
Papyrus Guidelines
Version 1.1
November 30, 2015

ONF TR-515

Papyrus Guidelines Version 1.1

Page 2 of 70 © Open Networking Foundation

ONF Document Type: Technical Recommendation
ONF Document Name: Papyrus Guidelines V1.1

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation
2275 E. Bayshore Road, Suite 103, Palo Alto, CA 94303
www.opennetworking.org

©2015 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the
Open Networking Foundation, in the United States and/or in other countries. All other brands,
products, or service names are or may be trademarks or service marks of, and are used to identify,
products or services of their respective owners.

http://www.opennetworking.org/

Papyrus Guidelines Version 1.1

Page 3 of 70 © Open Networking Foundation

Content
1 Introduction __ 6

2 References ___ 6

3 Abbreviations __ 6

4 Documentation Overview _____________________________________ 7

5 Getting Papyrus Running _____________________________________ 8

5.1 Downloading Eclipse ___ 9

5.2 Installing Papyrus __ 10

5.3 Importing a Model __ 15

5.4 Deleting a Project ___ 19

6 Information Model on GitHub _________________________________ 20

6.1 ONFInfoModel Structure on GitHub ____________________________________ 20

6.2 GitHub Work Flow __ 21

6.3 Downloading a Model from github for “Read Only Use” ___________________ 37

7 Using Papyrus ___ 39

7.1 Illustrative Profile and Model ___ 39

7.2 Papyrus File Structure ___ 40

7.3 Model Splitting ___ 41

7.4 Team UML Model Development _______________________________________ 42

7.5 Developing a Sub-Model ___ 45

8 Extracting Data from a Papyrus model _________________________ 47

8.1 Gendoc Plugin ___ 48

8.2 Installing Gendoc ___ 48

8.3 Using Gendoc __ 50

8.4 Papyrus Table __ 50

9 Importing RSA Models into Papyrus ___________________________ 54

9.1 Import RSA Model into Papyrus _______________________________________ 54

9.2 Replace RSA Profile by Papyrus Profile ________________________________ 56

9.3 Remove the “old” RSA files __ 57

Annex A Using Gendoc ___ 58
A.1 Template usage __ 58
A.2 Basic template ___ 59
A.3 Cover, contents, closing text etc ______________________________________ 60

Papyrus Guidelines Version 1.1

Page 4 of 70 © Open Networking Foundation

A.4 Figures from the model with interleaved text ____________________________ 60
A.5 Figure in alphabetical order with no interleaved specific text _______________ 62
A.6 Further explanation of the script ______________________________________ 62
A.7 Test template for printing diagrams and associated text ___________________ 62
A.8 Data Dictionary template overview _____________________________________ 63
A.9 Adding the class and its stereotypes ___________________________________ 63
A.10 Adding properties and stereotypes in tabular form _______________________ 65
A.11 Adding complex data types ___ 67
A.12 Adding other data types ___ 67

A.12.1 Enumeration Types ___ 67
A.12.2 Primitive Types __ 68

A.13 Example complete template __ 69
A.14 Extending the template __ 69
A.15 Known issues __ 69

List of Figures
Figure 4-1: Specification Architecture ... 9

Figure 5-1: Eclipse Download Page .. 10

Figure 5-2: Content of the Eclipse Folder after Extracting the Zip-file .. 10

Figure 5-3: Initial Welcome Page of Eclipse ... 11

Figure 5-4: Installing Papyrus (1) .. 12

Figure 5-5: Installing Papyrus (2) .. 12

Figure 5-6: Installing Papyrus (3) .. 13

Figure 5-7: Proxy Configuration .. 14

Figure 5-8: Open Papyrus Perspective ... 15

Figure 5-9: Required Display Setting .. 16

Figure 5-10: Papyrus Project Explorer / Model Explorer .. 16

Figure 5-11: Papyrus Model Structure .. 17

Figure 5-12: Importing a Model (1) ... 18

Figure 5-13: Importing a Model (2) ... 19

Figure 5-14: Open a Model ... 20

Figure 5-15: Delete a Project .. 21

Figure 6-1: Initial ONFInfoModel Structure on GitHub .. 22

Figure 6-2: GitHub Work Flow .. 23

Figure 6-3: Open Git Perspective ... 24

Papyrus Guidelines Version 1.1

Page 5 of 70 © Open Networking Foundation

Figure 6-4: Add Repository Choices ... 24

Figure 6-5: Location of the Repository Address.. 25

Figure 6-6: Source Git Repository Window ... 26

Figure 6-7: Branch Selection Window ... 26

Figure 6-8: Local Destination Window .. 27

Figure 6-9: develop Branch Cloned to Local PC... 28

Figure 6-10: develop branch shown in Papyrus Project Explorer (snapshot) ... 28

Figure 6-11: NbiTopologyModule Shown in Papyrus Model Explorer .. 29

Figure 6-12: Importing UML Primitive Types .. 29

Figure 6-13: Importing Core Model Artifacts ... 30

Figure 6-14: Selecting Core Model Artifacts ... 31

Figure 6-15: Imported Core Model Artifacts .. 32

Figure 6-16: Unstaged Changes in Git Staging .. 33

Figure 6-17: Add Files to Git Stage ... 33

Figure 6-18: Staged Changes in Git Staging .. 33

Figure 6-19: Push Updated Branch to Remote Repository .. 34

Figure 6-20: Push Confirmation Window .. 35

Figure 6-21: Compare in Modeler’s Remote Repository .. 36

Figure 6-22: Detailed Comparison in Modeler’s Remote Repository.. 36

Figure 6-23: Pull Request in Modeler’s Remote Repository ... 37

Figure 6-24: Pull Request in Administrator’s Remote Repository... 37

Figure 6-25: Download ONFInfoModel Repository ... 38

Figure 6-26: Extract ONFInfoModel Repository to Worksoace ... 38

Figure 6-27: Making the ONFInfoModel visible in Papyrus (1) ... 39

Figure 6-28: Making the ONFInfoModel visible in Papyrus (2) ... 39

Figure 7-1: Illustrative UML Profile .. 40

Figure 7-2: Illustrative Core Model .. 41

Figure 7-3: Profile Associated to the Model .. 41

Figure 7-4: Papyrus File Structure .. 41

Figure 7-5: Papyrus File Structure after Splitting .. 42

Figure 7-6: Imported UML Artifacts ... 43

Figure 7-7: Information Model File Structure .. 44

Figure 7-8: Importing an Existing Project into Papyrus ... 44

Papyrus Guidelines Version 1.1

Page 6 of 70 © Open Networking Foundation

Figure 7-9: Project and Model Explorer View after Import into Papyrus ... 45

Figure 7-10: Modeling Process over Time .. 46

Figure 7-11: Example Sub-Model A (highlighted in red) ... 47

Figure 7-12: Updated Sub-Model A Files (highlighted in blue) ... 48

Figure 8-1: Installing Gendoc (1) .. 49

Figure 8-2: Installing Gendoc (2) .. 50

Figure 8-3: Installing Gendoc (3) .. 51

Figure 8-4: Model Selection .. 51

Figure 8-5: Class Expansion ... 52

Figure 8-6: Create new empty Table .. 53

Figure 8-7: Artifact Selection ... 53

Figure 8-8: Creation of Excel Sheet (1) .. 54

Figure 8-9: Creation of Excel Sheet (2) .. 54

Figure 9-1: Installing Papyrus Component “RSA Model Importer” ... 55

Figure 9-2: : Importing .emx Model ... 56

Figure 9-3: Associated Papyrus Profile ... 57

List of Tables
None.

Document History

Version Date Description of Change

1.0 March 13, 2015 Initial version

1.1 Nov. 30, 2015 Version 1.1

Papyrus Guidelines Version 1.1

Page 7 of 70 © Open Networking Foundation

1 Introduction
This Technical Recommendation defines the guidelines that have to be taken into account during
the creation of a protocol-neutral UML (Unified Modeling Language) information model using
the Open Source tool Papyrus. The Guidelines are not specific to any technology or management
protocol. Although the examples used in the document are often ONF related, they can also be
used by all other SDOs using Papyrus as their UML tool.

Summary of main changes between version 1.0 and 1.1

The following guidelines have been changed/added:

• Eclipse: Migration from Kepler to Mars
• Github: Only one develop branch
• Github: Method for retrieving repositories using the "Download ZIP" button added; this

method is just for read only users
• Documentation: New section on Gendoc added.

