for match and action extensions provides the following:

- match extensions that identify a signal using the attributes of an OCh
(i.e. Grid, Channel Spacing, center frequency, channel mask) for Layer O
- match extensions that identify asignal using the attributes of an ODUj/k
(i.e. ODU type, ODU Tributary Slot, ODU Tributary Port Number) for Layer 1

Action extensions are not proposed; instead the existing SET_FIELD mechanism is used to
determine the attributes of the egress signal.

These extensions have been identified under JIRA ticket EXT-445 and 446 in the Extensibility
Working Group and corresponding protocol extensions are defined in this document.

2.3 Port Attributes for Support of OTN Optical and Electrical Connections

2.3.1 Description

As discussed above, existing OpenFlow supports Packet switching technologies, but it does not
have support for circuit switching. Extensions are necessary to identify port types suited for LO
and L1 circuit switching control using OTN standard interfaces.

The proposed port attribute extensions for Layer 0 and Layer 1 consist of the following:

- Port capability extensions to identify the capabilities of OTS and OPS ports. This
includes understanding the signals supported and granularity of switching available, as
well as basic compatibility information for Layer O signals based on ITU-T application
code standards.

- Port capability extensions to identify the capabilities of OTU ports. Thisincludes
understanding the type of signal supported by the port as well asthe client signals
supported by the port.

These extensions have been identified under JIRA ticket EXT-445 and 446 in the Extensibility
Working Group and corresponding protocol extensions are defined in this document.

2.4 Adjacency Discovery

2.4.1 Description

For optical transport networks, it is not possible for the controller to ask for a discovery packet to
be added into the datapath alongside other flows. It is aso not possible to have discovery packets
passed up from the switch isolated for other flows. Instead, the switch will often support a
separate associated channel with shared routing and shared fate for exchanging local and remote
identification (“adjacency discovery) across the optical transport interface.

One of the possible mechanisms for adjacency discovery for OTN transport networksisthein-
band exchange of identifier information defined in ITU-T Recommendation G.7714.1 [3]. For
adjacency discovery, the identifier (known as a “trail trace identifier” or TTI) that is sent out of
the interface should be configurable by a controller. The TTI received across the interface
should also be retrievable by the controller. Once known by the controller, the TTI can be used
to develop or confirm network topol ogy.

Page 6 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

Asdescribed in G.798.1 [4], Figure 1 below depicts an example of an OTN layer stack with
OAM entities. Table 1 that follows describes the abilities of each layer to support TTI overhead
aswell asthe associated discovery, as not all layers provide this functionality. For example, there
isongoing work within the ITU to add discovery capabilitiesto OCh links.

Optical service layer (LO ODU)
HO HO
DU, DU,
oTuU oTu oTuU OTU
£\ OCh OCh OCh ‘OCh layer OCh /
OMS OMS OMS OMS OMS OMS
OoTS oTS OTS oTS OTS OTS oTS OTS
OTN access Sub-Wavelength . . Sub-Wavelength Wavelength OTN access
node/NTU crossconnect/ ADM Optical amplifier crossconnect/ ADM crossconnect/ ADM node/NTU

G.798.1(13)_F6-3

Figure 1: OTN Layer Stack with OAM Entities [4]

Table 1: Trail Message and Trail Trace Identifier (TTI) by Connection

ODUk Yes Format Defined
OTUk Yes Format Defined
OCh Pending (Q11/15) Format Defined
OMSn Yes (Vendor Specific) Format Defined

Page 7 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

OTSn Yes Format Defined

OPSnh (Single lambda) No OH defined, use client N.A.

The extension proposed for adjacency discovery allows the switch to provide the controller with
the discovery information it has received from the remote link end. It also provides the optional
ability for the controller to specify the discovery information it sends to the remote end, as well
astheinformation it should expect to receive and the actions to be taken if it receives
inconsistent information. This can be used to increase the efficiency of the process.

The protocol extension for adjacency discovery has been defined to be applicable to multiple
technol ogies and discovery mechanisms. These extensions have been identified under JIRA
ticket EXT-449 in the Extensibility Working Group and corresponding protocol extensions are
defined in this document.

2.5 Future Work

A number of potential future areas of extension or clarification have been identified and are
under discussion:

- Extensionsto support OAM/Monitoring of optical network links (EXT-450) —
OAM/monitoring is akey function in carrier transport networks in order to verify
network health and performance.

- Extensionsto support Connection Protection (EXT-448) — transport networks typically
support rapid protection switching functions that guarantee recovery from link failure
within a set timein order to meet carrier Service Level Agreements.

- Extensionsto support Multilayer Connections (EXT-447) — transport network
connections commonly involve adaptation of the client signal into one or more network
sublayers to support aggregation of traffic and efficient packing of optical links.

- CVNI support: OpenFlow can be used in a CVNI (Control Virtual Network Interface)
context, where it is exchanged between a parent controller and child controller rather than
controller to network infrastructure layer. For the CV NI case, issues have been raised
concerning the use of the OpenFlow control channel when controlling multiple logical
switches subtending a single child controller (EXT-492) and the use of OpenFlow to
convey abstracted network topology from the child controller to the parent controller.

3 OF-S Protocol Extensions for Optical Transport

3.1 Flow Match Fields and Actions
This section specifies extensions to flow match fields and actions for optical transport.

Experimental flow match extensions are identified by setting oxm_class to
OFPMC_EXPERIMENTER, the inclusion of experimenter ID inthe OXM TLV and allocation
of specific code points for the oxm_field. The experimenter ID used for optical transport has

Page 8 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

been reserved for Optical Transport Extensions and falls within the ONF-Managed range of 1Ds.
The experimenter 1D and code points are defined as follows:

#defi ne OFP_OTWG_EXPERI MENTER_I D OxFFO00007

enum of p_experinmenters_field {
OFPXMI_EXP_ODU_SI GTYPE
OFPXMI_EXP_ODU_SI G D
OFPXMI_EXP_OCH_SI GTYPE
OFPXMI_EXP_OCH_SI G D

[T T
arwnN

}s

For each match field extension, a payload format also needs to be defined. For
OFPXMT_EXP_ODU_SIGTYPE , the following payload format will be used:

struct of p_oxm exp_ODU si gtype {
uint 32_t oxm header; /* oxm._class = OFPXMC_EXPERI MENTER */
uint32_t experinmenter; /* Experimenter |D which takes the sane
* formas in struct ofp_experinenter_header. */
uint8_t sigtype; /* ODU Signal Type */
Iy
OFP_ASSERT(si zeof (struct of p_oxm exp_ODU _si gtype) == 9);

For sigtype, one of the values from ofp_odu_signal_type or enumerations defined in the port
description section is used.

