
Functional Requirements for
Transport API

June 10, 2016

ONF TR-527

Functional Requirements for Transport API Version No.01

Page 2 of 71 © Open Networking Foundation

ONF Document Type: Technical Recommendation

ONF Document Name: Functional Requirements for Transport API

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,

SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

2275 E. Bayshore Road, Suite 103, Palo Alto, CA 94303

www.opennetworking.org

©2016 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to identify,

products or services of their respective owners.

http://www.opennetworking.org/

Functional Requirements for Transport API Version No.01

Page 3 of 71 © Open Networking Foundation

1 Introduction ... 8

1.1 Purpose ... 8

1.2 Scope .. 9

1.3 References .. 9

1.4 Abbreviations .. 9

1.5 Terms and Definitions ... 10

1.6 Conventions .. 12

2 Functional Architecture .. 13

3 Functional Requirements ... 15

3.1 Topology Service .. 15

3.1.1 Topology Retrieval APIs ... 15

3.2 Connectivity Service ... 17

3.2.1 Connectivity Retrieval APIs .. 18

3.2.2 Connectivity Request APIs ... 21

3.3 Path Computation Service .. 23

3.3.1 Path Computation Request APIs .. 23

3.4 Virtual Network Service... 25

3.4.1 Virtual Network Retrieval APIs ... 25

3.4.2 Virtual Network Request APIs .. 26

3.5 Notification Service ... 27

3.5.1 Notification Subscription and Filtering APIs ... 28

3.5.2 Notification Message Types ... 31

3.6 TAPI Data Types ... 32

4 Appendix A: Transport API Concepts Overview .. 38

4.1 Context .. 38

4.2 Node and Topology Aspects of Forwarding Domain .. 39

4.3 Hierarchical Control Domains and Contexts ... 42

4.4 Topology Traversal using APIs ... 44

4.5 Service, Connection and Route .. 46

4.6 Node Edge Point v/s Service End Point v/s Connection End Point .. 48

5 Appendix B: Transport API Examples Use cases .. 50

5.1 10GE EPL Service over ODU2 Connection over 100G OTN network 51

5.2 1G EVPL Service over ODU0 Connection over 100G OTN network ... 54

5.3 Var-rate EVPL Service over EVC Connection over 100G OTN network 57

5.4 EVPL Service with Load Balancing .. 57

5.5 Anycast EVPL Service .. 58

6 Appendix C: Multi-layer and Multi-domain Use cases .. 60

6.1 Multi-layer and Multi-domain Topology Initialization ... 60

6.2 Multi-layer and multi-domain services/connections .. 61

Functional Requirements for Transport API Version No.01

Page 4 of 71 © Open Networking Foundation

6.3 Topology after service/connection Setup.. 64

6.4 Further work .. 65

7 Appendix D: Transport API Information Model Skeleton .. 66

8 Contributors ... 71

9 Version History .. 71

List of Figures

Figure 1: T-API Artifacts - ONF/OSSDN Project Dependencies ... 8

Figure 2: Transport API Functional Architecture... 14

Figure 3 : Simple Physical Network Example .. 38

Figure 4: Shared Contexts - Architecture perspective .. 39

Figure 5: Shared Contexts & Topology .. 39

Figure 6: Topological Decomposition of Node .. 40

Figure 7: Recursive Topological Decomposition of Node .. 41

Figure 8: Node/Topology perspectives of recursively partitioned Forwarding Domain (FD) 41

Figure 9: View of Controller-1 Context based on Views exported by Controllers 2 & 3 42

Figure 10: Views of Controller-2 Contexts ... 43

Figure 11: Views of Controller-3 Contexts ... 43

Figure 12: API Client’s View of Controller-1 Context without retrieving Topology details 44

Figure 13: API Client’s View of Controller-1 Context by retrieving top-most level of Topology 44

Figure 14: API Client’s View of Controller1 Context by retrieving 2 levels of Topology details 45

Figure 15: API Client’s View of Controller-1 Context by retrieving 3 levels of Topology details 45

Figure 16: Service & Connections from Controller-1 perspective ... 47

Figure 17: Service & Connections from Controller-2 perspective ... 47

Figure 18: Service & Connections from Controller-3 perspective ... 48

Figure 19: Example Physical Network Topology ... 50

Figure 20: Example 10GE EPL Service over ODU2 ... 52

Figure 21: 10G EPL - Customer View of Connectivity ... 52

Figure 22: 10G EPL - Provider’s View of Topology exported to the Customer 53

Figure 23: 10G EPL - Provider’s View of Service/Connections exported to the Customer 53

Figure 24: 10G EPL - Customer's view of Service/Connectivity .. 54

Functional Requirements for Transport API Version No.01

Page 5 of 71 © Open Networking Foundation

Figure 25: Example 1G EVPL Service over ODU0 ... 55

Figure 26: 1G EVPL - Customer View of Connectivity .. 55

Figure 27: 1G EVPL - Provider’s View of Topology exported to the Customer 56

Figure 28: 1G EVPL - Provider’s View of Service/Connections exported to the Customer 56

Figure 29: 1G EVPL - Customer's view of Service/Connectivity .. 57

Figure 30: EVPL Service with Load Balancing... 58

Figure 31: Example Anycast EVPL Service .. 58

Figure 32: Multi-layer and Multi-domain Example Network Configuration ... 60

Figure 33: Network Topology in Controller 1 ... 61

Figure 34: Multi-layer and Multi-domain service/connection setup (Option A) 62

Figure 35: Multi-layer and Multi-domain service/connection setup (Option B) 64

Figure 36: Topology instance diagram after service/connection setup .. 64

Figure 37: Transport API Information Model Skeleton .. 66

Figure 38: Topology Service Skeleton .. 67

Figure 39: Connectivity Service Skeleton .. 68

Figure 40: Virtual Network Service Skeleton.. 69

Figure 41: Path Computation Service Skeleton ... 70

List of Functional Requirement Tables

TAPI_FR 1: Get Topology List ... 15

TAPI_FR 2: Get Topology Details .. 15

TAPI_FR 3: Get Node Details ... 16

TAPI_FR 4: Get Link Details ... 16

TAPI_FR 5: Get Node Edge Point Details ... 17

TAPI_FR 6: Get Service End Point List ... 18

TAPI_FR 7: Get Service End Point Details ... 18

TAPI_FR 8: Get Connectivity Service List .. 18

TAPI_FR 9: Get Connectivity Service Details... 19

TAPI_FR 10: Get Connection Details .. 20

TAPI_FR 11: Get Connection End Point Details .. 20

TAPI_FR 12: Create Connectivity Service .. 21

TAPI_FR 13: Update Connectivity Service ... 22

Functional Requirements for Transport API Version No.01

Page 6 of 71 © Open Networking Foundation

TAPI_FR 14: Delete Connectivity Service ... 22

TAPI_FR 15: Compute P2P Path .. 23

TAPI_FR 16: Optimize P2P Path .. 24

TAPI_FR 17: Get Virtual Network Service List ... 25

TAPI_FR 18: Get Virtual Network Service Details .. 25

TAPI_FR 19: Create Virtual Network Service ... 26

TAPI_FR 20: Delete Virtual Network Service .. 27

TAPI_FR 21: Discover Supported Notification Types ... 28

TAPI_FR 22: Create Notification Subscription .. 29

TAPI_FR 23: Modify Notification Subscription ... 29

TAPI_FR 24: Delete Notification Subscription .. 30

TAPI_FR 25: Suspend Notification Subscription .. 30

TAPI_FR 26: Resume Notification Subscription ... 30

TAPI_FR 27: Retrieve Notification Records .. 30

TAPI_FR 28: Object Creation Notification .. 31

TAPI_FR 29: Object Deletion Notification ... 31

TAPI_FR 30: Attribute Value Change Notification ... 31

TAPI_FR 31: State Change Notification .. 32

TAPI_FR 32: Layer Protocol Name .. 32

TAPI_FR 33: Capacity (Fixed Bandwidth) ... 32

TAPI_FR 34: Capacity (Profile) .. 33

TAPI_FR 35: Administration State ... 33

TAPI_FR 36: Operational State .. 33

TAPI_FR 37: Lifecycle State ... 34

TAPI_FR 38: Port Role .. 34

TAPI_FR 39: Port Direction .. 34

TAPI_FR 40: Termination Direction ... 34

TAPI_FR 41: Service End Point TRI format .. 34

TAPI_FR 42: Service Type .. 35

TAPI_FR 43: Connectivity Constraints ... 35

TAPI_FR 44: Virtual Network Service Constraints .. 35

TAPI_FR 45: Traffic Matrix ... 36

TAPI_FR 46: Path Optimization Constraint .. 36

Functional Requirements for Transport API Version No.01

Page 7 of 71 © Open Networking Foundation

TAPI_FR 47: Path Objective Function ... 36

TAPI_FR 48: Notification-Header ... 36

TAPI_FR 49: Notification-Type .. 37

TAPI_FR 50: Object-Type ... 37

TAPI_FR 51: Notification-Source-Indicator .. 37

Functional Requirements for Transport API Version No.01

Page 8 of 71 © Open Networking Foundation

1 Introduction

The software defined networking (SDN) paradigm revolves around separation of forwarding/data

plane and control plane, logically centralized control and application-focused programmable

interfaces. In transport networks where logically-centralized control/management and control-

data separation are not new concepts and the network-control function and behavior are well-

understood and established, standardizing application programmer’s interfaces (APIs) to the

network control functions become important.