2 References
[1] Papyrus Eclipse UML Modeling Tool (https://www.eclipse.org/papyrus/)

[2] Eclipse (https://eclipse.org/)

[3] Unified Modeling Language™ (UML®) (http://www.uml.org/)

[4] ONF TR-514 “UML Modeling Guidelines 1.0”
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-
reports/UML_Modeling_Guidelines_V1.0.pdf)

[5] Open Model Profile
(https://github.com/OpenNetworkingFoundation/ONFInfoModel)

3 Abbreviations
API Application-Programming-Interface

ARO Association Resources Online™

ASCII American Standard Code for Information Interchange

DS Data Schema

IDE Integrated Development Environment

IM Information Model

IMP Information Modeling Project (ONF Services Area)

https://www.eclipse.org/papyrus/
https://eclipse.org/
http://www.uml.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/UML_Modeling_Guidelines_V1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/UML_Modeling_Guidelines_V1.0.pdf

Papyrus Guidelines Version 1.1

Page 8 of 70 © Open Networking Foundation

ITU-T International Telecommunication Union – Telecommunication Standardization Sector

JSON JavaScript Object Notation

NBI NorthBound Interface

OF Open Flow

OT Optical Transport

RSA Rational Software Architect (UML tool from IBM)

SDO Standards Developing Organization

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

WG Working Group

4 Documentation Overview
This document is part of a series of Technical Recommendations. The location of this document
within the documentation architecture is shown in Figure 4.1 below:

Papyrus Guidelines Version 1.1

Page 9 of 70 © Open Networking Foundation

Figure 4-1: Specification Architecture

5 Getting Papyrus Running
The Open Source UML tool Papyrus is a plug-in for the Open Source integrated development
environment (IDE) Eclipse.

Current tool versions:

• Eclipse version 4.5.x “Mars” (4.5.1)
• Papyrus version 1.1.x (1.1.1).

This section explains how to get Papyrus running on your PC and how to import a model.
Working with sub-models is described in section 6.

Papyrus Guidelines Version 1.1

Page 10 of 70 © Open Networking Foundation

5.1 Downloading Eclipse
Eclipse can be downloaded from here: https://eclipse.org/downloads/.

First you have to choose on which platform you want to run eclipse:

Eclipse offers pre-assembled packages for various use cases. For Papyrus you need the Eclipse
Modeling Tools package.

 You need to download the “Eclipse Modeling Tools” package.
 I.e., not the Standard version.

Figure 5-1: Eclipse Download Page

You cannot “install” Eclipse on the PC; just extract the zip-file into a new folder:

Figure 5-2: Content of the Eclipse Folder after Extracting the Zip-file

To launch Eclipse, double-click on the file.

https://eclipse.org/downloads/

Papyrus Guidelines Version 1.1

Page 11 of 70 © Open Networking Foundation

 Eclipse Mars requires Java 1.7

After launching Eclipse, a default folder is created in the home directory
(…/users/<users name>/). The workspace configuration information is contained in the

 folder:

. Any empty (need not be empty but is recommended) folder - anywhere - can be
used as a workspace-folder. The workspace can be selected during the start of Eclipse.

Figure 5-3: Initial Welcome Page of Eclipse

Close the tab at the upper left corner. Eclipse is now ready for use.

5.2 Installing Papyrus

Click menu and then :

Papyrus Guidelines Version 1.1

Page 12 of 70 © Open Networking Foundation

Figure 5-4: Installing Papyrus (1)

Click and enter the Papyrus 1.1 update site:
http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/mars

Figure 5-5: Installing Papyrus (2)

You need to select at least Papyrus:

http://download.eclipse.org/modeling/mdt/papyrus/updates/releases/mars

Papyrus Guidelines Version 1.1

Page 13 of 70 © Open Networking Foundation

Figure 5-6: Installing Papyrus (3)

Then click and follow the instructions.

Only if necessary (usually it is not), you can configure a proxy at menu , :

Papyrus Guidelines Version 1.1

Page 14 of 70 © Open Networking Foundation

Figure 5-7: Proxy Configuration

After restarting Eclipse you need to switch to the Papyrus Perspective by

• either going via menu , , , :

• or by clicking the Open Perspective-button () at the top right side of the screen:

and then selecting :

Papyrus Guidelines Version 1.1

Page 15 of 70 © Open Networking Foundation

 

Figure 5-8: Open Papyrus Perspective

 Papyrus content can only be viewed properly if the computer display is set to 100 %.

Papyrus Guidelines Version 1.1

Page 16 of 70 © Open Networking Foundation

Figure 5-9: Required Display Setting

5.3 Importing a Model
The Papyrus Perspective shows a Project Explorer and a Model Explorer:

Figure 5-10: Papyrus Project Explorer / Model Explorer

Papyrus Guidelines Version 1.1

Page 17 of 70 © Open Networking Foundation

Notes:
Models cannot exist on their own. Every model needs to be contained in a project. A project can
contain 0 or more models.
The window provides a view on the model files in the workspace-folder.
The window provides the internal view of the model selected in the

. The can only show (edit) one model at a time.

The actual interface specification is contained in the Information Model and the additional
properties of the UML artifacts are defined in a Profile Model. It is possible to organize the two
models in a single project (Alternative 1 in the figure below) or in two separate projects
(Alternative 2 in the figure below).

Figure 5-11: Papyrus Model Structure

Note:
The following model import description uses the ONF Model as an example. The steps are
similar for any other model.

The current version of the ONF Model (CoreInformationModel.V1.0.zip; the latest revisions are
available on ARO) consists of an Information Model folder and a separate Profile Model folder
(i.e., following Alternative 2 in Figure 5.11):

Each folder contains a .project, .di, .notation and .uml files.

The next step is to import the Profiles files and Model files into Papyrus.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/CoreInformationModel.V1.0.zip

Papyrus Guidelines Version 1.1

Page 18 of 70 © Open Networking Foundation

 The Profile should be imported first.
 It is also possible to import the Model first,
 but before you open the model the first time, the Profile must have been imported.

Right click in the area opens the menu containing the -button:

Figure 5-12: Importing a Model (1)

You need to select the option when the profile - that you want to
import - contains a file. Otherwise you need to create a new project and then import
the profile using the option.

Click and then point via to the folder containing the extracted Profile
files.

Papyrus Guidelines Version 1.1

Page 19 of 70 © Open Networking Foundation

Figure 5-13: Importing a Model (2)

THEN select the option if you want the Profile files copied into
your workspace, otherwise Papyrus only creates a pointer and works with the files contained in
the extracted folder:

Click .

Note:
The profile/model files can be located anywhere on the PC. It is not necessary to copy the files
into the workspace-folder.

The Model is imported in the same way as the Profile.

A double click e.g., on in the opens the
ONF_InformationModel in the :

Papyrus Guidelines Version 1.1

Page 20 of 70 © Open Networking Foundation

Figure 5-14: Open a Model

Now you can start working with the model.

5.4 Deleting a Project

Projects can be deleted from the by a right click on the project (e.g.,
) and selecting .

Papyrus Guidelines Version 1.1

Page 21 of 70 © Open Networking Foundation

Figure 5-15: Delete a Project

6 Information Model on GitHub
Note:
The following GitHub usage description is using the ONF Model as an example. The steps are
similar for any other model.

The ONF Information Model is stored in an ONF-specific area of GitHub. The name of the
repository is “ONFInfoModel”.

The model development architecture identifies two groups of people that are working with the
model: (a) Modelers who do the actual writing of the model pieces, and (b) Administrators who
establish the working environment and control the “master copy” of the ONF Information Model.

6.1 ONFInfoModel Structure on GitHub
The ONF Information Model is contained in a “master branch” on GitHub. A copy of this master
branch is provided in the “develop branch”.

https://github.com/OpenNetworkingFoundation/ONFInfoModel
https://github.com/OpenNetworkingFoundation/ONFInfoModel/tree/master
https://github.com/OpenNetworkingFoundation/ONFInfoModel/tree/develop

Papyrus Guidelines Version 1.1

Page 22 of 70 © Open Networking Foundation

create
branch

merge
branches

ONF ONFInfoModel repository master „branch“

develop branch

merge
branches

time

0 0 0

2 8 4 8

merge
branches

0

4 8

Figure 6-1: Initial ONFInfoModel Structure on GitHub

The modeling teams are developing their part of the model in their develop branch. All updates
of the individual develop branches will be merged back to the master branch from time to time1.

6.2 GitHub Work Flow
The following steps describe the work flow that a modeler has to follow to establish an
individual infrastructure for developing a piece of the ONF Information Model.

Section Fehler! Verweisquelle konnte nicht gefunden werden. describes a more easy way of
getting the ONF Information Model to the local PC. This way is restricted to “read only viewers”
of the model since it does not allow to commit changes back to github.

The steps correspond with the numbers in Figure 6.2.