For OFPXMT_EXP_OCH_SIGTY PE, the following payload format will be used:
struct of p_oxm exp_OCH sigtype {

uint 32_t oxm header; /* oxm. class = OFPXMC_EXPERI MENTER */
uint32_t experinmenter; /* Experimenter |D which takes the sane

formas in struct ofp_experinmenter_header. */
uint8_t sigtype; /* OCH Signal Type */

1
OFP_ASSERT(si zeof (struct of p_oxm exp_OCH si gtype) == 9);

For sigtype, one of the values from of p_och_signa _type enumerations defined in the port
description section is used.

/* OFPXMI_EXP_ODU_SI d D Payl oad format */
struct of p_oxmexp_ODU sigid {

uint32_t oxm header; [* oxm_cl ass = OFPXMC_EXPERI MENTER */
uint32_t experinenter; /* Experimenter |ID which takes the sane

* formas in struct ofp_experinenter_header. */
uint16_t tpn; /* Tributary Port Nunber */
uintl6_t tslen; /* Nunmber of Tributary Slots included in tsnap,

* based on the Server ODU type and TS Granularity. */
uint8_t tsnmap[0]; [* Tributary slot bitmap */

1
OFP_ASSERT(si zeof (struct of p_oxm exp_ODU sigid) == 12);

/* OFPXMI_EXP_OCH SI d D Payl oad format */
struct of p_oxmexp_OCH sigid {

uint 32_t oxm header; /* oxm_class = OFPXMC_EXPERI MENTER */
uint32_t experinmenter; /* Experimenter |ID which takes the sane
* formas in struct ofp_experinenter_header. */
uint8_t grid_type; [* &id Type */
uint8_t chl _spacing; /* Channel spacing */
uint16_t n; /* nis used to calculate the frequency as in

Page 9 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

[1TU G 694. 1]

Frequency(THz) = 193.1 THz + n*chl _spacing (THz)*/
mis used to identify the slot width as defined in
[1TU G 694.1],

Slot Wdth (GHz) = nrl12.5 (GHz)

For fix grid networks, mel */

uintlé_t m /

* 0% kX X X

1
OFP_ASSERT(si zeof (struct of p_oxm exp_OCH sigid) == 14);

enum of p_grid_type {
OFPCGRI DT_RES
OFPGRI DT_DWDM
OFPGRI DT_CWDM
OFPGRI DT_FLEX

whk o

/* Note: Flex grid pending further discussion */

}

enum of p_chl _spaci ng {
OFPCS_RES
OFPCS_100GHz
OFPCS_50GHz
OFPCS_25GHz
OFPCS_12P5GHZ
OFPCS_6P25GHZ

/[* 12.5 GHZ */
/* 6.25 GHZ */

LI I 1 O A
TARWNEO

Note: Further details on the use of tsmap can be found in [11], Section 6.1.

Specific action extensions are not necessary as the Match fields defined use OXM TLVs. The
OpenFlow SET_FIELD action enables use of the OXM TLV format to specify the overwrite data
to be applied.

3.2 Port Description Extensions for OTN Ports

Port attribute extensions for optical transport are defined here for both OF 1.3 implementation
using the experimenter extension mechanism and experimenter messages, and for OF 1.4
implementation using the port attribute extensibility defined in OF 1.4.

3.2.1 Port Description Extensions Using Experimenter Messages

The extensions specified in this section allow the use of OF1.3 as the base protocol, taking into
account that OF1.3 does not support port attribute extensibility. The format of extensions
defined in this section is designed to be consistent with extensions for OF1.4 and later, taking
into account the need to use experimenter messages.

The OF1.3 does not support a mechanism to implement the OTWG extensions for port
description directly. Instead, experimenter multipart message is used to provide the information
in the OTWG extended port description object.

The OTWG Optical Transport port extensions to Openflow protocol version 1.3 will use an
experimenter ID assigned to OTWG and code points as defined as follows:

#defi ne OFP_OTWG_EXPERI MENTER_I D OxFFO00007

Page 10 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

/* Port description property types.*/
enum of p_experimenter_rultipart-type_exp {

OFPEMPTE = 1, /* Extended port description. */
b

The OTWG extended port description object should be supported in addition to (not in
replacement of) the standard OF1.3 port description object.

The controller will request an OFPT_MULTIPART_REQUEST for an experimenter multipart
message. The body of the message will contain:

struct of p_multipart_request {
struct of p_header header;

uint16_t type; [* OFPMP_EXPERI MENTER = Oxffff */

uint16_t fl ags; /* OFPMPF_REQ * flags. */

uint8_t pad[4];

uint8_t body[0]; /* Body of the request. 0 or nore bytes. */
d:P_ASSERT(si zeof (struct ofp_nultipart_request) == 16);

/* Body for ofp_multipart_request of type OFPMP_EXPERI MENTER */
struct of p_experinmenter_nmnultipart_header {

uint32_t experimenter; /* Experimenter |D which takes the same form
as in struct ofp_experinenter_header. */
uint32_t exp_type; /* OFPEMPTE = 1 */

/* Experimenter-defined arbitrary additional data. */
1
OFP_ASSERT(si zeof (struct of p_experinenter_nultipart_header) == 8);

No additional datais provided in the body for the request message.