1.1 Purpose

The purpose of this document is to specify the information that is relevant to an application

programmer’s interface (API) to transport network-control functions and serve as a

“Functional Requirements Document” (FRD) document for the transport API work in ONF.

Since the APIs are defined at interface boundaries and are intended to mask the need to

understand the internal architectures on either side of the interface boundary, the focus has been

to define purpose-specific use case scenarios from an application point of view treating the API

provider as a “black box”. These application use cases have been used to drive the API

requirements as well as to harmonize, generalize and normalize the API specifications. To

facilitate the understanding of these requirements, some of the use cases are described in the

appendices.

Although these requirements are based upon several use cases that were deemed key for the

application domain, the APIs have been developed with the intent of not precluding their being

employed by additional valid application use cases.

The requirements specified in this document are intended to drive the detailed UML information

model specifications, from which the YANG/JSON schema and Swagger APIs are generated.

The following figure illustrates the inter-relationships between various T-API project artifacts:

Figure 1: T-API Artifacts - ONF/OSSDN Project Dependencies

TAPI FRS

Use cases & Requirements

TAPI UML

Information Model

YANG/JSON Data

Schema

SWAGGER/REST

APIs

TAPI Platform

Abstraction Layer &

Framework

ONF Core Information

Model

ONF Technology

Specification Models

UML-YANG-JSON

Generation Tool

YANG-SWAGGER

Generation Tool

ONF-OTWG

OSSDN

SNOWMASS

ONF-IMP

OSSDN ENGLEWOOD

OSSDN EAGLE

Open Model

ProfilePrune-

Refactor

Code

OTN

(ITU-T

G.874.1)

ONF OTWG IM

ETH

(ITU-T

G.8052)

MPLS-TP

(ITU-T

G.8152)

Functional Requirements for Transport API Version No.01

Page 9 of 71 © Open Networking Foundation

1.2 Scope

This issue of the document specifies APIs for following transport network controller services:

- Topology Service

- Connectivity Service

- Path Computation Service

- Virtual Network Service

- Notification Service

For the purposes of this document, it is assumed that access control and policy details are

conveyed via a distinct/orthogonal interface. It is understood that all API requests would be

subject to filtering and scoping based on the privileges assigned to the calling entity and these

would be based on business contracts as well as security and organizational roles. Application of

such policy constraints and filtering to the API requests and responses is out of scope for this

document. In other words, the API considerations in this document are from the perspective of

the most privileged super-user.

1.3 References

ONF TR-512 Core Information Model

ONF TR-502 SDN Architecture

ONF TR-516 Framework for SDN: Scope and Requirements

ONF2015.276.xx SDN Notifications Framework (draft)

ONF2015.320.xx Transport API IM Concepts

ONF2015.381.xx Transport API Examples

ONF2015.338.xx State Information Model

ONF2015.323.xx LTP/End-Point Directionality

1.4 Abbreviations

API Application Programmer’s Interface

IM Information Model

OTWG Optical Transport Working Group

OTN Optical Transport Network

OAM Operations, Administration and Maintenance

MPLS-TP MPLS-Transport Profile

EMS/NMS Element/Network Management System

ASON/GMPLS Automatic Switched Optical Network/Generalized MultiProtocol Label Switching

SLA Service Level Agreement

NE Network Element

FD Forwarding Domain

NCD Network Control Domain

EP End Point

LTP Logical Termination Point

T-API/TAPI Transport API

TED Traffic Engineering Database

TRI Transport Resource Identifier

Functional Requirements for Transport API Version No.01

Page 10 of 71 © Open Networking Foundation

1.5 Terms and Definitions

This section defines some key terms that aid in understating the requirements. More information

is provided in the appendices and it is recommended that the reader familiarize themselves with

the basic concepts, constructs and use cases described in those sections.

In general, the T-API uses terminology that is familiar to the transport network management

industry, but maps to constructs defined in the ONF Core Information Model in form of purpose-

specific realizations. So it must be noted that these definitions are neither authoritative nor

exhaustive, and the reader should refer to the realized/mapped entities defined in ONF Core

Information Model document.

Also it should be noted that API IM relates to information exchanged over an interface and the

entity definitions are intended to provide a logical structure for encapsulating information that is

exchanged, and not intended to specify the information model patterns for implementations on

either side of the interface.

Context (API Context)

The T-API defines the scope of control, interaction and naming that a particular T-API provider

or client application has with respect to the information exchanged over the interface. This

Context is shared between the API provider and its client.

Topology The T-API Topology is an abstract representation of the topological-aspects of a

particular set of Network Resources. It is described in terms of the underlying topological

network of Nodes and Links that enable the forwarding capabilities of that particular set of

Network Resources.

Node

The T-API Node is an abstract representation of the forwarding-capabilities of a particular set of

Network Resources. It is described in terms of the aggregation of set of ports (Node-Edge-Point)

belonging to those Network Resources and the potential to enable forwarding of information

between those edge ports.

Link

The T-API Link is an abstract representation of the effective adjacency between two or more

associated Nodes in a Topology. It is terminated by Node-Edge-Points of the associated Nodes.

TE Link

The T-API (Traffic Engineered)TE-Link
1
 is an abstract representation of the effective adjacency

between two
2
 associated Nodes (or NodeEdgePoints) in a Topology, that has TE properties and is

used in the description of the output of path computation APIs. It is terminated by Node-Edge-

Points of the associated Nodes.

1
 The TAPI TE-Link reflects the TE-Link as defined in the RFC-4202

2
 A TAPI Link could be a multi-point entity, with more than two end points.

Functional Requirements for Transport API Version No.01

Page 11 of 71 © Open Networking Foundation

 Node-Edge-Point

The T-API Node-Edge-Point represents the inward network-facing aspects of the edge-port

functions that access the forwarding capabilities provided by the Node. Hence it provides an

encapsulation of addressing, mapping, termination, adaptation and OAM functions of one or

more transport layers (including circuit and packet forms) performed at the entry and exit points

of the Node.

Service-End-Point

The T-API Service-End-Point represents the outward customer-facing aspects of the edge-port

functions that access the forwarding capabilities provided by the Node. Hence it provides a

limited, simplified view of interest to external clients (e.g. shared addressing, capacity, resource

availability, etc.), that enable the clients to request connectivity without the need to understand

the provider network internals. Service-End-Point have a mapping relationship (one-to-one, one-

to-many, many-to-many) to Node-Edge-Points.
3

Connection-End-Point

The T-API Connection-End-Point represents the ingress/egress port aspects that access the

forwarding function provided by the Connection. The Connection-End-Points have a client-

server relationship with the Node-Edge-Points.

Connectivity-Service

The T-API Connectivity-Service represents an “intent-like” request for connectivity between two

or more Service-End-Points. As such, Connectivity-Service is a container for connectivity

request details and is distinct from the Connection that realizes the request

Connection

The T-API Connection represents an enabled (provisioned) potential for forwarding (including

all circuit and packet forms) between two or more Node-Edge-Points of a Node. The T-API

Connection is terminated by Connection-End-Points which are clients of the associated Node-

Edge-Points. As such, the Connection is a container for provisioned connectivity that tracks the

state of the allocated resources and is distinct from the Connectivity-Service request.

Route (Connection Route)

The T-API Route represents the route of a Connection through the Nodes in the underlying

Topology. It is described as a list of references to the underlying Connections.
4

Path

The TAPI Path is used to represent the output of path computation APIs and is described by an

ordered list of TE Links, either as strict hops (NodeEdgePoints) or as loose hops (Nodes).

3
Criteria for assigning/mapping ServiceEndPoints to NodeEdgePoints are out of scope of this FRD, but are typically

part of implementation agreement (IAs) and some examples are provided by the use cases in the appendices.
4
 The TAPI Connection Route is described in terms of Cross-Connections rather than Link-Connections.

Conceptually a Connection Route is concatenation of Link Connections (resources associated with a Link) and

Cross-Connections (resources within the Nodes in the underlying Topology).

Functional Requirements for Transport API Version No.01

Page 12 of 71 © Open Networking Foundation

Virtual Network Service

The T-API Virtual-Network-Service (VNS) represents a request for creation and offering of a

virtual network Topology that maps two or more Service-End-Points, by an API-provider to an

API client in accordance with agreements reached between them (e.g., satisfying the users’

objectives). As such, Virtual-Network-Service is a container for virtual network Topology request

details and is distinct from the Topology that realizes the request.

1.6 Conventions

This document uses the keywords "may" and "must" to qualify optional and mandatory

requirements.