1 Driven by overall delivery schedule and coordinated by the administrators.

Papyrus Guidelines Version 1.1

Page 23 of 70 © Open Networking Foundation

Figure 6-2: GitHub Work Flow

0. The administrator has established the ONFInfoModel repository (containing the master
and develop branches) in the ONF git space under the following URL:
https://github.com/OpenNetworkingFoundation/ONFInfoModel

1. The modeler needs to copy the repository from the ONF git space into its own git space;

by clicking :

A copy of the complete ONFInfoModel repository is now contained in the modeler’s git

space: .

2. An individual modeler works only in the develop branch. This specific branch needs to be
copied to the modeler’s local PC into a local repository. This is done using the git client
that is contained in the Eclipse tool on the local PC.

 Make sure that the Eclipse Workspace that is selected during launch of
Eclipse does not contain already the OpenModelProfile and OnfModel projects.

Note:
More than one version of the model can only be maintained on the local PC if they are in
different Eclipse Workspaces.

My Remote
Repository

(My GIT Space)

Staging

ONF Remote
Repository

(ONF GIT Space)

Local Repository Local Working
Directory

clone
fetch
pull

checkout branch

Papyrus “Save”
updates only the
local working
Directory

push

commit add

pull

pull
request

administrator
modeler

e.g.,
TTP

ONF
InfoModel

ONF
InfoModel

e.g.,
extensibility

1

2

3

56

7

8

9

4

fork

0

remote local

https://github.com/OpenNetworkingFoundation/ONFInfoModel

Papyrus Guidelines Version 1.1

Page 24 of 70 © Open Networking Foundation

After the Eclipse has been launched in the local PC, the git client can be started by
clicking the “Open Perspective” button: and then choosing the perspective.
Note: Depending on the Eclipse version, the git client may have another name (including
the term “Git”)2.

 

Figure 6-3: Open Git Perspective

In the window click on .

Figure 6-4: Add Repository Choices

Copy and paste the address that is provided on the web page of the ONFInfoModel in the

modeler’s git space :

2 It is vital that all modelers use the same version of Papyrus to prevent compatibility issues.

Papyrus Guidelines Version 1.1

Page 25 of 70 © Open Networking Foundation

Figure 6-5: Location of the Repository Address

Copy this address (https://github.com/<modeler’s git user name>/ONFInfoModel.git)
into the URI field (the Host and Repository path fields are then automatically populated)
and enter your GitHub username and password.

Papyrus Guidelines Version 1.1

Page 26 of 70 © Open Networking Foundation

Figure 6-6: Source Git Repository Window

Click and select only the develop branch.

Figure 6-7: Branch Selection Window

Click and insert the destination directory on your local disk where you
want the model to be stored.

 should be checked.

Papyrus Guidelines Version 1.1

Page 27 of 70 © Open Networking Foundation

Figure 6-8: Local Destination Window

Click . The selected branch of the ONFInfoModel is now downloaded to
your local PC.

The window should then contain the following files:

Papyrus Guidelines Version 1.1

Page 28 of 70 © Open Networking Foundation

Figure 6-9: develop Branch Cloned to Local PC

3. Since you have checked the checkbox, the
OpenModelProfile and OnfModel projects should automatically appear in the

 window in the Papyrus perspective. You may double verify this at
the perspective.
Note:
The complete model – including all sub-modules – is imported.

Figure 6-10: develop branch shown in Papyrus Project Explorer (snapshot)

Editor’s note: Write protection of modules needs more investigation.

Papyrus Guidelines Version 1.1

Page 29 of 70 © Open Networking Foundation

4. A double-click on the module of interest starts the modeling in Papyrus. E.g., a double-

click on in the window opens the

NbiTopologyModule model in the window.

Figure 6-11: NbiTopologyModule Shown in Papyrus Model Explorer

It may be necessary to import the common UML Primitive Types (i.e., Boolean, Integer,
String). This can be done by a right-click on the model pacakge
then going to / and then select

:

 

Figure 6-12: Importing UML Primitive Types

It may also be necessary to relate artifacts in the sub-module to artifacts defined in the
core model. This can be done by a right-click on the model package

 then via and select
 / :

Papyrus Guidelines Version 1.1

Page 30 of 70 © Open Networking Foundation

Figure 6-13: Importing Core Model Artifacts

Papyrus Guidelines Version 1.1

Page 31 of 70 © Open Networking Foundation

Figure 6-14: Selecting Core Model Artifacts

Papyrus Guidelines Version 1.1

Page 32 of 70 © Open Networking Foundation

Figure 6-15: Imported Core Model Artifacts

The designer of the NbiTopologyModule can now develop the model. The allowed
actions are described in section 7.5.

Note: Papyrus “Save” updates only the local working Directory

.

5. After saving the changes in Papyrus the updated files are shown in in the
 perspective.

Papyrus Guidelines Version 1.1

Page 33 of 70 © Open Networking Foundation

Figure 6-16: Unstaged Changes in Git Staging

Select all TopologyModule files, right-click and select :

Figure 6-17: Add Files to Git Stage

Figure 6-18: Staged Changes in Git Staging

6. To commit the staged changes to your local repository you need to provide a commit

message describing the changes that were done and then click on .

Papyrus Guidelines Version 1.1

Page 34 of 70 © Open Networking Foundation

7. Steps 4 – 6 are all dealing only with changes on the local PC of the modeler. To save the
changes to the modeler’s remote repository you need to right-click on the repository in

the tab and select .

Figure 6-19: Push Updated Branch to Remote Repository

Make sure you have checked and
.

Papyrus Guidelines Version 1.1

Page 35 of 70 © Open Networking Foundation

Figure 6-20: Push Confirmation Window

Finally click .

8. Steps 3 – 7 can be done as often as necessary.
Once all updates of the sub-model for the next release of the ONF Information Model are
finished, the modeler needs to notify the administrators that a stable version is ready. This
is done by a pull request from the modeler’s remote repository using

 or .

Papyrus Guidelines Version 1.1

Page 36 of 70 © Open Networking Foundation

Figure 6-21: Compare in Modeler’s Remote Repository

After click on or git provides a detailed comparison of all
changes done in all files.

Figure 6-22: Detailed Comparison in Modeler’s Remote Repository

The modeler can review the changes, add a comment to this updated version of the sub-

model and then send the pull request by clicking on .

Papyrus Guidelines Version 1.1

Page 37 of 70 © Open Networking Foundation

Figure 6-23: Pull Request in Modeler’s Remote Repository

9. The administrator of the ONF remote repository receives the pull request and can merge
the updates into its repository.

Figure 6-24: Pull Request in Administrator’s Remote Repository

Papyrus Guidelines Version 1.1

Page 38 of 70 © Open Networking Foundation

6.3 Downloading a Model from github for “Read Only Use”
This section describes a more easy way of getting the ONF Information Model to the local PC.
This way is restricted to “read only viewers” of the model since it does not allow to commit
changes back to github.

0. The ONFInfoModel repository is located in the ONF git space under the following URL:
https://github.com/OpenNetworkingFoundation/ONFInfoModel.

1. Click the button on the bottom right corner of the github web
page to download the repository to your local PC.

Figure 6-25: Download ONFInfoModel Repository

2. Extract the zip-file to the desired Eclipse Workspace.

Figure 6-26: Extract ONFInfoModel Repository to Worksoace

3. Make the ONFInfoModel visible in the Papyrus Project Explorer by importing the model
and profile projects.
Right click in the area opens the menu containing the -
button:

https://github.com/OpenNetworkingFoundation/ONFInfoModel

Papyrus Guidelines Version 1.1

Page 39 of 70 © Open Networking Foundation

Figure 6-27: Making the ONFInfoModel visible in Papyrus (1)

You need to select the option since the downloaded repository
contains already the files for the model and profile.

Click and then point via to the folder in your workspace containing the
extracted repository files; i.e., .

OnfModel and OpenModelProfile are already selected in the Projects box.

Figure 6-28: Making the ONFInfoModel visible in Papyrus (2)

Do not select the option since the files are already in your
workspace:

Click .

Papyrus Guidelines Version 1.1

Page 40 of 70 © Open Networking Foundation

7 Using Papyrus

7.1 Illustrative Profile and Model
This guideline document uses an illustrative UML profile and an illustrative core-model and sub-
model to explain the handling of Papyrus.

UML artifacts are defined by their properties (i.e., a kind of Meta Model). Standard properties
are defined by the UML Specification [3] which are usually already supported by the UML tool
(e.g., Papyrus). Additional specific properties are defined in a UML Profile (model).
The UML Guidelines document [4] describes the additional properties in detail.

Figure 7-1: Illustrative UML Profile

The AdditionalClassProperties stereotype adds properties classProperty1 and classProperty2 to
the object classes in the model. The extension relationship has been defined as “required” which
adds the additional properties to all object classes; i.e., for every class created, the
AdditionalClassProperties stereotype will be present by default.