The multipart reply will use the extensions for optical transport encoded in the experimenter
multipart reply message.

struct ofp_multipart_reply {
struct of p_header header;
uint16_t type; /* OFPMP_EXPERI MENTER = Oxffff*/
uint16_t fl ags; /* OFPMPF_REPLY_* flags. */
uint8_t pad[4];
uint8_t body[0]; /* Body of the reply. 0 or nore bytes. */

1
OFP_ASSERT(si zeof (struct ofp_multipart_reply) == 16);

/* Body for ofp_nultipart_reply of type OFPMP_EXPERI MENTER. */
struct of p_experimenter_multipart_header {

uint32_t experinenter; /* Experinmenter |ID which takes the same form
as in struct ofp_experinenter_header. */
uint32_t exp_type; /* OFPEMPTE = 1 */

/* Experimenter-defined arbitrary additional data. */

d:P_ASSERT(si zeof (struct of p_experinmenter_rmultipart_header) == 8);

Page 11 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

The data contained in the additional datafield isthe normal OF1.4 ofp_port with OTWG OF1.5
OTN extensions:

/* Description of a port */
struct of p_experinenter_port {

uint32_t experimenter; /* Experimenter |D which takes the same form
as in struct ofp_experinenter_header. */
uint32_t exp_type; /* OFPEMPTE = 1 */

uint32_t port_no;

uint16_t | ength;

uint8_t pad[2];

uint8_t hw addr[OFP_ETH _ALEN] ;

uint8_t pad2[2]; /* Align to 64 bits. */
char name[OFP_MAX_PORT_NAME_LEN] ; /* Null-term nated */
uint32_t config; /* Bitmap of OFPPC * flags. */
uint32_t state; /* Bitmap of OFPPS * flags. */

/* Port description property list - O or nore properties */
struct of p_port_desc_prop_header properties[O0];

s

OFP_ASSERT(si zeof (struct of p_port) == 48);

struct of p_port_desc_prop_header {
uint16_t type; [* OFPPDPT_OPTI CAL_TRANSPORT = 2 */
uint16_t | ength; /* Length in bytes of this property. */

1
OFP_ASSERT(si zeof (struct of p_port_desc_prop_header) == 4);

The optical transport port feature structures are defined as follows:

/* Port description property types.*/
enum of p_port _desc_prop_type_exp {

OFPPDPT_OPTI CAL_TRANSPORT = 2, /* Optical Transport port property. */
s

/* Optical Transport port description property. */
struct of p_port_desc_prop_optical _transport {

uintl1l6_t type; /* OFPPDPT_OPTI CAL_TRANSPORT */
uint16_t | ength; /* Length in bytes of this property. */
uint8_t port_signal _type; /* Base port layer signal type - OFPPOTST_* */

uint8_t reserved;
unit8_t pad[2];
struct of p_port_optical _transport_feature_header features[O0];

d:P_ASSERT(si zeof (struct ofp_port_desc_prop_optical _transport) == 8);
/* Supported signal types for |layer class OFPPOTL_PORT */

enum of p_port _optical _transport_signal _type {
OFPPOTST_OTSn =

OFPPOTST_OMBn = 2,
OFPPOTST_OPSn = 3,
OFPPOTST_OPSM = 4,
OFPPOTST_CCH = 5,
OFPPOTST_OTUL = 11,
OFPPOTST_OTW2 = 12,
OFPPOTST_OTU3 = 13,
OFPPOTST_OTU4 = 14,

}s

/*Optical Transport port feature property. */

Page 12 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

struct of p_port_optical _transport_feature_header {
uintl6_t feature_type; /* OFPOTPF_. */
uintl16_t |ength; /* length of feature excludi ng paddi ng*/

1
OFP_ASSERT(si zeof (struct of p_port_optical _transport_feature_header) == 4);

/* Features of optical transport ports available in switch. */

enum of p_port _optical _transport_feature_type {
OFPPOTFT_OPT_I NTERFACE_CLASS = 1, [/* Application code/lD encoding */
OFPPOTFT_LAYER _STACK = 2, [|* Supported signal types and adaptations */

}s

/* Optical Interface O ass Feature Encoding */
struct of p_port_optical transport_application_code {
uintl16_t feature_type; /* Set to OFPOTPF_OPT_I NTERFACE_CLASS */

uint16_t | ength; /* length of feature excluding paddi ng*/

uint8_t oic_type; /* OFPOCT_* identifies the relevant standard reference
* specifying the application code */

char app_code[15]; /* Null-terminated - Valid format/content for this field

* is as per the relevant ITU- T standard indi cated by
* oic_type field or proprietary */

}s

OFP_ASSERT(si zeof (struct of p_port_optical _transport_application_code) == 20);

/* Supported optical interface class types. */
enum of p_optical _interface_class_type {
OFPA CT_PROPRI ETARY =1<<7, /* Proprietary application code */

OFPOI CT_| TUT_G598_1
OFPOI CT_| TUT_G598_2
OFPOI CT_I TUT_G959_1
OFPOI CT_| TUT_G695

[* [ITU TG 698. 1] application code */
/* [I1TU-TG 698. 2] application code */
[* [ITU TG 959. 1] application code */
/* [1TU-TG 695] application code */

TRNTIRTINT
rWNP

}s

/* OTN Layer Stack Feature Encoding */

struct of p_port_optical _transport_I| ayer_stack {
uintl16_t feature_type; /* Set to OFPOTPF_LAYER STACK */
uint16_t |ength; /* length of feature excludi ng paddi ng*/
uint8_t pad[4]; /* Zero bytes - see above for sizing */

struct ofp_optical _transport_port_layer_entry value[O0]; /* O or nore fields */

d:P_ASSERT(si zeof (struct of p_port_optical transport_|layer_stack) == 8);

/* OTN Layer Stack Entry Encoding */
struct of p_port_optical _transport_Ilayer_entry {

uint8_t layer_class; /* OFPOTPL_* */

uint8_t signal type; /* OFP(OTP/ OCH ODU/ ODUCL) T_*/
uint8_t adaptation; [* OFPADAPT_*/

uint8_t pad[5]; /* Align to 64-bit boundary */

1
OFP_ASSERT(si zeof (struct of p_port_optical _transport_| ayer_entry) == 8);

/* Layer classes (families) supported for optical transport port. */
enum of p_port _optical _transport_|layer_class {

OFPPOTL _PORT =1, /* Class of base port |ayer signal types */
OFPPOTL _OCH = 2, /* O ass of OCH |ayer signal types*/
OFPPOTL _ODU = 3, /* Class of ODU |ayer signal types*/
OFPPOTL _ODUCLT = 4, /* Class of ODU client |ayer signal types*/

Page 13 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

}s

/* Supported signal types for layer class OFPOTPL_OCH */

enum of p_och_si gnal _type {
OFPOCHT_FI X_GRI D
OFPCOCHT_FLEX_GRI D

1

1
2,

}s

/* Supported signal types for layer class OFPOTPL_ODU */
enum of p_odu_si gnal _type {

OFPODUT_CDUL =1,
OFPODUT_ODU2 = 2,
OFPODUT_ODU3 = 3,
OFPODUT_ODU4 = 4,
OFPODUT_CDUO = 10,
OFPODUT_ODU2E = 11,
OFPODUT_ODUF CBR = 20,
OFPODUT_ODUf GFPf HAO = 21,
OFPODUT_ODUF GFPf = 22,