Functional Requirements for Transport API Version No.01

Page 13 of 71 © Open Networking Foundation

2 Functional Architecture

The Transport APIs are defined in the background context of network programmability and

applies SDN principles to enable cost reduction, innovation and reduced time to market of new

services. It aims to achieve these goals by providing programmable access to typical transport

SDN Controller functions. The Transport API abstracts a common set of control plane functions,

such as Network Topology, Connectivity Requests, Path Computation and Network

Virtualization to a set of Service interfaces.

 These APIs are defined to be applicable on the interface between a Transport SDN controller

“Black Box” and its client application. The actors involved in the information exchange over this

interface include transport network provider domain controllers in the role of producers and the

transport network application systems in the role of the consumers. The transport network

application systems could be either a business client system (which itself may include some

control functions) or the network operator’s upper level control, orchestration and/or operations

systems. This includes privileged application systems that would expect access to internal views

of the network model and states using these same set of APIs - for example, usage of topology

APIs to access abstract/virtual network topologies provided to business clients as well the

underlying actual network topology and entities to which the abstract /virtual entities are mapped.

The T-APIs are also intended to be equally applicable between the controllers within a transport

controller recursive hierarchy.

It is understood that the APIs are executed within a shared Context between the API provider and

its client application. A shared Context models everything that exists in an API provider to

support a given API client. The negotiation and setup of the shared Context is outside the T-API

scope, but is expected to minimally involve agreement on Service-End-Points, its naming (TRI)

and its capabilities.

Typically, the shared Context setup also includes association attributes to establish identity and

security that permit secure client-provider communication sessions. A session is the mechanism
5

that supports information exchange between specific instances of an API client and an API

provider within a shared Context that has been secured by appropriate authentication and security

credentials and prevents unauthorized access. Similar to user login, the session normally begins

with an exchange of identity and security credentials, followed by agreement on an initial state,

much of which may be re-stored from prior sessions. During the session, the API client may

invoke services on and modify the state of resources within the shared Context. Each information

exchange should be attributable to a session, for example in an audit log. A session may continue

indefinitely, or end with an explicit logout, a failure, or a timeout. Since the shared Context

supports only one session (or vice-versa), the session identification and association with the

shared Context is implicit.

Thus a shared Context determines the makeup of the network resource abstraction instances over

which the API operates. For example, the API client could

5
 The actual implementation-specific mechanisms to maintain, exchange or enforce the session state information is

out of scope of this document and could be either maintained by the stateful API provider/server or offered by the

API clients (as in stateless RESTful communication architectures)

Functional Requirements for Transport API Version No.01

Page 14 of 71 © Open Networking Foundation

 Request retrieval of the Service End Points in the shared Context

 Request creation of a Connectivity Service between the Service End Points – these

operations can be performed without the knowledge of Network Topology or with the

knowledge of the Topology (using Topology retrieval APIs)

 Request creation/modification of Virtual Network Topology within the shared context

 Request retrieval of the (Virtual) Network Topology - either provider-assigned (by

offline/external means) or client-created- (using VN Service API) within the shared

context

 Subscribe to notification of events within the shared Context

Figure 2: Transport API Functional Architecture

Topology

Service
Connectivity

Service
Path Computation

Service

Shared Network Information Context

Virtual Network

Service
Notification

Service

NENetwork Resource Groups
NENESDN Controller

NENESDN Controller
NENEApplication

Transport API

Transport API

SBIs (e.g. Openflow Optical)

Functional Requirements for Transport API Version No.01

Page 15 of 71 © Open Networking Foundation

3 Functional Requirements

3.1 Topology Service

The Topology Service APIs allow an API client to retrieve topological information that is within

its shared Context.

3.1.1 Topology Retrieval APIs

TAPI_FR 1: Get Topology List

Description

 Returns list of top-level Topology instances directly scoped by the Context

 This also includes details for each Topology including references to lower-level

Nodes and Links encompassed by the Topology as allowed by policy

Pre-conditions

Inputs

 Retrieve Scope Filter: Layer-Protocol List : Enumeration value

- If set/non-empty, the API call will return references to only those Topology

instances that support at least one of the specified layer protocols

Outputs

List of Topology entities and details for each including:

 List of IDs, Names, User-Labels and Extensions (if any)

 List of encompassed Nodes indexed by Layer including Node details

 List of encompassed Links indexed by Layer including Link details

Notifications

Error-conditions

Post-conditions

TAPI_FR 2: Get Topology Details

Description

 Returns attributes of the Topology identified by the provided inputs.

 This includes references to lower-level Nodes and Links encompassed by the

Topology

Pre-conditions

Inputs

 Topology ID or Name : String

- When NULL is provided, this API call should return an error.

 Scope Filter: Layer-Protocol Name List : Enumeration value

- If set/non-empty, the API call will return references to only those

encompassed Nodes and Links that support at least one of the specified layer

protocols

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 List of encompassed Nodes indexed by Layer including Node details

 List of encompassed Links indexed by Layer including Link details

Notifications

Error-conditions

Post-conditions

Functional Requirements for Transport API Version No.01

Page 16 of 71 © Open Networking Foundation

TAPI_FR 3: Get Node Details

Description

 Returns attributes of the Node identified by the provided inputs.

 This includes references to NodeEdgePoints aggregated by the Node

 This also includes attributes representing the identification/naming, states and

capabilities of the Node.

Pre-conditions

Inputs

 Topology ID or Name : String

- ID/name of the containing Topology that owns this Node

- When NULL is provided, this API call should return an error.

 Node ID or Name : String

- When NULL is provided, this API call should return an error condition

 Scope Filter: Layer-Protocol Name List : Enumeration value

- If set/non-empty, the API call will return references to only those aggregated

NodeEdgePoints that support at least one of the specified layer protocols

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 List of supported Layer-Protocol Names

 Administrative, Operational and Lifecycle States

 Transfer characteristics such as Cost, Timing, Integrity and Capacity

 List of references to aggregated NodeEdgePoints indexed by Layer

Notifications

Error-conditions

Post-conditions

TAPI_FR 4: Get Link Details

Description

 Returns attributes of the Link identified by the provided inputs.

 This includes references to NodeEdgePoints terminating the Link.

 This includes references to the Nodes associated by the Link.

 This refers to an abstract/logical entity and could represent virtual links and/or

compound links (internally aggregate lower-level serial/parallel links)

Pre-conditions

Inputs

 Topology ID or Name : String

- ID/name of the containing Topology that owns this Link

- When NULL is provided, this API call should return an error.

 Link ID or Name : String

- When NULL is provided, this API call should return an error

 Scope Filter: Layer-Protocol Name List : Enumeration value

- If set/non-empty, the API call will return references to only those terminating

NodeEdgePoints that support at least one of the specified layer protocols

Functional Requirements for Transport API Version No.01

Page 17 of 71 © Open Networking Foundation

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 Administrative, Operational, and Lifecycle States

 List of supported Layer-Protocol Names

 Transfer characteristics such as Cost, Timing, Integrity and Capacity

 Risk characteristics including shared-risk

 Validation characteristics - Validation describes the various adjacent discovery

and reachability verification protocols. Also may describe Information source

and degree of integrity.

 List of following details for every NodeEdgePoint terminating the Link

– Role of the terminating NodeEdgePoint in the context of the Link

– Direction of the terminating NodeEdgePoint in the context of the Link

– Reference to terminating NodeEdgePoint

– List of references to associated Nodes

Notifications

Error-conditions

Post-conditions

TAPI_FR 5: Get Node Edge Point Details

Description  Returns attributes of the NodeEdgePoint identified by the provided inputs.

Pre-conditions

Inputs

 Topology ID or Name : String

- ID/name of the containing Topology that owns this Link

- When NULL is provided, this API call should return an error.

 Node ID or Name : String

- ID/name of the containing Node that owns or references this NodeEdgePoint

- When NULL is provided, this API call should return an error condition

 NodeEdgePoint ID or Name : String

- When NULL is provided, this API call should return an error

 Scope Filter: Layer-Protocol Name List : Enumeration value

- If set/non-empty, the API call will return only the specified Layer-Protocol

attribute-details indexed by Layer

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 Administrative, Operational, and Lifecycle States

 List of supported Layer-Protocols including attribute-details indexed by Layer

Notifications

Error-conditions

Post-conditions

3.2 Connectivity Service

The Connectivity Service APIs allow an API client to retrieve connectivity information and

request connectivity service within its shared Context.

Functional Requirements for Transport API Version No.01

Page 18 of 71 © Open Networking Foundation

3.2.1 Connectivity Retrieval APIs

TAPI_FR 6: Get Service End Point List

Description

 Returns list of ServiceEndPoints

 This includes the ServiceEndPoints are being used in a ConnectivityService

request as well as those that are not being used

 This also includes the attribute details for each ServiceEndPoint

- including references to the mapped NodeEdgePoint.