The AdditionalAttributeProperties stereotype adds properties attributeProperty1 and
attributeProperty2 to the attributes in the model. The extension relationship has been defined as
“required”, which adds the additional properties to all attributes; i.e., for every attribute created,
the AdditionalAttributeProperties stereotype will be present by default.

The PassedByReference stereotype identifies an attribute or an operation parameter being passed
by value or passed by reference. The extension relationship has not been defined as “required”,
which means that the stereotype has to be associated to the attribute on a case by case basis.
Note:
Only those attributes and operation parameters that refer to object classes may have the
PassedByReference stereotype.

Papyrus Guidelines Version 1.1

Page 41 of 70 © Open Networking Foundation

Figure 7-2: Illustrative Core Model

The initial core model contains a super-class and two sub-classes.

The profile from Figure 7.1 is associated to the model. This adds the additional properties to the
artifacts in the model or allows their use in the model respectively.

You can check if a profile is associated to the model (and which one) by clicking on
 inside the and then click the tab of the

 tab.

Figure 7-3: Profile Associated to the Model

7.2 Papyrus File Structure
A Papyrus model is stored in three different files (.di, .notation, .uml):

(Structure on the file system (left side); structure in the Papyrus Project Explorer (right side))

Figure 7-4: Papyrus File Structure

As already mentioned in section 5.3, a model cannot exist on its own in Papyrus. It has to be
contained by a “project”. A project can contain many models (i.e., multiple sets

Papyrus Guidelines Version 1.1

Page 42 of 70 © Open Networking Foundation

of .di, .notation, .uml files, as shown in Figure 7.5 below). The .project file contains the
information about the project.

7.3 Model Splitting
Papyrus is able to split a UML model into different pieces (i.e., different files) allowing various
teams to develop the model in a collaborative manner. The model pieces can be edited
independently of the core model and then be re-merged with the core model.

(Structure on the file system (left side); structure in the Papyrus Project Explorer (right side))

Figure 7-5: Papyrus File Structure after Splitting

Each sub-model designer will be provided with all profile and model files to allow a
comprehensive view (including cross-associations) on the Information Model at a given time of
specification. Only the own sub-model files (.di, .notation, .uml) are writeable; all other files are
write protected.

 Write protected files must not be changed.
Changes in the other parts of the model are only allowed by the respective model designer.

The sub-model designer must be able to relate the sub-model object classes to the core object
classes and to use the data types defined in the core-model.
This is enabled by importing the core-model object classes and core-model type definitions into
the sub-model. The common UML Primitive Types (i.e., Boolean, Integer, String) also need to
be imported. Section 6.2 (step 4) explains how to import additional artefacts.

Papyrus Guidelines Version 1.1

Page 43 of 70 © Open Networking Foundation

Figure 7-6: Imported UML Artifacts

Note:
In case one sub-model needs to refer to object classes or type definitions from another sub-model,
these artifacts also need to be imported into the sub-model. In case such a definition is used in
more than one other sub-model, the definition should be “elevated” to the core-model.

7.4 Team UML Model Development
The ONF-wide Information Model is developed by different teams. The IMP Modeling team is
responsible for the core-model and additional teams for each sub-model.

The IMP Modeling team is also responsible for the organization of the whole modeling work. It
provides the basic model files for each sub-model team and merges the sub-models back to the
overall ONF-wide Information Model.

The IMP Modeling team creates a zip-file per sub-model team (e.g., sub-model A) which
contains the OpenModel Profile, the core-model and all existing/planned sub-models at that time.
Only the specific sub-model files of sub-model A are writeable (highlighted in green in Figure
7.7), all other files are write protected.

Papyrus Guidelines Version 1.1

Page 44 of 70 © Open Networking Foundation

Figure 7-7: Information Model File Structure

The sub-model designer imports the Open Model Profile (here Papyrus_Teamwork_Profile) into
the workspace via :

Figure 7-8: Importing an Existing Project into Papyrus

After importing the Profile, the sub-model designer imports the ONF Information Model (here
Papyrus_Teamwork_Model) into the workspace via .

Papyrus Guidelines Version 1.1

Page 45 of 70 © Open Networking Foundation

 The Profile must be imported before the Information Model.
 Otherwise, the Profile is not associated to the Model.

Figure 7-9: Project and Model Explorer View after Import into Papyrus

The shows the CoreModel, SubModelB and SubModelC in grey because
these models are write protected.

The sub-model A designer can now develop the model.

 Sub-Model A designer must select the core model in the .
 I.e., double click on “InformationModel”; not “SubModelA”.

The core-model must be selected after every saving of the model.

Papyrus Guidelines Version 1.1

Page 46 of 70 © Open Networking Foundation

time

Model (writeable) Model (write-protected)

Sub-Model
Team A

Sub-Model
Team B

Sub-Model
Team C

v 0.1

Core-Model Team

v 0.2

Sub-Model
Team A

Sub-Model
Team B

Sub-Model
Team C

v 0.3
v 1.0

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

core core core core core core

A B C A B C A B C

Figure 7-10: Modeling Process over Time

7.5 Developing a Sub-Model
The designer of the sub-model can now develop the model:

• Creating object classes
• Setting additional properties (defined in the Profile) of the object classes
• Adding attributes to object classes
• Setting additional properties (defined in the Profile) of the attributes
• Using data types defined in the core-model
• Inheriting sub-model object classes from core-model object classes
• Creating associations from sub-model object classes to core-model object classes
• …

Papyrus Guidelines Version 1.1

Page 47 of 70 © Open Networking Foundation

Figure 7-11: Example Sub-Model A (highlighted in red)

Papyrus Guidelines Version 1.1

Page 48 of 70 © Open Networking Foundation

Note: The stereotypes in front of the class/attribute names (red boxes) indicate that the
class/attribute has the additional properties illustrated in Figure 7.1.

The development of sub-model A is stored in the .uml and .notation files; i.e., these are the only
files that are updated:

Figure 7-12: Updated Sub-Model A Files (highlighted in blue)

The ONF Information Model team takes these two files and overwrites the corresponding files in
the original model workspace. The updated individual sub-models can now be “re-integrated”
into the single ONF Information Model.

Notes:

After re-opening the model in the original model workspace, the data types (imported from the
core-model) are automatically related to the core-model data types and the core-model classes
used in the sub-model class diagrams are automatically related to the corresponding classes in
the core-model.

Adding new data types to the type definitions in the core-model automatically adds them also to
the imported type definitions in the sub-model.

8 Extracting Data from a Papyrus model
This section describes how to extract diagrams, comments and details for a Data Dictionary from
a Papyrus model. There are two ways of extracting information from a Papyrus model:

• Using the Gendoc plugin
o Recommended method for document generation
o Provides a Microsoft Word document

Papyrus Guidelines Version 1.1

Page 49 of 70 © Open Networking Foundation

o Enables extraction of diagrams as well as model content such as classes,
comments etc

• Using the Table function from Papyrus
o Alternative method for extracting model content into a table form
o Provides a basic format

8.1 Gendoc Plugin
The Gendoc plugin is used in conjunction with a document template. The template contains
instructions that enable generation of a Microsoft Word document. The document can include
extracts from the model such as diagrams, class definitions, attribute definitions along with their
stereotypes etc as well as figures and text directly entered into the template. This section
provides instructions on how to install Gendoc followed by guidance on construction of Gendoc
templates along with example fragments of templates.

8.2 Installing Gendoc

Click menu and then :

Figure 8-1: Installing Gendoc (1)

Papyrus Guidelines Version 1.1

Page 50 of 70 © Open Networking Foundation

Click and enter the Gendoc 0.5.0 update site:
http://download.eclipse.org/gendoc/updates/releases/0.5.0/

Figure 8-2: Installing Gendoc (2)

Select Gendoc:

http://download.eclipse.org/gendoc/updates/releases/0.5.0/

Papyrus Guidelines Version 1.1

Page 51 of 70 © Open Networking Foundation

Figure 8-3: Installing Gendoc (3)

Then click and follow the instructions.

8.3 Using Gendoc
Annex A describes how to use Gendoc.

8.4 Papyrus Table
Unlike the class diagrams which show only parts of the underlying model, a Data Dictionary
contains all of the information stored in the model. Papyrus provides a function to convert the
content of the model into an Excel sheet.