}s

/* Supported signal types for layer class OFPOTPL_ODUCLT */
enum of p_oducl t _si gnal _type {

OFPODUCLT_STML6 =1,
OFPODUCLT_STMs4 = 2,
OFPODUCLT_STM256 = 3,
OFPODUCLT_STML = 4,
OFPODUCLT_STM4 = 5,
OFPODUCLT_1GBE = 6,
OFPODUCLT_10GBE =7,
OFPODUCLT_40GBE = 8,
OFPODUCLT_100GBE =9,
OFPODUCLT_FC100 = 10,
OFPODUCLT_FC200 = 11,
OFPODUCLT_FC400 = 12,
OFPODUCLT_FC800 = 13,
OFPODUCLT_FC1200 = 14,
OFPODUCLT_GPON = 15,
OFPODUCLT_XGPON = 16,
OFPODUCLT_| B_SDR = 17,
OFPODUCLT_| B_DDR = 18,
OFPODUCLT_|I B_QDR = 19,
OFPODUCLT_SBCON_ESCON = 20,
OFPODUCLT_DVB- ASI = 21,
OFPODUCLT_SDI = 22,
OFPODUCLT_SDI 1G5 = 23,
OFPODUCLT_SDI 3G = 24,
OFPODUCLT_ATM = 25,
OFPODUCLT_ETH = 26,
OFPODUCLT_MPLS = 27,
OFPODUCLT_| P = 28,

}s

/* Supported adaptations for optical transport port |ayer stack*/

enum of p_adapt ati ons_type {
OFPADAPT_OTS_OVB
OFPADAPT_OVS_OCH
OFPADAPT_OPS_OCHr
OFPADAPT_OPSM_OT Uk
OFPADAPT_OCH_OTUk
OFPADAPT_ODUKk_ODUi j
OFPADAPT_ODUKk_ODUj 21

(IR TR TR TR [T
NoOUAWNE

Page 14 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

OFPADAPT_ODUkh_ODUj 21 = 8,
OFPADAPT_ODUO_ CBRX =9,
OFPADAPT_ODUK_CBRX = 10,
OFPADAPT_ODUK_CBRXg = 11,
OFPADAPT_ODUK_RSn = 12,
OFPADAPT_ODUk_ATM = 13,
OFPADAPT_ODUk_ETH = 14,
OFPADAPT_ODUkh_ETH = 15,
OFPADAPT_ODUk_ETHPPCS = 16,

}s

3.2.2 Port Description Extensions Using Port Attribute Extensibility

The following section specifies port attribute extensions using port attribute extensibility
supported in OpenFlow-Switch versions 1.4 and later.

The Openflow protocol version 1.4 allows for extending the port description properties viathe
OFPPDPT_EXPERIMENTER property that uses the following structure and fields:

/* Experimenter port description property. */
struct of p_port_desc_prop_experinenter {

uintl6_t type; /* OFPPDPT_EXPERI MENTER. */
uintl6_t |ength; /* Length in bytes of this property. */
uint32_t experinmenter; /* Experimenter |D which takes the sane
formas in struct of p_experinenter_header. */
uint32_t exp_type; /* Experimenter defined. */

/ Fol | owed by:

*
* - Exactly (length - 12) bytes containing the experinenter data, then
* - Exactly (length + 7)/8*8 - (length) (between 0 and 7)

* bytes of all-zero bytes */
uint32_t experinenter_data[0];

d:P_ASSERT(si zeof (struct of p_port_desc_prop_experimenter) == 12);

The OTWG Optical Transport port extensions to Openflow protocol version 1.4 will use an
experimenter ID assigned to OTWG and code points as defined as follows:

#def i ne OFP_OTWG_EXPERI MENTER_| D 0xFF000007
The Optical Transport port extensions will assign enumeration value

OFPPDPT_OPTICAL_TRANSPORT to the exp_type field of the ofp_port_desc_prop_experimenter
structure.

To alow for future extensions, the proposed optical transport port extensions themselves follow
asub-TLV structure classified into feature property groups.

/*Optical Transport port experimenter property. */
struct of p_port_desc_prop_exp_optical _transport {

uintl6_t type; /* Set to OFPPDPT_EXPERI MENTER. */
uintl6_t |ength; /* Length in bytes of this property. */
uint32_t experinmenter; /* OTWG I D */

uint32_t exp_type; /* Set to OFPPDPT_OPTI CAL_TRANSPORT */

uint8_t port_signal _type; [/* Base port |layer signal type - OFPOTPT_* */
ui nt8_t reserved;

Page 15 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

uint8_t pad[2] ;
struct ofp_port_optical transport_feature_header features[O0];

1
OFP_ASSERT(si zeof (struct ofp_port_desc_prop_exp_optical transport) == 16);

3.3 Port Extensions for Adjacency Discovery

Adjacency Discovery support in OpenFlow is accomplished through a new Port Description
Type. The codepoint is defined as follows:

enum of p_port _desc_prop_type_exp {
ETPPDPT_ADJACENCY_DI SCOVERY = 3, /* Adjacency Discovery property. */
b
The Port Description object associated with this Type will contain SubTLV's used to:
- specify/retrieve the identity string being sent
- specify/retrieve the identity string(s) expected,
- retrieve the peer identity string(s) received, and
The format is asfollows:

/* Common header for all port description properties. */
struct of p_port_desc_prop_adj acency_di scovery {

uintl6_t type; / * OFPPDPT_ADJACENCY_DI SCOVERY */
uint16_t | ength; /* Length in bytes of this property. */
struct of p_exp_ext_ad_id ad_id[O0];

The SubTLV s used for sent, expected and received identity strings all have the same format.
Thetypes are asfollows:

enum of p_exp_ext _port _tlv_types {

OFP_EXP_EXT_PORT_TLV_AD ID SENT = 2, /* TTl to be sent by the port */
OFP_EXP_EXT_PORT_TLV_AD I D EXPECTED = 3, [/* TTl expected to be rcvd on port */
OFP_EXP_EXT_PORT_TLV_AD I D RECEIVED = 4, [/* TTl expected to be rcvd on port */

Page 16 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

The format for Adjacency Discovery Identity TLVsare asfollows:

struct of p_exp_ext_ad_ id {

uintl6é_t type; /* OFP_EXP_EXT_AD | D _SENT,
OFP_EXP_EXT_AD | D_EXPECTED, or
OFP_EXP_EXT_AD | D_RECEI VED. */
uint16_t | ength; /* The TLV value field length, defined as */
/* 8+ the length of the id[] field */
uint16_t namespace,; /* One of OFPHTN_*. */
uint1l6_t ns_type; /* Type within namespace */
uint8_ t id[0]; /* ID*/

/* Pad to 64 bits. */
s
NOTE: Theid[] field contains id formatted for the technology identified by the
namespace/ns_typefields. Asaresult, thisfield will be different lengths depending on the
technology of the port. See section 3.3.1 for technology specific encodings of the id[] field.