Pre-conditions

Inputs

 Retrieve Scope Filter: Layer-Protocol List : Enumeration value

- If set/non-empty, the API call will return references to only those

encompassed ServiceEndPoints that support at least one of the specified

layer protocols

Outputs

List of ServiceEndPoints indexed by Layer and details for each including:

 List of IDs, Names, User-Labels and Extensions (if any)

 Lifecycle State

 List of supported Layer-Protocols including attribute-details indexed by Layer

 Reference to the NodeEdgePoints mapped to this ServiceEndPoint

Notifications

Error-conditions

Post-conditions

TAPI_FR 7: Get Service End Point Details

Description
 Returns attributes of the ServiceEndPoint identified by the provided inputs.

- including references to the mapped NodeEdgePoint.

Pre-conditions

Inputs
 ServiceEndPoint ID or Name : String

- When NULL is provided, this API call should return an error condition

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 Lifecycle State

 List of supported Layer-Protocols including attribute-details indexed by Layer

 Reference to the NodeEdgePoint mapped to this ServiceEndPoint

Notifications

Error-conditions

Post-conditions

TAPI_FR 8: Get Connectivity Service List

Description

 Returns list of ConnectivityService entities that represent the connectivity

requests that were received

 This also includes attribute details for each ConnectivityService including

– References to ServiceEndPoints terminating the Service

– Optionally References to any Connections realizing the

ConnectivityService

Functional Requirements for Transport API Version No.01

Page 19 of 71 © Open Networking Foundation

Pre-conditions

Inputs

 Retrieve Scope Filter: Layer-Protocol List : Enumeration value

- If set/non-empty, the API call will return references to only those

encompassed ConnectivityServices that support at least one of the specified

layer protocols

 Include Connections : true or false

Outputs

List of ConnectivityServices indexed by Layer and details for each including:

 List of IDs, Names, User-Labels and Extensions (if any)

 Administrative, Operational, and Lifecycle States

 Connectivity Constraints including

– Required Constraints such as Capacity

– Optional Constraints such as Layer, Latency, Cost, etc.

 List of following details for every ServiceEndPoint associated with the

ConnectivityService

– Role of the terminating ServiceEndPoint in the context of the

ConnectivityService

– Directionality of the terminating ServiceEndPoint in the context of the

ConnectivityService

– Reference to terminating ServiceEndPoint

 Optionally List of Connections realizing the ConnectivityService

Notifications

Error-conditions

Post-conditions

TAPI_FR 9: Get Connectivity Service Details

Description

 Returns attributes of the ConnectivityService entity identified by the provided

inputs.

 This includes references to ServiceEndPoints terminating the

ConnectivityService.

 This optionally includes references to any Connections realizing the

ConnectivityService.

Pre-conditions

Inputs

 Service ID or Name : String

- When NULL is provided, this API call should return an error condition

 Include Connections : true or false

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 Administrative, Operational, and Lifecycle States

 Connectivity Constraints including

– Required Constraints such as Capacity

– Optional Constraints such as Layer, Latency, Cost, etc.

 List of following details for every ServiceEndPoint associated with the

ConnectivityService

– Role of the terminating ServiceEndPoint in the context of the Service

– Directionality of the terminating ServiceEndPoint in the context of the

Service

– Reference to terminating ServiceEndPoint

 Optionally List of Connections realizing the ConnectivityService

Functional Requirements for Transport API Version No.01

Page 20 of 71 © Open Networking Foundation

Notifications

Error-conditions

Post-conditions

TAPI_FR 10: Get Connection Details

Description

 Returns attributes of the Connection entity identified by the provided inputs.

 This includes references to ConnectionEndPoints terminating the Connection.

 This includes references to Paths in the underlying Topology.

 This includes reference to the Node containing this Connection.

Pre-conditions

Inputs

 Service ID or Name : String

- ID/name of the containing ConnectivityService that requested this

Connection

- When NULL is provided, this API call should return an error condition

 Connection ID or Name : String

- When NULL is provided, this API call should return an error condition

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 Operational, and Lifecycle States

 Connectivity Constraints including

– Required Constraints such as Capacity

– Optional Constraints such as Layer, Latency, Cost, etc.

 Validation characteristics

 Reference to the parent (containing) Node

 List of following details for every ConnectionEndPoint associated with the

Connection

– Role of the terminating ConnectionEndPoint in the context of the

Connection

– Directionality of the terminating ConnectionEndPoint in the context of

the Connection

– Reference to terminating ConnectionEndPoint

 List of Paths of the specified Connection and details of each including

– List of references to lower-level Connections that describe the Path of

the specified Connection through the Nodes in the underlying Topology

Notifications

Error-conditions

Post-conditions

TAPI_FR 11: Get Connection End Point Details

Description

 Returns attributes of ConnectionEndPoint identified by the provided inputs.

 This includes references to the server and client (if any) NodeEdgePoints for this

ConnectionEndPoint.

 This includes references to peer (if any) ConnectionEndPoint that is connected to

this ConnectionEndPoint.

Pre-conditions

Functional Requirements for Transport API Version No.01

Page 21 of 71 © Open Networking Foundation

Inputs

 Service ID or Name : String

- ID/name of the containing ConnectivityService that requested this

Connection

- When NULL is provided, this API call should return an error condition

 Connection ID or Name : String

- ID/name of the containing Connection that owns or references this

ConnectionEndPoint

- When NULL is provided, this API call should return an error condition

 ConnectionEndPoint ID or Name : String

- When NULL is provided, this API call should return an error condition

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 Operational and Lifecycle State

 List of supported Layer-Protocols including attribute-details indexed by Layer

 Reference to the Server (containing) and Client (if any) NodeEdgePoint

 Reference to the Peer (if any) ConnectionEndPoint

Notifications

Error-conditions

Post-conditions

3.2.2 Connectivity Request APIs

TAPI_FR 12: Create Connectivity Service

Description

 Causes creation of a ForwardingConstruct representing the ConnectivityService

request to connect the ServiceEndPoints within the shared Context between API

Client and Provider

 Returns Service ID to be used as reference for future actions

 Initial definition will be for a basic point-to-point bidirectional service

Pre-conditions

 Requestor/Client has visibility of the set of Service-End-Points between which

connectivity is desired within the Context

 Requestor/Client has information about the types of connectivity available and

constraints it can specify such as Service Level

 Requestor/Client may be aware of other existing ConnectivityServices and their

IDs

Inputs

 List of following details for every ServiceEndPoint for the ConnectivityService

– Role of the terminating ServiceEndPoint in the context of the Service

– Directionality of the terminating ServiceEndPoint in the context of the

Service

– Reference (Name/ID) to terminating ServiceEndPoint

– Optionally the Layer of the ServiceEndPoint if it supports multiple layers

 Connectivity Constraints including

– Required Constraints such as Capacity

– Optional Constraints such as Layer, Latency, Cost, etc.

 Start Time & End Time

Functional Requirements for Transport API Version No.01

Page 22 of 71 © Open Networking Foundation

Outputs

 Service ID

 Operational State

 Lifecycle State

 Confirmation of Service Characteristics : See above inputs

Notifications

 ObjectCreation notifications on ConnectivityService, associated/created

Connections and ConnectionEndPoints

 AttributeValueChange notifications on affected ServiceEndPoints

 StateChanges on related State attributes in the affected objects

Error-conditions

Service not supported

Service input not supported

Endpoint not recognized

Post-conditions

TAPI_FR 13: Update Connectivity Service

Description

 Causes modification of an existing Forwarding-Construct representing the

ConnectivityService request identified by the inputs

 Returns confirmation or rejection of modification

Pre-conditions

 Requestor/Client already knows the existing Service ID

 Requestor/Client has information about the types of Service Characteristics that

can be modified

Inputs

 Service ID or Name

- When NULL is provided, this API call should return an error condition

 Connectivity Constraints including

– Required Constraints such as Capacity

– Optional Constraints such as Layer, Latency, Cost, etc.

 Start Time & End Time

Outputs

 Success/Failure

 Operational State

 Lifecycle State

 Confirmation of Service Characteristics : See inputs above

Notifications

 AttributeValueChange notifications on ConnectivityService, associated/affected

Connections, ConnectionEndPoints and ServiceEndPoints

 May also result in ObjectCreation and/or ObjectDeletion notifications on

associated/affected Connections and/or ConnectionEndPoints

 StateChanges on related State attributes in the affected objects

Error-conditions

Modification could not be supported

Modification parameter not understood

Modification not allowed

Post-conditions ConnectivityService modified

TAPI_FR 14: Delete Connectivity Service

Description

 Causes deletion of an existing ConnectivityService

 Deletes all associated Connections that were owned/created by the

ConnectivityService

Functional Requirements for Transport API Version No.01

Page 23 of 71 © Open Networking Foundation

Pre-conditions  Requestor/Client already knows the existing Service ID

Inputs
 Service ID or Name: String

- When NULL is provided, this API call should return an error condition

Outputs  ID of the deleted ConnectivityService

Notifications

 ObjectDeletion notifications on ConnectivityService, associated/deleted

Connections and ConnectionEndPoints

 AttributeValueChange notifications on affected ServiceEndPoints

 StateChanges on related State attributes in the affected objects

Error-conditions

Post-conditions ConnectivityService deleted

3.3 Path Computation Service

The APIs in this section have been defined making certain assumptions on the division of

responsibilities and sequence flow of interactions between different T-API Service interfaces.