Figure 8-4: Model Selection

Double Click Here

Papyrus Guidelines Version 1.1

Page 52 of 70 © Open Networking Foundation

Figure 8-5: Class Expansion

Expand all classes

Papyrus Guidelines Version 1.1

Page 53 of 70 © Open Networking Foundation

Figure 8-6: Create new empty Table

Figure 8-7: Artifact Selection

Right Click here

Highlight the classes and attributes
you want to put in the table

Drag the highlighted
things here

Papyrus Guidelines Version 1.1

Page 54 of 70 © Open Networking Foundation

The content of the new table can be converted into an Excel sheet by selecting the required
columns in the table and then copy&paste the data into an Excel sheet.

Figure 8-8: Creation of Excel Sheet (1)

Figure 8-9: Creation of Excel Sheet (2)

Papyrus Guidelines Version 1.1

Page 55 of 70 © Open Networking Foundation

9 Importing RSA Models into Papyrus
This section describes the steps to be followed when Models “written” in RSA (TM Forum and
ITU-T are using this UML tool from IBM) need to be imported to Papyrus.

Prerequisite for doing this is that the additional Papyrus component “RSA Model Importer” is
installed. Additional Papyrus components can be installed via

Figure 9-1: Installing Papyrus Component “RSA Model Importer”

9.1 Import RSA Model into Papyrus
Notes: Each step identifies the tool that is used to execute it. Any ASCII editor can be used
instead of Notepad++.
The import of the ITU-T G.8052 model is used here as an example.

1. Create a new, empty general project (i.e., not a Papyrus project).

Papyrus Guidelines Version 1.1

Page 56 of 70 © Open Networking Foundation

2. Copy the RSA .epx (profile) and .emx (model) files into the empty project folder.

3. Import the RSA model (.emx file) into Papyrus by right-click on the .emx file and then
select “Import EMX model”:

Figure 9-2: : Importing .emx Model

Papyrus Guidelines Version 1.1

Page 57 of 70 © Open Networking Foundation

As a result, the RSA .emx file is replaced by the Papyrus model file:

4. Import the RSA Profile model (.epx file) into Papyrus by right-click on the .epx file and
then select “Import EMX model” (same as previous step).
As a result, the Papyrus profile model file is created:

9.2 Replace RSA Profile by Papyrus Profile
This is done by changing the pointer from the .epx (RSA) file to the .uml (Payprus) file.

5. Close Papyrus.
Notepad ++: Replace all occurrences of “ITU-T_protocol-neutral-model_profile.epx” by
“ITU-T_protocol-neutral-model_profile.profile.uml” in the model .uml file
() in the Papyrus Workspace:

Figure 9-3: Associated Papyrus Profile

Papyrus Guidelines Version 1.1

Page 58 of 70 © Open Networking Foundation

9.3 Remove the “old” RSA files
6. Windows Explorer: Delete the RSA profile .epx file

() from the Papyrus Workspace.
7. Windows Explorer: Delete the RSA model .emx file () from the

Papyrus Workspace.

Papyrus Guidelines Version 1.1

Page 59 of 70 © Open Networking Foundation

Annex A Using Gendoc
Editor’s notes:
This section is still a draft and will likely be changed in future versions.
Please check the known issues in section A.15 for any limitation which exists at the time.

A basic document generation tutorial is available at
https://www.eclipse.org/gendoc/documentation/Gendoc_v0.5_tutorial.pdf. This provides detail
in some areas but does not cover all aspects of usage. The following subsections provide further
guidance along with template fragments to assist understanding. A template that generates a
normal form of model documentation is included for a dummy model.

Gendoc works with Microsoft Word and the template is a Word file. The template can a mix of
Gendoc script, normal text, Word figures, tables etc. Thus, if you want to create a word
document with other non-model related information, but then have a section specifically for the
model, you would insert the “gendoc” related information as part of that Word document. The
following section builds up a template from the basic framing script through to a full template.
The target document resulting from the gendoc template:

• Is produced in a form that can be published having all the necessary cover material, table
of contents, headers, footers etc

• Contains specific figures extracted from the model in a specific with additional
interleaved description and word figures

• Contains a data dictionary section

The template described does not:

• Take advantage of the package structure of the model
• Interleave class description text with figures

o Instead the figures refer to the data dictionary section for formal description and
structure

It should be noted that at the time of writing this section there are a number of know issues with
Gendoc (highlighted at the end of this section).

A.1 Template usage
The template is stored in a system folder accessible via an Eclipse project so that the template
can be seen in the Papyrus Project Explorer. The folder could be a sub-folder of the system
folder containing the project that includes the model to be documented. Alternatively the
template can be stored in a specific project that just includes the template. The template “points”
to the model to be extracted via the <context model> statement. The template is highlighted with
the right-click menu and the “Generate documentation using Gendoc” item is selected. This will
run the template, i.e. Gendoc is initiated from the template NOT from the model.

https://www.eclipse.org/gendoc/documentation/Gendoc_v0.5_tutorial.pdf

Papyrus Guidelines Version 1.1

Page 60 of 70 © Open Networking Foundation

Figure A-1: Initiating Gendoc for a particular template

The following section explain how the template is targeted at the desired model.

A.2 Basic template
The template includes the name of the model to be documented and the name of the target model
(substitute path and model name in the structure below). Both the .uml and .notation files are
required.3

<config>
<output path=’C:\Users\---appropriate path name--\ModelOutput.docx' />
</config>
<context model=’C:\Users\---appropriate path name--\ModelName.notation' element=’{0}’
importedBundles='gmf;papyrus' />
<gendoc><drop/>
Provides access to diagrams
</gendoc><drop/>
<context model=’C:\Users\---appropriate path name--\ModelName.uml' element=’{0}’
importedBundles='gmf;papyrus' />
<gendoc><drop/>
Provides access to class details
</gendoc><drop/>

3 It is expected that the .notation file will eventually not be necessary and intertwining of class content and model
diagrams will be more straight forward.

Papyrus Guidelines Version 1.1

Page 61 of 70 © Open Networking Foundation

This particular template produces a document with the two black text items only. In the above
example, the entire model “ModelName.uml” is taken as input. In order to select only one
package in the model, one would set “element=’ModelName/{package name}’”.

A.3 Cover, contents, closing text etc
Any text and figures4 inserted between the <gendoc> to </gendoc> space will be produced in the
output.

<gendoc><drop/>
Any text and diagrams etc…
</gendoc><drop/>

A.4 Figures from the model with interleaved text
The figures can be extracted in alphabetical order from the model. The following script (in bold)
will print the figure titles from the model in alphabetical order.

<config>
<output path=’C:\Users\---appropriate path name--\ModelOutput.docx' />
</config>
<context model=’C:\Users\---appropriate path name--\ModelName.notation' element=’{0}’
importedBundles='gmf;papyrus' />
<gendoc><drop/>
[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>
[d.name/]
[/for]<drop/>
</gendoc><drop/>

Clearly this by itself is not particularly useful but substituting the “[d.name/]” with the following
bold script and replacing “specificDiagramName“ with the name (or unique substring of a name)
of a diagram in the model will extract a specific named diagram (printing the diagram and its
name)5.

<gendoc><drop/>
Text and figures leading to diagram …
[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>
[if d.name.contains('specificDiagramName')] [d.name/]
<drop/>

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW=’false’>
</image>

Figure 1 [d.name/]

4 Note that certain special characters such as “[“ should be avoided. Any issues will be covered in the “known issues”
document.
5 There are current

Papyrus Guidelines Version 1.1

Page 62 of 70 © Open Networking Foundation

[else]<drop/>
[/if]<drop/>
[/for]<drop/>
More text and figures after diagram ….
</gendoc><drop/>

The yellow area highlights a frame (which is otherwise not obvious). This frame is where
Gendoc will place the figure. The frame will need to be sized to the right width in an actual
usage (shrunk here to reduce space used in this document). The script will allow Gendoc to
adjust the height but forces it to not exceed maximum width.

The following template extract expands for two figures (and could clearly be expanded to cover
many more.

<gendoc><drop/>
Text and figures leading to diagram …
[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>
[if d.name.contains('specificDiagramName')] [d.name/]
<drop/>

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW=’false’>
</image>

Figure 1 [d.name/]

[else]<drop/>
[/if]<drop/>
[/for]<drop/>
More text and figures after diagram and leading to the second diagram
[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>
[if d.name.contains('anotherSpecificDiagramName')] [d.name/]
<drop/>

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW=’false’>
</image>

Figure 2 [d.name/]

[else]<drop/>
[/if]<drop/>
[/for]<drop/>
More text and figures after diagram ….
</gendoc><drop/>

The model may have many figures, the remainder will be ignored. Clearly care needs to be taken
to ensure that one figure does not have a name string that is a sub-string of another name.

Papyrus Guidelines Version 1.1

Page 63 of 70 © Open Networking Foundation

A.5 Figure in alphabetical order with no interleaved specific text
Alternatively the simple loop can be used to list all figures in alphabetical order. These cannot
have associated document text inserted automatically.