In addition to these TLV's, the controller needs to be able to specify behaviors for the logical
switch and be notified of conditions. These are specified using the config and state attribute in
the of p_port.

The state attribute is extended to indicate when a mismatch of the expected AD_ID and received
AD _ID hasoccurred. The state bit is defined as follows:

enum of p_port_state {
OFPPS_AD I D M SVMATCH = 1 << 16 /* Indicates AD_ID nmismatch condition */
b

When this bit changes state (i.e. 0->1 or 1->0), a notification will be sent to the controller based
on the asynchronous message configuration for the controller-OpenFlow Logical Switch session.

The config attribute is extended to configure adjacency discovery behavior for the port. The
bitfield is used to enable/disable adjacency discovery as well as control the insertion of AIS
when the received AD_ID information does not match the Expected identifier. These bits are
defined asfollows:

enum of p_port_config {

OFPPF_AD ENABLE = 1 << 16, /* Enabl e Adjacency Discovery exchange */
OFPPF_AIS AD ID M SVATCH = 1 << 17 /* Cause AlS insertion on AD ID m smatch */

3.3.1 Technology Specific Encodings

3.3.1.1 OTN and OCh

For OTN (ODU, OTU, OCh and OTS layers), the Adjacency Discovery ID is exchanged using a
discovery message within the TTI field. Thisfield isdefined to carry a 64-byte message with 16
bytes of SAPI, 16 bytes of DAPI and 32 bytes of carrier specific vaue. When the namespace
and ns_type fields specify one of the OTN layers, theid field is encoded as follows:

Page 17 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

struct ofp_port_adid otn {

uint8_t sapi[16]; /* ASCII SAPI. Note: no null termnation
character is included in the sapi. */

uint8_t dapi[16]; /* ASCI| DAPI. Note: no null termnation
character is included in the dapi. */

uint8_t opspec[32]; /* ASCI| Operator specific value. Note: no

null termnation character is included. */

3.3.1.2 SONET/SDH

For SONET/SDH, the Adjacency Discovery ID is exchanged using the SONET/SDH JO or J1
TTI fields. Thesefields are defined to carry a 16-byte message with one byte of FCS and 15
bytes of Trail Trace Identification value. In the case of J1 Path Trace the message will be limited
to 16 bytes. When the namespace and ns_type fields specify SONET/SDH, theid field is
encoded as follows:

struct of p_port_adid_sdh {

uint8_t id[15]; /* ASCII TTI. Note: no null term nation
character is included in the id. */

b
The FCS will be automatically computed by the NE.

4 Use of OpenFlow for Optical Transport

4.1 Initial Session Establishment

It is assumed that there is reachability between the switch and the OpenFlow Controller suitable
for establishment of the control channel. The switch is configured with the IP address of its
OpenFlow Controller and establishes a connection to the Controller using the procedures in the
OpenFlow specification.

4.2 Port Capability Discovery

Once connectivity to the Controller has been established, the switch provides information to the
Controller about the features and ports it supports using switch configuration messages as
specified in the OpenFlow specification. Port attribute extensions as defined in Section 3.2
above are used to identify OTN electrical or optical characteristics of the port.

4.3 Adjacency Discovery

Two scenarios for adjacency discovery that may be typical are the unprompted and prompted
scenarios.

4.3.1 Unprompted Adjacency Discovery

In this scenario, a discovery mechanism has been configured on the network element, and
discovery information has been exchanged prior to the establishment of the OpenFlow session
between network element and controller.

Page 18 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

OpenFlow is used to provide discovery information from the network element to the controller
through the port attributes.

4.3.2 Prompted Adjacency Discovery

In this scenario, the network element is configured to wait for establishment of the OpenFlow
session before initiating the discovery mechanism.

The controller uses port attributes to specify to the network element what identifier to send to the
remote endpoint of the port and what identifier it should expect to receive, as well as the action
to be taken if the received identifier is different from expected.

4.4 Setup of a Transport Connection

The flow mod commands are given below (in this case to support OTN ODU connectivity). The
flow mod command OFPFC_ADD is used to establish OTN connections. For bidirectional
circuits, two flow mod OFPFC_ADD commands are required — one in each direction. Barrier or
Bundle (for OF1.4) mechanisms may be used to ensure that flows in both directions together
with any associated actions are instantiated together.

4.4.1 Settings for Flow Entry Establishment
The following are general settings on the flow mod command to establish a flow entry:

Cookie/Cookie Mask - Discussed below.
Table ID - Table ID isimplementation dependent. It isrecommended that a default value
of 0 be used for single layer optical switches.
Command - Add
Idle_Timeout — Set to O for LO/L 1 as entries must be explicitly removed.
Hard_Timeout — Set to O for LO/L 1 as entries must be explicitly removed.
Priority - Use of Priority isfor further study. It isrecommended that this be set to O at
thistime.
Buffer_ID — Set to OFP_NO_BUFFER - not applicable to transport networks.
Output_Port/Group — OFPP_ANY/OFPG_ANY
Flags
0 OFPFF_SEND FLOW_REM - Recommended to be set to 0
0 OFPFF_CHECK_OVERLAP - Recommended to be set to 1 to support detection
of duplicate entries or overlaps
0 OFPFF RESET COUNTS- Recommended to be set to 0
0 OFPFF_NO_PKT_COUNTS - Recommended to be set to 0
0 OFPFF _NO BYT _COUNTS- Recommended to be setto 0

4.5 Flow Retrieval
The multipart message with type=OFPMP_FLOW is used to retrieve the entries in the flow table.

45.1 Retrieve all Entries

To retrieve al entriesin the flow table, the following parameters shall be used:

Page 19 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

out_port = OFPP_ANY

out_group = OFPG_ANY

cookie=0

cookie mask =0

match type = OFPMT_OXM, payload = null

Flow retrieval responses should support:

duration_sec = 0 (not supported)
duration_nsec; =0 (not supported)
priority = O (see above)
idle_timeout = O (see above)
hard_timeout =0 (see above)
cookie=0

packet_count = O (see above)
byte count = 0 (see above)

45.2 Retrieve Specific Entry
To retrieve a specific entry in the flow table, the following parameters should be used:

out_port = OFPP_ANY
out_group = OFPG_ANY

cookie/mask = match original cookie with mask = OxFFFFFFFFFFFFRRRF-or-any/0 0/0

match = should be the same as the match field in the original flow mod command

Flow retrieval responses should support:

duration_sec = 0 (not supported)
duration_nsec; =0 (not supported)
priority = O (see above)
idle_timeout = O (see above)
hard_timeout =0 (see above)
cookie=0

packet_count = 0 (see above)
byte count = 0 (see above)

4.6 Flow Deletion

The flow mod command with command=OFPFC_DELETE is used to delete an OTN connection.
For bidirectiona circuits, two flow mod OFPFC_DELETE commands are required — one in each
direction.

Page 20 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

4.6.1 Delete Specific Entry
To delete a specific entry from the flow table, the following parameters should be used:

Cookie/Cookie_Mask - Discussed in Cookie Support section below.
Table ID - Table ID isimplementation dependent. It isrecommended that a default value
of 0 be used for single layer optical switches.
Command — OFPFC_DELETE
Idle_Timeout — Set to 0 — Transport network flows must be explicitly removed.
Hard_Timeout — Set to 0 — Transport network flows must be explicitly removed.
Priority - Use of Priority isfor further study. It isrecommended that this be set to O at
thistime.
Buffer_ID — Set to OFP_NO_BUFFER - not applicable for transport networks.
Output_Port/Group — OFPP_ANY/OFPG_ANY
Flags

0 OFPFF _SEND FLOW_REM - Recommended to be set to 0

0 OFPFF_CHECK_OVERLAP - Recommended to be set to 1 to support detection

of duplicate entries or overlaps

0 OFPFF _RESET COUNTS- Recommended to be set to O

0 OFPFF _NO PKT_COUNTS- Recommended to be set to 0

0 OFPFF_NO BYT_COUNTS- Recommended to besetto 0

4.7 Echo Request/Reply

The Echo Request/reply can be used to verify liveliness. The echo request can be initiated by
either the controller or the NE.

Echo Request. Arbitrary length data field.
Echo Reply: returns the unmodified data field from the echo request.

4.8 Cookie Support
The use of cookiesis optional and determined by the controller.

The OpenFlow agent should support the following capabilities using cookies when performing a
flow retrieval or flow deletion.

4.8.1 Retrieve all Entries that Match the Cookie and Cookie Mask Fields

Toretrieve al entriesin the flow table that matches a specific cookie/cookie _mask, the
following parameters shall be used:

out_port = OFPP_ANY

out_group = OFPG_ANY

cookie = variable

cookie_mask = variable

match type = OFPMT_OXM, payload = null

Page 21 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

The agent shall provide al flow entries that match the cookie/cookie_mask: (flow
entry:cookie& flow mod:cookie mask) == (flow mod:cookie& flow mod:cookie mask)

4.8.2 Delete all Entries that Match the Cookie and Cookie_mask Fields

To delete al entriesin the flow table that matches a specific cookie/cookie_mask, the following
parameters should be used:

out_port = OFPP_ANY

out_group = OFPG_ANY

cookie = variable

cookie_mask = variable

match type = OFPMT_OXM, payload = null

The agent shall delete all flow entries that match the cookie/cookie_mask: (flow
entry:cookie& flow mod:cookie mask) == (flow mod:cookie& flow mod:cookie mask)

4.9 Barrier Message Support

The controller may use a barrier message to ensure that previous messages have been fully
processed.

To do this, the controller will send an OFPT_BARRIER_REQUEST message. The network
element will finish processing all previous messages including sending replies and/or error
messages before executing any additional commands. When it completes processing all previous
messages, it will send the OFPT_BARRIER_REPLY message.

The controller may use this capability to ensure that both directions of a bidirectional flow have
been fully established.

Page 22 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

5 REFERENCES

[1]
[2]
[3]

[4]
[S]
[6]

[7]
[8]

[9]
[10]
[11]

TR_Requirements Analysis for Transport OpenFlow/SDN_v.1.0, Aug. 20, 2014.
Optical Transport Information Model, work in progress.

ITU-T Recommendation G.7714.1/Y.1705.1, “Protocol for automatic discovery in SDH
and OTN networks”, 9/2010.

of-notifications-framework-1.0, Oct. 15, 2013.

OpenFlow Switch Specification, Version 1.3.0 (Wire Protocol 0x04), June 25, 2012.
OpenFlow Switch Specification, Version 1.3.1 (Wire Protocol 0x04), September 6,
2012.

OpenFlow Switch Specification, Version 1.3.2 (Wire Protocol 0x04), April 25, 2013.
OpenFlow Switch Specification, Version 1.3.3 (Wire Protocol 0x04), December 18,
2013.

OpenFlow Switch Specification, Version 1.3.4 (Wire Protocol 0x04), under ratification.
Onf2014.313.01, EXT-445-446 Merged OTWG Specification, May 30, 2014.

IETF RFC 7139, “GMPLS signaling extensions for control of Evolving G.709 OTN”,
March 2014, F. Zhang, ed.

Page 23 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

A. Appendix I: OF1.3-based Prototype Implementation for
Optical Transport

The following Appendix provides historical information about prototype testing done to validate
OF1.3-based implementation of optical transport extensions. It isintended only as arecord of an
implementation of the OpenFlow extensions that may help future implementors — the
specification text itself takes precedence over the text in this Appendix. Some formats and
settings used in prototyping have been updated and modified in the specification.

A.1. Simplifying Assumptions on the Basic Interoperability OF1.3 proposal
Assumptions (OF1.3):

OpenFlow 1.3.0 will be used

OpenFlow will run directly on TCP (not TLS)

Controller islocated at TCP port 6633

NE initiates the session with controller

The controller and NE will exchange a Hello message once TCP connection is
established. Both ends send the Hello message independently.