For example, it is assumed that a connection control module that handles the ConnectivityService

request, is in charge of the management and implementation of the Connections in terms of real

resource commitment for the routes (Paths) of an Connection. In contrast, a routing control

module that handles the PathComputationService requests (from the internal connection-control

module or external applications) is responsible for computing and providing the Paths for a

potential Connection as output.

3.3.1 Path Computation Request APIs

TAPI_FR 15: Compute P2P Path

Description

Path computation can be called in the context of service request since path

computation is provided in a domain according to the policy which has to refer to

specification of service for which the path computation request is required.

The client side of the API can request the server side of the API to compute a single

path or a batch of paths with consideration of a set of constraints

Pre-conditions

The server side of this API should have the topology information (including TE

information) of the network in which the path computation applies. Includes

Connectivity matrix, port label restriction (only applicable to optical layer path

computation)

Functional Requirements for Transport API Version No.01

Page 24 of 71 © Open Networking Foundation

Inputs

 List of following details for every
6
 ServiceEndPoint for the ConnectivityService

– Role
7
 of the terminating ServiceEndPoint in the context of the Service

– Directionality of the terminating ServiceEndPoint in the context of the

Service

– Reference (Name/ID) to terminating ServiceEndPoint

– Optionally the Layer of the ServiceEndPoint if it supports multiple layers

 Routing (Connectivity) Constraints including

– Required Constraints such as Capacity

– Optional Constraints such as Layer, Latency, Cost, etc.

 Objective function

Outputs

List of paths computed containing following information (only “one” if

shouldComputeConcurrentPaths is false)

 Path identifier (identifier of the calculated route)

 Routing constraints (Description of connectivity constraints that are met)

 Path which is an ordered list of TE Links – described either as strict hops

(NodeEdgePoints) or loose hops(Nodes)

Notifications  ObjectCreation notifications on computed/created Paths

Error-conditions Cause of failure

Post-conditions

TAPI_FR 16: Optimize P2P Path

Description

A connection can be reconfigured to meet new constraints and achieve path

optimization via this API. Reconfiguration may involve intermediate-point changes

and route changes

Pre-conditions
The server side of this API should have the topology information (including TE

information) of the network in which the path computation applies

Inputs

 Path Id: Identifier of path to be modified

 Connection Id: (optional) Identifies resources in use for the Connection for the

path being optimized

 Routing (Connectivity) Constraints including

– Required Constraints such as Capacity

– Optional Constraints such as Layer, Latency, Cost, etc.

 Objective Function

 Optimization Constraint

Outputs

List of paths computed containing following information (only “one” if

shouldComputeConcurrentPaths = false)

 Path identifier (identifier of the calculated route)

 Routing constrains (Description of connectivity constraints that are met)

 Path which is an ordered list of (TE Links) – described either as strict hops

(NodeEdgePoints) or loose hops(Nodes)

Notifications  AttributeValueChange notifications on affected Paths

6
 The number of ServiceEndPoints is restricted to 2 for the Path Computation request

7
 The value for Role is constrained to only Symmetric for the Path Computation request

Functional Requirements for Transport API Version No.01

Page 25 of 71 © Open Networking Foundation

Error-conditions

Cause of failure:

 Optimization fail due to insufficient resources

 Cannot readjust resource allocation without interruption of existing services.

 Cannot satisfy other constraints, such as timing issue or performance threshold.

Post-conditions

3.4 Virtual Network Service

3.4.1 Virtual Network Retrieval APIs

TAPI_FR 17: Get Virtual Network Service List

Description

 Returns list of VirtualNetworkService entities that represent the virtual network

requests that were received

 This also includes attribute details for each VirtualNetworkService including

– References to ServiceEndPoints of the Service

– Optionally, references to the virtual Topology realizing the

VirtualNetworkService

Pre-conditions

Inputs

 Retrieve Scope Filter: Layer-Protocol List : Enumeration value

- If set/non-empty, the API call will return references to only those

encompassed VirtualNetworkServices that support at least one of the

specified layer protocols

 Include Topology : true or false

Outputs

List of VirtualNetworkServices indexed by Layer and details for each including:

 List of IDs, Names, User-Labels and Extensions (if any)

 Administrative, Operational, and Lifecycle States

 Virtual Network Constraints including

– Required Constraints such as Service Level and Traffic Matrix

– Any optional Constraints

 Optionally the Topology realizing the VirtualNetworkService

Notifications

Error-conditions

Post-conditions

TAPI_FR 18: Get Virtual Network Service Details

Description

 Returns attributes of the VirtualNetworkService entity identified by the provided

inputs.

 This includes references to ServiceEndPoints of the VirtualNetworkService.

 This optionally includes references to the Topology realizing the

VirtualNetworkService.

Pre-conditions

Inputs

 Service ID or Name : String

- When NULL is provided, this API call should return an error condition

 Include Topology : true or false

Functional Requirements for Transport API Version No.01

Page 26 of 71 © Open Networking Foundation

Outputs

 List of IDs, Names, User-Labels and Extensions (if any)

 Administrative, Operational, and Lifecycle States

 Virtual Network Constraints including

– Required Constraints such as Service Level and Traffic Matrix

– Any optional Constraints

 Optionally the Topology realizing the VirtualNetworkService

Notifications

Error-conditions

Post-conditions

3.4.2 Virtual Network Request APIs

TAPI_FR 19: Create Virtual Network Service

Description

For the client side of the API to request creation of a virtual network from a network

(maybe physical or virtual network, recursively) provided by the server side of this

API, according to the traffic volume between the access points of the client.

As a result, the server side of this API will reserve a set of resources to build up the

virtual network, over which the client side of the API is allowed to e.g. configure

virtual connections (through other transport APIs).

Pre-conditions
The server side of this API should have the topology information of the network

under its control.

Inputs

 List of following details for every ServiceEndPoint for the Virtual Network

Service

– Reference (Name/ID) to the ServiceEndPoint

 Virtual Network Constraints including

– Required Constraints such as Traffic Matrix

– Any optional Constraints such as Service Level

 Start Time & End Time

Outputs

 Virtual Network Service ID: The identifier of the Virtual Network Service

instance that was created that includes identifier/reference of the virtual Topology

that was created.

Notifications

 ObjectCreation notifications on VirtualNetworkService, and associated/created

Topology, Nodes, Links and NodeEdgePoints

 AttributeValueChange notifications on affected ServiceEndPoints

 StateChanges on related State attributes in the affected objects

Error-conditions
 There are not enough resources to set up the virtual network that meets the client

traffic requirement.

Post-conditions

 The server side of this API reserves a set of resources to build up the virtual

network.

 The server side of this API maintains the resources and the status of the created

virtual networks, as well as the mapping relationship between the created virtual

networks and the network under control of the server side.

 The client side of this API is allowed to have virtual connection control over the

virtual network.

Functional Requirements for Transport API Version No.01

Page 27 of 71 © Open Networking Foundation

TAPI_FR 20: Delete Virtual Network Service

Description

For the client side of the API to delete the VirtualNetworkService and the associated

Topology that it owns.

As a result, the server side of this API will release the resources used by this virtual

network.

Pre-conditions

 The server side of this API has the topology information of the network under its

control.

 The client side of this API has requested a virtual network from the server side of

this API.

 All virtual connections in the virtual network should be deleted by the client

before deleting the virtual network.

Inputs  Virtual Network Service ID: The identifier of the virtual network to be deleted

Outputs  Id VirtualNetworkService that was deleted

Notifications

 ObjectDeletion notifications on VirtualNetworkService, and associated/deleted

Topologies, Nodes, Links and NodeEdgePoints

 AttributeValueChange notifications on affected ServiceEndPoints

 StateChanges on related State attributes in the affected objects

Error-conditions
 The requested VN (to be deleted) ID does not exist at the server side.

 One or more virtual connections remain in the virtual network.

Post-conditions  The server side of this API releases the resources used by the virtual network.

3.5 Notification Service

Notifications refer to the set of autonomous messages that provide information about events, for

example, alarms, performance monitoring (PM) threshold crossings, object creation/deletion,

attribute value change (AVC), state change, etc. In some standards, notifications are referred to

as event reports. The specification of functional requirements for Alarms (FM) and TCAs (PM)

notifications will be provided in the next release of this document.

Notifications specifications are generally written around a model of a manager and an agent. The

term manager is used to designate an entity that governs notification subscriptions and receives

notification messages, while the term agent is used to designate an entity that recognizes events,

turns them into notification messages, and transmits them to pertinent subscribers. Thus, the

agent represents (acts on behalf of) managed objects that are subject to events, and emits

notification messages to inform zero or more managers (receiving entities) of these events. The

manager-agent terminology is being retained for compatibility with existing standards; however,

there is no intention to imply a distinction between management and control.