<config>
<output path=’C:\Users\---appropriate path name--\ModelOutput.docx' />
</config>
<context model=’C:\Users\---appropriate path name--\ModelName.notation' element=’{0}’
importedBundles='gmf;papyrus' />
<gendoc><drop/>
[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>
[d.name/]

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW=’false’>
</image>

Figure 1 [d.name/]

[/for]<drop/>
</gendoc><drop/>

A.6 Further explanation of the script
A majority of the script used in the previous sections should be relatively obvious (e.g. [for…]…
[/for] loop and [if…]… [else]… [/if] nested structures. The specific contents of the for and if
statements is covered adequately in the tutorial material referenced earlier. One key thing to
highlight here is the use of <drop/>. This instruction causes Gendoc to not throw a line break for
the line that has <drop/>. You may find many blank lines in your output. This will normally be
because you have forgotten one or more <drop/> instructions.

There is a peculiar behavior with diagrams that requires a <drop/> on the blank line prior to the
<image…> command. Without this part (but not all) of the <image… > instruction is printed.

A.7 Test template for printing diagrams and associated text
The following embedded file contains script which when modified to select the right model
(several places in the file) and output locations will print three diagrams from the model.

gdDiagList.docx

A303646
Notiz
Unmarked festgelegt von A303646

Model Generation Output - December 2, 2015

<config>
<output path=’C:\Users\---appropriate path name--\ModelOutput.docx' />

[bookmark: _Toc289330175][bookmark: _Toc289330255][bookmark: _Toc396824430][bookmark: _Toc396824535]</config><drop/>

<context model=’C:\Users\---appropriate path name--\Model.notation' element=’{0}’ importedBundles='gmf;papyrus' /><drop/>

<gendoc><drop/>

You need to modify the path name for the output file and for the input model above (in brown). <drop/>

Note that none of the red text in this document will appear in the output <drop/>

Note that commands that do not result in text being printed are highlighted in purple. Text and commands that cause print are in black <drop/>

Various opening sections

Normal front matter…

Clearly there can be a cover sheet, many sections of text here including normal copyright, tables of contents and figures prior to the section with relevant figures. <drop/>

The following provides two methods for printing diagrams. <drop/>

· The first method allows for specific named diagrams to be selected and for specific text to be associated with the specific diagrams <drop/>

· The second method allows for all diagrams to be printed in a simple list each with a headings. <drop/>

It is anticipated that the first method will be the normal usage. <drop/>

<drop/>

If you want to use the named diagrams method you need to replace the ‘FirstSpecificDiagraName‘,‘SecondSpecificDiagraName‘ and ‘ThirdSpecificDiagraName‘ with specific names from your model (or you can append the names with ‘1-‘ etc.) <drop/>

If you want the second method only delete from here to where it first says stop below <drop/>

Relevant subsection heading for figures

Text for leading to diagram 1…

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

[if d.name.contains('FirstSpecificDiagramName')]

<drop/>	

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW = ‘false’></image>

Figure 2-1 [d.name/]

[else]<drop/>

[/if]<drop/>

[/for]<drop/>

More text after diagram 1 leading to diagram 2

Clearly there can be various intervening sections etc between the first and second diagram. <drop/>

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

[if d.name.contains('SecondSpecificDiagramName')]

<drop/>	

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW = ‘false’></image>

Figure 2-2 [d.name/]

[else]<drop/>

[/if]<drop/>

[/for]<drop/>

More text after diagram 2 leading to diagram 3….

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

[if d.name.contains('ThirdSpecificDiagramName')]

<drop/>	

<image object='[d.getDiagram()/]' maxW='true' keepH='false’ keepW = ‘false'></image>

Figure 2-3 [d.name/]

[else]<drop/>

[/if]<drop/>

[/for]<drop/>

More text following diagram 3 etc

Stop deleting if you want the second method only <drop/>

If you want the first method only delete from here to where it says stop below <drop/>

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

This method does not allow the insertion of any text associated with the individual figures etc. <drop/>

Diagram : [d.name/]

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW=’false’ ><drop/>

</image>

[/for]<drop/>

Stop deleting if you want the first method only <drop/>

</gendoc><drop/>

Page 5 / 5

ONF
Dateianlage
gdDiagList.docx

Papyrus Guidelines Version 1.1

Page 64 of 70 © Open Networking Foundation

A.8 Data Dictionary template overview
In the following subsections the template is extended to add data dictionary content. This
particular example data dictionary includes Classes and Data Types along with their attributes
and for each provides (as appropriate):

• Comments
• Properties
• Stereotypes

Note that the stereotypes examples are from the OpenModelProfile [5].

A.9 Adding the class and its stereotypes
Considering the basic template described above and replacing the text “Provides access to class
details” with the section in bold below will provide the class name, class comments comments
and the class stereotypes

<config>
<output path=’C:\Users\---appropriate path name--\ModelOutput.docx' />
</config>
<context model=’C:\Users\---appropriate path name--\ModelName.notation' element=’{0}’
importedBundles='gmf;papyrus' />
<gendoc><drop/>
Provides access to diagrams
</gendoc><drop/>
<context model=’C:\Users\---appropriate path name--\ModelName.uml' element=’{0}’
importedBundles='gmf;papyrus' />
<gendoc><drop/>
[for (cl:Class | Class.allInstances()->sortedBy(name))]<drop/>
[cl.name/]
[for (co:Comment | cl.ownedComment)]<drop/>
<dropEmpty>[co._body.clean()/]</dropEmpty>
[/for]<drop/>
Applied stereotypes:
[for (st:Stereotype | cl.getAppliedStereotypes())]<drop/>

• [st.name/]
[for (oa:Property|st.ownedAttribute)]<drop/>

• [if (not oa.name.contains('base'))][oa.name/]: [if (not cl.getValue(st,
oa.name).oclIsUndefined())][if oa.name.contains('condition')][cl.getValue(st,
oa.name).oclAsType(String)/] [else][cl.getValue(st,
oa.name).oclAsType(EnumerationLiteral).name/][/if][else]<drop/>[/if]

[/if] <drop/>
[/for]<drop/>
[/for]<drop/>
[/for]<drop/>
</gendoc><drop/>

Note that:

Papyrus Guidelines Version 1.1

Page 65 of 70 © Open Networking Foundation

• The classes are in alphabetical order
• The comment body is not printed if empty using the <dropEmpty>..</dropEmpty>

instruction
• Any properties of stereotypes that have “base” in their name are not printed
• “conditions” are only printed if there is a specified condition
• The [cl.name/] would be expected to be a heading in a normal document

A.10 Adding properties and stereotypes in tabular form
The script from the previous section has been extended with the additional script highlighted below in bold (other than the table contents). The
table produced by the script here includes an explicit structuring of the stereotypes.

<config>
<output path=’C:\Users\---appropriate path name--\ModelOutput.docx' />
</config>
<context model=’C:\Users\---appropriate path name--\ModelName.notation' element=’{0}’ importedBundles='gmf;papyrus' />
<gendoc><drop/>
Provides access to diagrams
</gendoc><drop/>
<context model=’C:\Users\---appropriate path name--\ModelName.uml' element=’{0}’ importedBundles='gmf;papyrus' />
<gendoc><drop/>
[for (cl:Class | Class.allInstances()->sortedBy(name))]<drop/>
[cl.name/]
[for (co:Comment | cl.ownedComment)]<drop/>
<dropEmpty>[co._body.clean()/]</dropEmpty>
[/for]<drop/>
Applied stereotypes:
[for (st:Stereotype | cl.getAppliedStereotypes())]<drop/>

• [st.name/]
[for (oa:Property|st.ownedAttribute)]<drop/>

• [if (not oa.name.contains('base'))][oa.name/]: [if (not cl.getValue(st, oa.name).oclIsUndefined())][if oa.name.contains('condition')][cl.getValue(st,
oa.name).oclAsType(String)/] [else][cl.getValue(st, oa.name).oclAsType(EnumerationLiteral).name/][/if][else]<drop/>[/if]

[/if] <drop/>
[/for]<drop/>
[/for]<drop/>
[if cl.ownedAttribute->notEmpty()]<drop/>

Table 1: Attributes for [cl.name/]

<drop/>
<table><drop/>

Papyrus Guidelines Version 1.1

Page 67 of 70 © Open Networking Foundation

Attribute Name Type Multiplicity Access Stereotypes Description

[for (p:Property|cl.ownedAttribute)]<drop/>

[p.name/] [p.type.name/] [if(p.lower=p.
upper)]1[else
][p.lower/]..[i
f(p.upper=-
1)]*[else][p.u
pper/][/if][/if
]