Hello may contain a body (version bitmap element). Implementations may ignore the
body.

Hello protocol indicates OF1.3 version (0x04). This avoids the need to negotiate
downwards.

NE supports a single OpenFlow table with Table ID =0

Controller will send the Feature Request command

Controller will send the Set Config command.

Controller will send the Port Description command

Controller will not send the Table Feature command

Controller will send Flow Mod commands (OFPFC_ADD) to establish connections
Controller will send Flow Mod commands (OFPFC_DELETE) to remove connections
Controller will send multipart request/response command with type=OFPMP_FLOW
to retrieve the flow entriesin atable. Packet In/Out will not be used.

Echo request/reply can be used to verify liveliness. Echo request/reply do not contain a
body.

OTN transport plane assumptions.

OTN links will be OTU2

HO-ODU2 will support the payload type of 21 when multiplexing LO-ODUSs. In this case,
the ODU2 will have 8 tributary slots.

Service rates supported: ODUO, ODU2 and ODUflex(GFP)

Non-OTN edge interfaces. 1GE, 10GE

A.2. OpenFlow Header
The version number for OF1.3 is 0x04.

A.3. Session Establishment

Page 24 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

The basic interoperability protocol flow is shown in Figure.2 for the establishment of the OF1.3
(2.3.0) session, including discovering the available ports and port descriptions.

NE Ctrl

TCP [Sync] [Dest Port

TCP [Sync,
TCP

OF1.3 Hello [Proto =

OF1.3 Hello [Proto =

OF1.3 Feature

OF1.3 Feature

OF1.3 Set

OF1.3 Multipart Request
[PORT_DESC]

OF1.3 Multipart Reply
[PORT_DESC]

Figure.2: OF1.3 Session Establishment

The network element shall initiate a session with the controller. It is assumed that the network
element is provisioned with the IP address of the controller. The mechanism for provisioning the
controller’s IP address is outside the scope of this document.

The network element shall establish a TCP connection with the controller using port 6633.
Note: OF1.3.3 switches from port 6633 to the IANA registered TCP port 6653.

Note: It is recommended that OpenFlow run directly over TCP for this demo to allow for protocol
capture.

Upon establishing the TCP connection, a Hello exchange will take place. Hellos must be sent by
both the controller and the network element. Hellos from each end are sent independently.

Page 25 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

In OF1.3.0, the Hello message has no body. It only has the OF header. However,
implementations should support the ability to receive (and ignore) a body.

Note: In OF1.3.1, an optional body was added to the Hello message. The body may contain zero
or more elements. The only element defined in OF1.3.1 is the version bitmap element.

In the Hello message, the protocol version number should be set to the highest version supported
by the implementation (should be >= 0x04). The negotiated protocol version is the lesser of the
sent and received protocol version in the Hello message.

Sinceit isassumed that all implementations will support OF1.3, protocol version notification
should not be necessary.

Note: If the negotiated protocol version is not supported by an implementation, then that
implementation shall reply with an OFPT_ERROR message with atype field of
OFPET_HELLO_FAILED, code OFPHFC_COMPATIBLE. The TCP connection shall then be
terminated.

Note: a more sophisticated negotiation process is available with OF1.3.1 using the version bitmap
element.

After the controller has sent its Hello and received the Hello from the NE, the controller sends an
OFPT_FEATURES REQUEST message. This message does not contain a body. The NE
responds with an OFPT_FEATURES_REPLY message.

OFPT_FEATURES_REPLY .

- The datapath ID should be unique. The lower 48-bits are for aMAC address while the upper
16-bites are implementation defined.

- n_buffer: <ignored. No plansto support packet_in/out>

- n_tables: 1 <only onetableis supported>

- auxiliary_id: set to 0x00 (main connection)

- capabilities: may be set to 0x00. Switch capabilities are not planned to be tested.

The controller sends an OFP_SET_CONFIG command.
OFPT_SET_CONFIG.

- Flags=0x00
- Misssend length: any value as Packet Inis not planned to be tested.

A.3.1. Port Description

The controller sends an OFPMP_PORT _DESC multipart request to learn about the ports on an
NE. The body of the request is empty. The NE responds with a multipart reply that provides alist
of the ports (plus description) supported by the NE.

Page 26 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions

Version 1.0

A.3.2. Example of Flow_Mod Format (Note: see Section 3.1 for updated format)

0 1 2 3
0123456 78901234546 78901234546 78901
0 version =5 OFPT_FL(;yv?/e_zl\/IOD(M) length=152
4 xid
8 cookie
12 cookie
16 cookie_mask
20 cookie_mask
24 table_id=0 command=Add (0) idle_timeout=0
28 hard_timeout =0 priority =0
32 buffer_id = OFP_NO_BUFFER
36 out_port = OFPP_ANY
40 out_group = OFPG_ANY
44 flags =0 PAD
48 type=OFPMT_OXM(1) length= 43
52 oxm_class = 0x8000 OXZF—EZE:\?;%:PT)((S/)IT‘ E oxm_length=4
56 in_port=v5
60 oxm_class = OxFFFF oxmaflge&i;giz);gl;?m‘ E oxm_length=1
64 Experimeter ID = OxFFOO0007
68 SIGTYPE = ODU2 oxm_class = OXFFFF °g$:fc')e[)'3j§:§?g)— E
72 oxm_length=14 Experimeter ID = OxFFOO0007
76 Experimeter ID TPN Reserved tslen
80 tslen (80) TS
84 TS
88 TS PAD
92 PAD
96 type=Apply Action (4) length=56
100 PAD
104 type= OFPAT_SET_FIELD (25) length=32
108 oxm_class = OxFFFF oxmg;f;gz;g;?m— E oxm_length=14
112 Experimeter ID = OxFFOO0007
116 TPN Reserved tslen (80)
120 TS
124 TS
128 TS | PAD
132 PAD
136 type= OFPAT_OUTPUT(0) | length=16
140 out_port=p6
144 maxlen (OxFFE5) | PAD
148 PAD
A.3.3. ODU2 HO-ODU to HO-ODU
With OTWG extensions:

Page 27 of 33

© Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

Match:

Instruction:

ofp_match_type= OFPMT_OXM

ofp_oxm_class = OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number

ofp_oxm_class = OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTYPE
experimenter = OxFFO00007

sigtype = OFPODUT_ODU2

type= OFPIT_APPLY_ACTIONS

Actions;

type = OFPAT_OUTPUT
port = output port number
max_len = 65509

A.3.4. ODUO/ODUFlex LO-ODU to LO-ODU
With OTWG extensions:

Match:

ofp_match_type= OFPMT_OXM

ofp_oxm_class = OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number

ofp_oxm_class = OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTYPE
experimenter = OxFFO00007

sigtype = OFPODUT_ODUO, OFPODUT_ODUfGFPf or

OFPODUT_ODUfGFPfHAO

Instruction:

ofp_oxm_class = OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGID
experimenter = OxFFO00007

tpn = tributary port number

tslen=38

tsmap = tributary slot bitmap

type = OFPIT_APPLY_ACTIONS

Actions;

Page 28 of 33

type = OFPAT_SET FIELD
ofp_oxm_class= OFPXMC_EXPERIMENTER
ofp-oxm_field= OFPXMT_EXP_ODU_SIGID
experimenter = OxFFO00007

© Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

tpn = tributary port number
tslen=38
tsmap = tributary slot bitmap

type = OFPAT_OUTPUT
port = output port number
max_len = 65509

A.3.5. 10GE to ODU2 HO-ODU
With OTWG extensions:

Match: ofp_match_type = OFPMT_OXM

ofp_oxm_class= OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number (10GE port)

ofp_oxm_class= OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTY PE
experimenter = OxFFO00007
sigtype = OFPODUT_ODU2

Instruction: type=OFPIT_APPLY_ACTIONS

Actions:

type = OFPAT_OUTPUT
port = output port number (OTU2 port)
max_len = 65509

A.3.6. ODU2 HO-ODU to 10GE
With OTWG extensions:

Match: ofp_match_type= OFPMT_OXM

ofp_oxm_class= OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number (OTUZ2 port)

ofp_oxm_class= OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTY PE
experimenter = OxFFO00007
sigtype = OFPODUT_ODUZ2

Instruction: type=OFPIT_APPLY_ACTIONS

Actions:

type = OFPAT_OUTPUT
port = output port number (10GE port)
max_len = 65509

Page 29 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

A.3.7. 1GEto ODUO LO-ODU
With OTWG extensions:

Match:

Instruction:

ofp_match_type= OFPMT_OXM

ofp_oxm_class = OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number (1GE port)

ofp_oxm_class = OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTYPE
experimenter = OxFFO00007

sigtype = OFPODUT_ODUOQ

type= OFPIT_APPLY_ACTIONS

Actions;

type = OFPAT_SET_FIELD
ofp_oxm_class = OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGID
experimenter = OXxFFO00007
tpn = tributary port number
tslen=38
tsmap = tributary slot bitmap

type = OFPAT_OUTPUT
port = output port number (OTU2 port)
max_len = 65509

A.3.8. ODUO LO-ODU to 1GE
With OTWG extensions:

Match:

Page 30 of 33

ofp_match _type= OFPMT_OXM

ofp_oxm_class = OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number (OTUZ2 port)

ofp_oxm_class = OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTYPE
experimenter = OxFFO00007

sigtype = OFPODUT_ODUOQ

ofp_oxm_class= OFPXMC_EXPERIMENTER

ofp-oxm_field= OFPXMT_EXP_ODU_SIGID
experimenter = OxFFO00007

© Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

tpn = tributary port number

tslen=38

tsmap = tributary slot bitmap
Instruction: type=OFPIT_APPLY_ACTIONS

Actions:

type = OFPAT_OUTPUT

port = output port number (1GE port)

max_len = 65509

A.3.9. Subrate 10GE to ODUflex(GFP) LO-ODU
With OTWG extensions:

Match: ofp_match_type = OFPMT_OXM

ofp_oxm_class= OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number (10GE port)

ofp_oxm_class= OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTY PE
experimenter = OxFFO00007
sigtype = OFPODUT_ODUfGFPf or OFPODUT_ODUfGFPfHAO
Instruction: type=OFPIT_APPLY_ACTIONS
Actions:
type = OFPAT_SET_FIELD
ofp_oxm_class= OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGID
experimenter = OxFFO00007
tpn = tributary port number
tslen=28
tsmap = tributary slot bitmap

type = OFPAT_OUTPUT
port = output port number (OTU2 port)
max_len = 65509

A.3.10. ODUflex(GFP) LO-ODU to Subrate 10GE
With OTWG extensions:

Match: ofp_match_type= OFPMT_OXM

ofp_oxm_class= OFPXMC_OPENFLOW_BASIC
ofp_oxm_field = OFPXMT_OFB_IN_PORT
data = input port number (OTUZ2 port)

Page 31 of 33 © Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

Instruction:

ofp_oxm_class= OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGTYPE

experimenter = OxFFO00007

sigtype = OFPODUT_ODUfGFPf or OFPODUT_ODUfGFPfHAO

ofp_oxm_class = OFPXMC_EXPERIMENTER
ofp-oxm_field = OFPXMT_EXP_ODU_SIGID
experimenter = 0OXxFF000007

tpn = tributary port number

tslen=38

tsmap = tributary slot bitmap

type = OFPIT_APPLY_ACTIONS

Actions;

Page 32 of 33

type = OFPAT_OUTPUT
port = output port number (10GE port)
max_len = 65509

© Open Networking Foundation

Optical Transport Protocol Extensions Version 1.0

LIST OF CONTRIBUTORS

The DOC3-4 Design team was responsible for the writing of this document.
List of namesin aphabetical order:

- Sergio Bellotti

- Fred Gruman

- JiaHe

- Peter Landon

- YoungLee

- Lyndon Ong (ed.)

- Jonathan Sadler

- Merd Sherazipour

- Maarten Vissers

- Shinji Yamashita

- Karthik Sethuraman
This document follows on work by the 2014 Joint OIF/ONF Prototype Demonstration design
team looking at prototyping of OpenFlow extensions, especially Fred Gruman, Pawel
Kaczmarek, Sergio Belotti and Junjie Li.

The OIF/ONF demo specification was in turn drawn from the OTWG contributions
onf2014.313.01 and onf2014.33.01, which were proposed to the Extensibility WG (and approved
for prototyping) as solutions to proposals: EXT-445 & EXT-446. The liaisons from the Optical
Transport WG to the Extensibility WG, responsible for EXT-445 and 446, were:

- Jonathan Sadler
- Karthik Sethuraman

Page 33 of 33 © Open Networking Foundation