Notifications may be separated into two classes, primitive notifications (which are defined as)

from managed object instances to agents, and those that are processed and emitted by the

notifications agents into a form suitable for exposure to some managed object instance

(subscriber). A notification agent (NA) is modeled as the publisher of notification messages, to

any number of subscription target destinations. Examples of further processing include

interpretation, correlation, filtering, embellishment with time stamp, sequence number, system

and managed object identifier. Primitive notifications are out of scope of this document.

Functional Requirements for Transport API Version No.01

Page 28 of 71 © Open Networking Foundation

3.5.1 Notification Subscription and Filtering APIs

Notifications shall follow a publish and subscribe model. A notifications manager shall be able

to create, query, modify, suspend, resume and delete a notifications subscription. The

notifications available to a manager for subscription are bounded by the (virtual) resources and

privileges visible to that manager. Subscriptions shall not time out and be automatically deleted

during the lifetime of a given session
8
.

It will also be possible to retrieve notification records at a later time, by querying the

notifications manager for the history records of the generated notifications. This result of the

query depends on other configuration policies such as the record retention policies, which are

currently out of the scope of this document.

Knowledge of available notifications and their sources is a precondition for subscription. A

notifications agent shall permit a notifications manager to discover its supported notification

types. Particularly in the case of virtualized resources of SDN, notifications discovery may be a

feature of a general resource discovery mechanism.

Notification subscribers specify their interest according to filter, where a filter is any

combination of (event related) criteria that can be unambiguously evaluated against an input to

produce an accept/reject result. A filter is an attribute of a subscription, and may be modified

over the lifetime of the subscription. Filters do not exist as separate managed object instances,

are local to one subscription, and do not survive the deletion of that subscription. The actual

notifications delivered to a target are those that pass the subscription filter.

TAPI_FR 21: Discover Supported Notification Types

Description
Allows an API Client to discover the notifications capabilities supported by an API

Provider

Pre-conditions Knowledge of the Notification Server (e.g. URI, IP/Port, etc.)

Inputs

Outputs

 Supported Notification-Type List : Enumeration value

The notification types are specified in section 3.5.2.

 Supported Object-Type List : Enumeration value

The object types are specified in section 3.5.2.

Notifications

Error-conditions Reason for Failure

Post-conditions Supported notification and object types discovered

8
 A session is the mechanism that supports information exchange between specific instances of an API client and an

API provider within a shared Context that has been secured by appropriate authentication and security credentials.

Functional Requirements for Transport API Version No.01

Page 29 of 71 © Open Networking Foundation

TAPI_FR 22: Create Notification Subscription

Description
Allows an API Client to subscribe to receive autonomous notifications from API

provider, as per the specified filters

Pre-conditions Knowledge of available notifications types and their sources

Inputs

 Subscription Scope Filter: Notification-Type List : Enumeration value. If set/non-

empty, the system will push Notifications of one of the specified notification

types only. The notification types are specified in section 3.5.2.

 Subscription Scope Filter: Object-Type List : Enumeration value. If set/non-

empty, the system will push Notifications related to one of the specified object

types only. The object types are specified in section 3.5.2.

 Subscription Scope Filter: Layer-Protocol List : Enumeration value. If set/non-

empty, the system will push Notifications related to one of the specified layer

protocols only. The layer protocols are specified in section 3.5.2.

 Subscription Scope Filter: Object-Id List : List of globally unique object Ids

(uuid). If set/non-empty, the system will push Notifications related to the

specified Object instances only, irrespective of other filter attribute settings

Outputs subscriptionId

Notifications
notificationId

Object Creation Notification per the successful subscription.

Error-conditions Reason for Failure

Post-conditions Subscription created

TAPI_FR 23: Modify Notification Subscription

Description
Allows an API Client to modify its subscription to receive autonomous notifications

from API provider, as per the specified filters

Pre-conditions Knowledge of available notifications subscriptions, types and their sources

Inputs

 Subscription Id: String

 Subscription Scope Filter: Notification-Type List : Enumeration value. If set/non-

empty, the system will push Notifications of one of the specified notification

types only. The notification types are specified in section 3.5.2.

 Subscription Scope Filter: Object-Type List : Enumeration value. If set/non-

empty, the system will push Notifications related to one of the specified object

types only. The object types are specified in section 3.5.2.

 Subscription Scope Filter: Layer-Protocol List : Enumeration value. If set/non-

empty, the system will push Notifications related to one of the specified layer

protocols only. The layer protocols are specified in section 3.5.2.

 Subscription Scope Filter: Object-Id List : List of globally unique object Ids

(uuid). If set/non-empty, the system will push Notifications related to the

specified Object instances only, irrespective of other filter attribute settings

Outputs subscriptionId

Notifications
notificationId

Object Creation Notification per the successful subscription.

Error-conditions Reason for Failure

Post-conditions Subscription created

Functional Requirements for Transport API Version No.01

Page 30 of 71 © Open Networking Foundation

TAPI_FR 24: Delete Notification Subscription

Description
Allows an API Client to delete its subscription to stop receiving autonomous

notifications from API provider

Pre-conditions Knowledge of available notification subscriptions

Inputs  Subscription Id: String.

Outputs SubscriptionId of the notification subscription that was deleted

Notifications Object Deletion Notification per the successful subscription.

Error-conditions Reason for Failure

Post-conditions Subscription deleted

TAPI_FR 25: Suspend Notification Subscription

Description
Allows an API Client to modify its subscription to temporarily stop receiving

autonomous notifications from API provider

Pre-conditions
Knowledge of available notification subscriptions

The notification subscription is active and not suspended

Inputs  Subscription Id: String.

Outputs SubscriptionId of the notification subscription that was suspended

Notifications State Change Notification per the successful subscription suspension.

Error-conditions Reason for Failure

Post-conditions Subscription suspended

TAPI_FR 26: Resume Notification Subscription

Description
Allows an API Client to modify its subscription to resume receiving autonomous

notifications from API provider

Pre-conditions
Knowledge of available notification subscriptions

The notification subscription is suspended

Inputs  Subscription Id: String.

Outputs SubscriptionId of the notification subscription that was resumed

Notifications State Change Notification per the successful subscription that was resumed

Error-conditions Reason for Failure

Post-conditions Subscription resumed

TAPI_FR 27: Retrieve Notification Records

Description

Allows an API Client to retrieve notification records by querying the API provider

for records of the generated notifications. This result of the query depends on other

configuration policies such as the record retention policies, which are currently out of

the scope of this document.

Pre-conditions

Knowledge of available notifications types and their sources

Knowledge of any Record retention polices that affect the availability of the queried

Notification records.

Functional Requirements for Transport API Version No.01

Page 31 of 71 © Open Networking Foundation

Inputs

 Subscription Scope Filter: Notification-Type List : Enumeration value. If set/non-

empty, the system will push Notifications of one of the specified notification

types only. The notification types are specified in section 3.5.2.

 Subscription Scope Filter: Object-Type List : Enumeration value. If set/non-

empty, the system will push Notifications related to one of the specified object

types only. The object types are specified in section 3.5.2.

 Subscription Scope Filter: Layer-Protocol List : Enumeration value. If set/non-

empty, the system will push Notifications related to one of the specified layer

protocols only. The layer protocols are specified in section 3.5.2.

 Subscription Scope Filter: Object-Id List : List of globally unique object Ids

(uuid). If set/non-empty, the system will push Notifications related to the

specified Object instances only, irrespective of other filter attribute settings

 Start Time & End Time – Returns all Notifications whose Event-Time falls under

this range. This operation ignores the existence of any record retention policies

and assumes knowledge of those polices via external means.

Outputs List of Notification records

Notifications

Error-conditions Reason for Failure

Post-conditions Subscription created

3.5.2 Notification Message Types

TAPI_FR 28: Object Creation Notification

Values

This message shall minimally support the following attributes

 Notification Header (as per above)

 Additional Information

 Additional Text

TAPI_FR 29: Object Deletion Notification

Values

This message shall minimally support the following attributes

 Notification Header (as per above)

 Additional Information

 Additional Text

TAPI_FR 30: Attribute Value Change Notification

Values

This message shall minimally support the following attributes

 Notification Header (as per above)

 Attribute Value Change List each consisting of

o { attributeName, oldAttributeValue, newAttributeValue }

 Additional Information

 Additional Text

Functional Requirements for Transport API Version No.01

Page 32 of 71 © Open Networking Foundation

TAPI_FR 31: State Change Notification

Values

This message shall minimally support the following attributes

 Notification Header (as per above)

 State Change List each consisting of

o { attributeName, oldStateValue, newStateValue }

 Additional Information

 Additional Text

3.6 TAPI Data Types

This section identifies the data types, formats and values commonly associated with the

parameters of the various TAPI service interface APIs.