[if(not(
p.isRea
dOnly)
)]RW[e
lse]R[/i
f]

[for (st:Stereotype |
p.getAppliedStereotypes())]<drop/>
[st.name/]
[for(oa:Property|st.ownedAttribute)]<drop/>
• [if oa.name.contains('attribute')]AVC:

[p.getValue(st,
oa.name).oclAsType(EnumerationLiteral).na
me/]

[else]<drop/>
• [if oa.name.contains('invariant')]isInvariant:

[p.getValue(st,
oa.name).oclAsType(Boolean)/]

[else]<drop/>
• [if oa.name.contains('value')]valueRange: [if

(not p.getValue(st,
oa.name).oclIsUndefined())][p.getValue(st,
oa.name).oclAsType(String)/][else] no range
constraint [/if]

[else]<drop/>
• [if oa.name.contains('support')]support:

[p.getValue(st,
oa.name).oclAsType(EnumerationLiteral).na
me/]

[else]<drop/>
• [if oa.name.contains('condition')][if (not

p.getValue(st,
oa.name).oclIsUndefined())]condition:[p.get
Value(st, oa.name).oclAsType(String)/][else]
<drop/> [/if]

[else]<drop/>
[/if]<drop/>
[/if]<drop/>
[/if]<drop/>
[/if]<drop/>
[/if]<drop/>
[/for]<drop/>
[/for]<drop/>

[for (c:Comment | p.ownedComment)]
<drop/>
[c._body.clean()/]
[/for]

[/for]<drop/>
</table><drop/>
[else][/if]<drop/>
[/for]<drop/>

Papyrus Guidelines Version 1.1

Page 68 of 70 © Open Networking Foundation

</gendoc><drop/>
Note that this and following sections have been reoriented to landscape as is advisable in a document when producing attribute data dictionary
content.

A.11 Adding complex data types
A complex data types have a very similar structure to a class and hence the Gendoc commands are similar. The following snippet highlights in
bold the differences between the class script above and the data type script replacing from “[for (cl:Class | Class.allInstances()->sortedBy(name))]<drop/>”

[for (dt:DataType | DataType.allInstances()->sortedBy(name))]<drop/>
[if dt.oclIsTypeOf(DataType)]<drop/>
[dt.name/]
[for (co:Comment | dt.ownedComment)]<drop/>
<dropEmpty>[co._body.clean()/]</dropEmpty>
 [/for]<drop/>
Applied Stereotypes:
[for (st:Stereotype | dt.getAppliedStereotypes())]<drop/>

• [st.name/]
[/for]<drop/>
[if dt.ownedAttribute->notEmpty()]<drop/>
Table 2: Attributes for [dt.name/]
<drop/>
<table><drop/>
Attribute Name Type Multiplicity Access Stereotypes Description
[for (p:Property|dt.ownedAttribute)]<drop/>

…… then the table is the same as for the class attributes…

A.12 Adding other data types

A.12.1 Enumeration Types
The following script will extract all enumerations with their comments and list the literals with their comments for each. Clearly stereotypes can
be extracted using fragments of script from earlier sections.

Papyrus Guidelines Version 1.1

Page 69 of 70 © Open Networking Foundation

[for (dt:DataType | DataType.allInstances()->sortedBy(name))]<drop/>
[if dt.oclIsTypeOf(Enumeration)]<drop/>
[dt.name/]
[for (co:Comment | dt.ownedComment)]<drop/>
<dropEmpty>[co._body.clean()/]</dropEmpty>
 [/for]<drop/>
Contains Enumeration Literals:
[for (e:EnumerationLiteral|dt.oclAsType(Enumeration).ownedLiteral)]<drop/>

• [e.name/]:
o [for (co:Comment | e.ownedComment)]<drop/>
o <dropEmpty>[co._body.clean()/]
o </dropEmpty>[/for]<drop/>

[/for]<drop/>
[else] [/if]<drop/>
[/for]<drop/>

A.12.2 Primitive Types
Primitive types can be listed with comments using the followings script.

[for (dt:DataType | DataType.allInstances()->sortedBy(name))]<drop/>
[if dt.oclIsTypeOf(PrimitiveType)]<drop/>
[dt.name/]
[for (co:Comment | dt.ownedComment)]<drop/>
<dropEmpty>[co._body.clean()/]</dropEmpty>
[/for]<drop/>

 [else] [/if]<drop/>
 [/for]<drop/>

A.13 Example complete template
The following embedded file contains script which when modified to select the right model
(several places in the file) and output locations will print three diagrams and/or all diagrams in
the model (follow instruction to control the options) and will then provide data dictionary
sections listing classes, complex data types, enumerations and primitive data types.

gdFullModelDocumen
tationExample.docx

Note that when using a template figure numbers, table numbers, references, tables of
contents/figures/tables etc will need to be updated in the output document to provide a completed
document.

A.14 Extending the template
Work is ongoing to extend the capability for documentation. These guidelines will be updated as
additional relevant capabilities are identified.

A.15 Known issues
Known issues:

• Some header/footer content may prevent document production
• “[“ (often used in references) must not be used in the Word text anywhere
• HTML formatting must not be used in a comment/description field for any artefact in a

UML model

<config>
<output path=’C:\Users\---appropriate path name--\ModelOutput.docx' />

[bookmark: _Toc289330175][bookmark: _Toc289330255][bookmark: _Toc396824430][bookmark: _Toc396824535]</config><drop/>

<context model=’C:\Users\---appropriate path name--\Model.notation' element=’{0}’ importedBundles='gmf;papyrus' /><drop/>

<gendoc><drop/>

You need to modify the path name for the output file and for the input model above (in brown). <drop/>

Note that none of the red text in this document will appear in the output <drop/>

Note that commands that do not result in text being printed are highlighted in purple. Text and commands that cause print are in black <drop/>

Various opening sections

Normal front matter…

Clearly there can be a cover sheet, many sections of text here including normal copyright, tables of contents and figures prior to the section with relevant figures. <drop/>

The following provides two methods for printing diagrams. <drop/>

· The first method allows for specific named diagrams to be selected and for specific text to be associated with the specific diagrams <drop/>

· The second method allows for all diagrams to be printed in a simple list each with a headings. <drop/>

It is anticipated that the first method will be the normal usage. <drop/>

<drop/>

If you want to use the named diagrams method you need to replace the ‘FirstSpecificDiagraName‘,‘SecondSpecificDiagraName‘ and ‘ThirdSpecificDiagraName‘ with specific names from your model (or you can append the names with ‘1-‘ etc.) <drop/>

If you want the second method only delete from here to where it first says stop below <drop/>

Relevant subsection heading for figures

Text for leading to diagram 1…

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

[if d.name.contains('FirstSpecificDiagramName')]

<drop/>	

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW = ‘false’></image>

Figure 2-1 [d.name/]

[else]<drop/>

[/if]<drop/>

[/for]<drop/>

More text after diagram 1 leading to diagram 2

Clearly there can be various intervening sections etc between the first and second diagram. <drop/>

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

[if d.name.contains('SecondSpecificDiagramName')]

<drop/>	

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW = ‘false’></image>

Figure 2-2 [d.name/]

[else]<drop/>

[/if]<drop/>

[/for]<drop/>

More text after diagram 2 leading to diagram 3….

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

[if d.name.contains('ThirdSpecificDiagramName')]

<drop/>	

<image object='[d.getDiagram()/]' maxW='true' keepH='false’ keepW = ‘false'></image>

Figure 2-3 [d.name/]

[else]<drop/>

[/if]<drop/>

[/for]<drop/>

More text following diagram 3 etc

Stop deleting if you want the second method only <drop/>

If you want the first method only delete from here to where it says stop below <drop/>

[for (d : notation::Diagram |notation::Diagram.allInstances()->sortedBy(name))]<drop/>

This method does not allow the insertion of any text associated with the individual figures etc. <drop/>

Diagram : [d.name/]

<image object='[d.getDiagram()/]' maxW='true' keepH='false' keepW=’false’ ><drop/>

</image>

[/for]<drop/>

Stop deleting if you want the first method only <drop/>

Model Generation Output - December 2, 2015

Page 2 / 12

</gendoc><drop/>

<context model=’C:\Users\---appropriate path name--\Model.uml' element=’{0}’ importedBundles='gmf;papyrus' />

<gendoc><drop/>

You need to put the appropriate path name for the output file and for the input model above (in brown). Take care not to insert spaces. <drop/>

This section provides the data dictionary. <drop/>

Classes

[for (cl:Class | Class.allInstances()->sortedBy(name))]<drop/>

[cl.name/]

[for (co:Comment | cl.ownedComment)]<drop/>

<dropEmpty>[co._body.clean()/]</dropEmpty>

[/for]<drop/>

Applied stereotypes:

[for (st:Stereotype | cl.getAppliedStereotypes())]<drop/>

· [st.name/]

[for (oa:Property|st.ownedAttribute)]<drop/>

· [if (not oa.name.contains('base'))][oa.name/]: [if (not cl.getValue(st, oa.name).oclIsUndefined())][if oa.name.contains('condition')][cl.getValue(st, oa.name).oclAsType(String)/] [else][cl.getValue(st, oa.name).oclAsType(EnumerationLiteral).name/][/if][else]<drop/>[/if]

[/if] <drop/>

[/for]<drop/>

[bookmark: _Toc427242242][/for]<drop/>

[if cl.ownedAttribute->notEmpty()]<drop/>

Use one of the following two forms to lead into the table depending upon whether you want table numbering or not. Note that you will need to post-process the output document to get the right table numbers by selecting all text in the document (select all) and the updating the fields (just bring up the menu over one and select update field <drop/>

Attributes for [cl.name/]

Table 1: Attributes for [cl.name/]

<drop/>

<table><drop/>

		Attribute Name

		Type

		Multiplicity

		Access

		Stereotypes

		Description

[for (p:Property|cl.ownedAttribute)]<drop/>

		[p.name/]

		[p.type.name/]

		[if(p.lower=p.upper)]1[else][p.lower/]..[if(p.upper=-1)]*[else][p.upper/][/if][/if]

		[if(not(p.isReadOnly))]RW[else]R[/if]

		[for (st:Stereotype | p.getAppliedStereotypes())]<drop/>

[st.name/]

[for(oa:Property|st.ownedAttribute)]<drop/>

· [if oa.name.contains('attribute')]AVC: [p.getValue(st, oa.name).oclAsType(EnumerationLiteral).name/]

[else]<drop/>

· [if oa.name.contains('invariant')]isInvariant: [p.getValue(st, oa.name).oclAsType(Boolean)/]

[else]<drop/>

· [if oa.name.contains('value')]valueRange: [if (not p.getValue(st, oa.name).oclIsUndefined())][p.getValue(st, oa.name).oclAsType(String)/][else] no range constraint [/if]

[else]<drop/>

· [if oa.name.contains('support')]support: [p.getValue(st, oa.name).oclAsType(EnumerationLiteral).name/]

[else]<drop/>

· [if oa.name.contains('condition')][if (not p.getValue(st, oa.name).oclIsUndefined())]condition:[p.getValue(st, oa.name).oclAsType(String)/][else] <drop/> [/if]

[else]<drop/>

[/if]<drop/>

[/if]<drop/>

[/if]<drop/>

[/if]<drop/>

[/if]<drop/>

[/for]<drop/>

[/for]<drop/>

		[for (c:Comment | p.ownedComment)] <drop/>

[c._body.clean()/]

[/for]

[/for]<drop/>

</table><drop/>

[else][/if]<drop/>

[/for]<drop/>

Data Types

[for (dt:DataType | DataType.allInstances()->sortedBy(name))]<drop/>

[if dt.oclIsTypeOf(DataType)]<drop/>

[dt.name/]

[for (co:Comment | dt.ownedComment)]<drop/>

<dropEmpty>[co._body.clean()/]</dropEmpty>

[/for]<drop/>

Applied Stereotypes:

[for (st:Stereotype | dt.getAppliedStereotypes())]<drop/>

· [st.name/]

[/for]<drop/>

[if dt.ownedAttribute->notEmpty()]<drop/>

Use one of the following two forms to lead into the table depending upon whether you want table numbering or not. Note that you will need to post-process the output document to get the right table numbers by selecting all text in the document (select all) and the updating the fields (just bring up the menu over one and select update field <drop/>

Attributes for [dt.name/]

Table 1: Attributes for [dt.name/]

<drop/>

<table><drop/>

		Attribute Name

		Type

		Multiplicity

		Access

		Stereotypes

		Description

[for (p:Property|dt.ownedAttribute)]<drop/>

		[p.name/]

		[p.type.name/]

		[if(p.lower=p.upper)]1[else][p.lower/]..[if(p.upper=-1)]*[else][p.upper/][/if][/if]

		[if(not(p.isReadOnly))]RW[else]R[/if]

		[for (st:Stereotype | p.getAppliedStereotypes())]<drop/>

[st.name/]

[for(oa:Property|st.ownedAttribute)]<drop/>

· [if oa.name.contains('attribute')]AVC: [p.getValue(st, oa.name).oclAsType(EnumerationLiteral).name/]

[else]<drop/>

· [if oa.name.contains('invariant')]isInvariant: [p.getValue(st, oa.name).oclAsType(Boolean)/]

[else]<drop/>

· [if oa.name.contains('value')]valueRange: [if (not p.getValue(st, oa.name).oclIsUndefined())][p.getValue(st, oa.name).oclAsType(String)/][else] no range constraint [/if]

[else]<drop/>

· [if oa.name.contains('support')]support: [p.getValue(st, oa.name).oclAsType(EnumerationLiteral).name/]

[else]<drop/>

· [if oa.name.contains('condition')][if (not p.getValue(st, oa.name).oclIsUndefined())]condition:[p.getValue(st, oa.name).oclAsType(String)/][else] <drop/> [/if]

[else]<drop/>

[/if]<drop/>

[/if]<drop/>

[/if]<drop/>

[/if]<drop/>

[/if]<drop/>

[/for]<drop/>

[/for]<drop/>

		 [for (c:Comment | p.ownedComment)] <drop/>

 [c._body.clean()/]

[/for]

 [/for]<drop/>

</table><drop/>

[else][/if]<drop/>

[else][/if]<drop/>

[/for]<drop/>

Enumeration Types

[for (dt:DataType | DataType.allInstances()->sortedBy(name))]<drop/>

[if dt.oclIsTypeOf(Enumeration)]<drop/>

 [dt.name/]

[for (co:Comment | dt.ownedComment)]<drop/>

<dropEmpty>[co._body.clean()/]</dropEmpty>

[/for]<drop/>

Contains Enumeration Literals:

[for (e:EnumerationLiteral|dt.oclAsType(Enumeration).ownedLiteral)]<drop/>

· [e.name/]:

· [for (co:Comment | e.ownedComment)]<drop/>

· <dropEmpty>[co._body.clean()/]

· </dropEmpty>[/for]<drop/>

[/for]<drop/>

[else] [/if]<drop/>

[/for]<drop/>

Primitive Types

[for (dt:DataType | DataType.allInstances()->sortedBy(name))]<drop/>

[if dt.oclIsTypeOf(PrimitiveType)]<drop/>

 [dt.name/]

[for (co:Comment | dt.ownedComment)]<drop/>

<dropEmpty>[co._body.clean()/]</dropEmpty>

[/for]<drop/>

[else] [/if]<drop/>

[/for]<drop/>

Normal back matter in the document.

</gendoc><drop/>

ONF
Dateianlage
gdFullModelDocumentationExample.docx

	onf2015.333_Papyrus_Guidelines_v1.0.06.pdf
	1 Introduction
	2 References
	3 Abbreviations
	4 Documentation Overview
	5 Getting Papyrus Running
	5.1 Downloading Eclipse
	5.2 Installing Papyrus
	5.3 Importing a Model
	5.4 Deleting a Project

	6 Information Model on GitHub
	6.1 ONFInfoModel Structure on GitHub
	6.2 GitHub Work Flow
	6.3 Downloading a Model from github for “Read Only Use”

	7 Using Papyrus
	7.1 Illustrative Profile and Model
	7.2 Papyrus File Structure
	7.3 Model Splitting
	7.4 Team UML Model Development
	7.5 Developing a Sub-Model

	8 Extracting Data from a Papyrus model
	8.1 Gendoc Plugin
	8.2 Installing Gendoc
	8.3 Using Gendoc
	8.4 Papyrus Table

	9 Importing RSA Models into Papyrus
	9.1 Import RSA Model into Papyrus
	9.2 Replace RSA Profile by Papyrus Profile
	9.3 Remove the “old” RSA files
	Annex A Using Gendoc
	A.1 Template usage
	A.2 Basic template
	A.3 Cover, contents, closing text etc
	A.4 Figures from the model with interleaved text
	A.5 Figure in alphabetical order with no interleaved specific text
	A.6 Further explanation of the script
	A.7 Test template for printing diagrams and associated text
	A.8 Data Dictionary template overview
	A.9 Adding the class and its stereotypes
	A.10 Adding properties and stereotypes in tabular form
	A.11 Adding complex data types
	A.12 Adding other data types
	A.12.1 Enumeration Types
	A.12.2 Primitive Types

	A.13 Example complete template
	A.14 Extending the template
	A.15 Known issues