TAPI_FR 32: Layer Protocol Name

Values

The Layer-Protocol attribute shall minimally support following for Connectivity

layers

 OCH

 ODU

 ETH

 MPLS-TP

TAPI_FR 33: Capacity (Fixed Bandwidth)

Values

The Capacity (Bandwidth) attribute is applicable for digital layers and shall

minimally support following values in Mbps

 10 (Ethernet Lan)

 100 (Fast Ethernet)

 1000 (Gigabit Ethernet)

 2400 (ODU1/OTU1)

 10000 (10GBE/ODU2/OTU2)

 40000 (40GBE/ODU3/OTU3)

 100000 (100GBE/ODU4/OTU4)

Functional Requirements for Transport API Version No.01

Page 33 of 71 © Open Networking Foundation

TAPI_FR 34: Capacity (Profile)

Values

The following are the required Bandwidth Profile parameters

 Committed Information Rate (CIR): The rate of the packets that the transport

networks commit to forward with some negotiated QoS objectives (packet

loss, packet delay, packet delay variation). CIR-conformant packets are also

referred to as green packets.

The following are the optional Bandwidth Profile parameters

 Bandwidth Profile Type: Indicates the type of algorithm (e.g., MEF 10.1,

RFC 2697, RFC 2698, RCF 4115, etc.). If not specified, it is selected based

on the controller’s policy.

 Committed Burst Size (CBS): The maximum burst-size at which frames can

be received at the line speed while still being CIR-conformant. If not

specified, it is selected based on the controller’s policy.

 Excessive Information Rate (EIR): The rate of packet that the transport

network allows to be forwarded but without guaranteed any QoS objectives.

EIR-conformant packets are also referred to as yellow packets. The default

value is 0.

 Excessive Burst Size (EBS): The maximum burst-size at which frames can

be received at the line speed while still being EIR-conformant. If not

specified, it is selected based on the controller’s policy.

 Color Mode (CM): Indicates whether the packets are marked with the color

information (color-aware) or not (color-blind). The default value is color-

blind.

 Coupling Flag (CF): Indicates the mode of operations for the MEF 10.1

Bandwidth Profile Type. When set, the rate of yellow frames is bounded by

the Peak Information Rate (PIR = CIR + EIR); otherwise the rate of yellow

frames is bounded by the EIR. If not specified, it is selected based on the

controller’s policy.

TAPI_FR 35: Administration State

Values
 LOCKED

 UNLOCKED

TAPI_FR 36: Operational State

Values
 ENABLED

 DISABLED

Functional Requirements for Transport API Version No.01

Page 34 of 71 © Open Networking Foundation

TAPI_FR 37: Lifecycle State

Values

 PLANNED

 POTENTIAL

 INSTALLED

 IN_CONFLICT

 PENDING_REMOVAL

TAPI_FR 38: Port Role

Values

Denotes the role of the End-Point with respect to the Forwarding-Construct

 Symmetric

 Root

 Leaf

TAPI_FR 39: Port Direction

Values

Denotes the directionality of the signal-flow in the Port with respect to the

Forwarding-Construct

 Input

 Output

 Bidirectional

TAPI_FR 40: Termination Direction

Values

Denotes the directionality of the signal-flow in the ServiceEndPoint or

ConnectionEndPoint

 Sink

 Source

 Bidirectional

TAPI_FR 41: Service End Point TRI format

Values

The End-Point Name shall minimally support following formats

 TRI

 URI

 Domain-specific String

The formats for the TRI is out of scope for this FRD and is typically part of

the implementation agreements (IAs)

Functional Requirements for Transport API Version No.01

Page 35 of 71 © Open Networking Foundation

TAPI_FR 42: Service Type

Values

The Service Type attribute shall minimally support following values

 POINT_TO_POINT

 POINT_TO_MULTIPOINT

 MULTIPOINT

TAPI_FR 43: Connectivity Constraints

Values

The following are the required Connectivity parameters

 Service Type: The type of connectivity requested

 Capacity: Requested bandwidth (fixed or range)

The following are the optional Connectivity constraint parameters

 Service Layer: Represents the layer of transported service

 Service Level Descriptor– a abstract label the meaning of which is mutually

agreed – typically represents metrics such as - Class of service, priority,

resiliency, availability

 Latency – integer value and unit - upper bound

 Cost – Vector of one or more metrics that would enable the provider to make

a decision when implementing the Service

 SRLG /Diversity – an exclude Service ID – indicates that the requested

service should be diverse (not share resources) from specified service

 Include Path – indicates partial or complete set of nodes and/or

NodeEdgePoints to be used (TE Links)

 Exclude Path - indicates partial set of nodes and/or NodeEdgePoints to be

avoided

TAPI_FR 44: Virtual Network Service Constraints

Values

The following are the required Virtual Network Service parameters

 Traffic Matrix: A matrix to describe the traffic (e.g., bandwidth) between

each pair of ServiceEndPoints

The following are the optional Virtual Network constraint parameters

 VN Service Level Descriptor – a abstract label the meaning of which is

mutually agreed – typically represents metrics such as – type of topology

abstraction, class of service, priority, resiliency, availability

Functional Requirements for Transport API Version No.01

Page 36 of 71 © Open Networking Foundation

TAPI_FR 45: Traffic Matrix

Values

The Traffic Matrix consists of a list of elements, each describing possible individual

traffic flow comprising the matrix, including:

 ServiceEndPoint details for the Traffic flow

 Reference (Name/ID) to the Source ServiceEndPoint

 Reference (Name/ID) to the Sink ServiceEndPoint

 Optionally the Layer of the ServiceEndPoint if it supports multiple layers

 Traffic Constraints including

 Required Constraints such as Capacity

 Optional Constraints such as Layer, Latency, Cost, etc.

TAPI_FR 46: Path Optimization Constraint

Values

The following are the optimization constraint parameters to be provided as input to

the Path Optimization API

 Whether traffic interruption allowed or not

TAPI_FR 47: Path Objective Function

Values

The following are the Objective Function parameters to be provided as input to the

Path Computation Service API

 Allow to compute concurrent Paths or not

 Minimize the cost

 Resource sharing (max re-usage/min re-usage) Whether new resource can be

used or no

 Minimum/maximum link utilization value

 Maximize the amount of successfully computed paths (Only for concurrent

path computation)

 Minimize aggregate Bandwidth Consumption (Only for concurrent path

computation)

 Minimize the load of the Most Loaded Link (Only for concurrent path

computation)

 Minimize Cumulative Cost of a set of paths (Only for concurrent path

computation)

TAPI_FR 48: Notification-Header

Description

All notifications shall contain a common header that identifies the type of the

notification, the producer of the notification (object class, object instance), the time at

which the underlying event occurred, a unique notification identifier, and the object

instance identifier of the system hosting the agent.

Functional Requirements for Transport API Version No.01

Page 37 of 71 © Open Networking Foundation

Values

This header shall minimally support the following attributes

 Notification Identifier (uuid)

 Notification Type

 Object Type

 Object Instance Identifier (uuid) – Globally unique ID of the object on which

this notification is being raised

 Object Instance Name List

 Event Time Stamp

 Notification Source Indicator

TAPI_FR 49: Notification-Type

Description
Notification agents shall classify notification messages into notification types;

additional notification types may be defined as needed.

Values

This enumeration shall minimally support following values

 Object Creation

 Object Deletion

 Attribute Value Change

 State Change

TAPI_FR 50: Object-Type

Description

Notification agents shall identify the type of the object on which a notification is

raised and allow filtering of the notifications based on object types; additional object

types may be defined as needed.

Values

This enumeration shall minimally support following values

 Context

 Topology

 Node

 Link

 Node-Edge-Point

 Service-End-Point

 Connection-End-Point

 Connectivity-Service

 Virtual Network Service

 Connection

 Path

TAPI_FR 51: Notification-Source-Indicator

Description Notification agents shall identify the source of notification messages.

Values

This enumeration attribute shall minimally support following values

 ResourceOperation

 ManagementOperation

 Unknown

Functional Requirements for Transport API Version No.01

Page 38 of 71 © Open Networking Foundation

4 Appendix A: Transport API Concepts Overview

4.1 Context

An SDN controller or manager typically organizes its information and operates on that

information within specific contexts. A Context is an abstraction that allows for logical isolation

and grouping of network resource abstractions for specific purposes/applications and/or

information exchange with its users/clients over an interface. Thus, Context defines the scope of

control and naming that a particular SDN controller, manager or a client application has with

respect to the information it operates on internally or exchanges over an interface. It therefore

determines the makeup of the network resource abstractions within that domain of control.

More specifically, a T-API Context:

 Is defined by a set of Service-End-Points and its capabilities (capacity, layers, etc.)

 Utilizes one or more shared namespace in information exchanges over the interface

 Includes one or more top-level Topology abstractions that are:

o Either statically assigned by a controller or dynamically created on client request

o Defined by a set of Nodes and Links

 Provides scope for control (create/retrieve/update/delete) of Topology abstractions

 Determines the level of abstraction exposed over an interface

To further illustrate the concept of Context, consider the simple single domain physical network

example shown in Figure-3
9
. It depicts a Network Provider (Blue) with two Customers (Red and

Green). In this example, the network provider controller has 3 Contexts – its own internal/admin

Context representing all the resources under its control (Control Domain), and one Context per

customer (Red and Green) that it shares over its interfaces. This is shown in Figure-4 & Figure-5

below. In this example, the provider exposes a single-Node Topology abstraction to customer

Red, while it exposes a multi-Node Topology abstraction to customer Green.

Figure 3 : Simple Physical Network Example

9
 The capabilities of the PE-NE in the figure-2 above are further described in detail in Appendix C

PE3PE1

PE2

P

CE4

CE3

CE5CE – Customer Edge

PE – Provider Edge

P - Provider

CE1

CE2

CE6

Node Edge Point (Network Internal)

Service EndPoint

Node Edge Point (Network Edge)

UNI UNI

UNI

- A Network Provider (Blue) with two Customers (Red and Green)

- All UNI interfaces are ETH (e.g. 10GE), I-NNI interfaces are OTU (e.g. 100G OTN)

- All PE-NE are ODU/ETH capable, while P-NE is only ODU capable.

Functional Requirements for Transport API Version No.01

Page 39 of 71 © Open Networking Foundation

Figure 4: Shared Contexts - Architecture perspective

Figure 5: Shared Contexts & Topology

4.2 Node and Topology Aspects of Forwarding Domain

The Forwarding-Domain described in the ONF Core IM, represents the opportunity to enable

forwarding between its edge-points. The Forwarding-Domain can hold zero or more instances of

Resource

Group - PE1

Resource

Group - PE2

Resource

Group - PE3

Resource

Group - P

O
th

e
r
 A

d
m

in
 I

n
te

rf
a
c
e
s

Provider SDN Controller
Orchestration / Virtualization

Provider Internal Context

Server Context

PE1

Server Context

PE2

Server Context

PE3

Server Context

P

Shared Context

RED

Resource

Group

Interface/API

Shared Context

GREEN

Resource

Group

Interface/API

Shared Context

BLUE.Admin

Resource

Group

Interface/API

Application

RED
SDN Controller GREEEN

Resource

Group

Resource

Group

Admin APP

Blue

Client

Server

Client

Server

Node Edge Point (NW Internal)

Service End Point

Node Edge Point (NW Edge)

Link

Mapping

Topology

Node

G1

G2

G3

Green Shared

Context

R1

Red Shared

Context

P

PE1

PE2

PE3

Blue Internal

Context

Functional Requirements for Transport API Version No.01

Page 40 of 71 © Open Networking Foundation

Connections and provides the context for requesting and instructing the formation, adjustment

and removal of Connections.

The Forwarding-Domain supports a recursive aggregation relationship such that the internal

construction of a Forwarding-Domain can be exposed as multiple lower level Forwarding-

Domains and associated Links (partitioning).

For the purposes of API requirements, the Forwarding-Domain has been refactored as two

separate entities:

- Node – which represents the forwarding-potential between its edge-points (LTPs)

- Topology – which represents the topological-aggregation of lower-level Links and Nodes

Depending on the frame of reference for an API invocation (or the position of an imaginary

observer), only the opaque Node-aspects of a Forwarding-Domain would be visible (placing the

observer external to the Forwarding-Domain) or the entire Topology-structure of a Forwarding-

Domain would be visible (placing the observer internal to the Forwarding-Domain)

In this representation, a Node is a logical abstraction of forwarding capability, and as such could

encompass an internal Topology. In such a case, a Node can be recursively decomposed into its

lower-level Nodes and Links. So a Node at a top-level could abstract the Topology of an entire

network while a Node at the bottom-most level could abstract a switch matrix within a

device/NE.

To illustrate the concept, consider the physical network example presented in Figure-3 above.

The Node-R1 in the Red shared Context can be decomposed into a Topology of 3 Nodes R1.1,

R1.2, R1.3 and the Links between them, as shown in the Figure-6 below.

Figure 6: Topological Decomposition of Node

Node Edge Point (NW Internal)

Service End Point

Node Edge Point (NW Edge)

Link

Mapping

Topology

Node R1

Red Shared

Context

R1

Red Shared

Context

R1.1

R1.2

R1.3

Functional Requirements for Transport API Version No.01

Page 41 of 71 © Open Networking Foundation

Figure-7 illustrates another example of hierarchical topology recursion from a top level topology

abstraction (node B) to successively more detailed levels of topology abstraction until the lowest

level of interest is reached (in this example, C, A1.1-A1.3, A2.1-A2.3).

Figure 7: Recursive Topological Decomposition of Node

And Figure-8 below illustrates the same network example, from the perspectives of an imaginary

observer, viewing the ForwardingDomain from different locations within the abstraction.

Figure 8: Node/Topology perspectives of recursively partitioned Forwarding Domain (FD)

Topology A.1

Topology A.2

A C

Topology B

A.1

A.2 A.5

A.4

A.3 Topology A

A.1.1 A.1.3

A.1.2

C
Topology C

B

A.2.1 A.2.3

A.2.2

The same link show twice

Top-most Topology

Functional Requirements for Transport API Version No.01

Page 42 of 71 © Open Networking Foundation

The effective adjacency between two or more Forwarding-Domains is modeled by a Link. In its

basic form (i.e., point-to-point Link) it associates a set of (Node-)Edge-Point client layers on one

Forwarding-Domain with an equivalent set of (Node-)Edge-Point client layers on another

Forwarding-Domain. A Link may offer parameters such as capacity and delay depending on the

type of technology that supports the Link. A Forwarding-Domain may aggregate Links that are

wholly within the bounds of the Forwarding-Domain. A Link with an Off-network end cannot be

encompassed by a Forwarding-Domain. The Link can support multiple transport layers via the

associated (Node-)Edge-Point instances on which it terminates.

4.3 Hierarchical Control Domains and Contexts

The T-API Context is a realization of the Network-Control-Domain as defined in the ONF Core

Information Model

In interfaces where an abstracted view of network is offered, e.g. in client/server SDN controller

relationship, the Context defines the scope of control of the client SDN controller on the

abstracted/virtual network view that has been provided by the server SDN controller. Thus

Context relates to an abstracted view of the partitioned provider resources allocated to that

particular client. In such cases, the Context also scopes the namespace for identifying objects

representing the (virtual) resources within the (virtual) network view. The following figures

illustrate few examples of Contexts in a hierarchical SDN controller system:

Figure 9: View of Controller-1 Context based on Views exported by Controllers 2 & 3

B
A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

C

NCD 1

01

02

03

04

05

11

12
13

14

15

16

17

18

19

20

Controller-1

Controller-2 Controller-3

01.1

01.n

02.1

02.n

Functional Requirements for Transport API Version No.01

Page 43 of 71 © Open Networking Foundation

Figure 10: Views of Controller-2 Contexts

Figure 11: Views of Controller-3 Contexts

Controller-1

Controller-2 Controller-3

A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

NCD 2
(Actual View)

01

04

05

11

12
13

14

15

16

17

18

19

20

A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

NCD 2-1
(Exported View to Ctrl-1)

01

04

05

11

12
13

14

15

16

17

18

19

20

Controller-1

Controller-2 Controller-3

C

D.1

D.2

D.3

D.5

D.4

D.2.3

D.1.1

D.2.2

D.1.2

D.1.3

D.2.1

03

02

05

21

22
23

24

25

26

27

28

29

30

NCD 3
(Actual View)

C

02

03

NCD 3-1
(Exported View to

Ctrl-1)

Functional Requirements for Transport API Version No.01

Page 44 of 71 © Open Networking Foundation

4.4 Topology Traversal using APIs

The following figures illustrate few examples of views of a provider topology, that a T-API

client application may obtain using the APIs.

Figure 12: API Client’s View of Controller-1 Context without retrieving Topology details

Figure 13: API Client’s View of Controller-1 Context by retrieving top-most level of Topology

NCD 1-1A

Controller-1

Controller-2 Controller-3

01.1

01.n

02.1

02.n

• GetServiceEndPointList ()1

• returns ServiceEndPoint-details of LTP-01.1

• returns ServiceEndPoint-details of LTP-01.n

• returns ServiceEndPoint-details of LTP-02.1

• returns ServiceEndPoint-details of LTP-02.n

1. The service addresses are either assigned

by the Controller-1 or negotiated at service

contract setup

NCD 1-2A
01.1

Controller-1

Controller-2 Controller-3

B
01

02

• GetServiceEndPointList () 1

• GetTopologyList()

 Returns NCD-1-2A

• GetTopologyDetails (NCD-1-2A)

 returns Node-details of FD-B

 NodeEdgePoint-details of LTP-01

 NodeEdgePoint-details of LTP-02

01.n

02.1

02.n

1. The ServiceEndPoints are mapped as FD B’s

NodeEdgePoint’s outward-facing-aspect

information (e.g. an attribute containing a

list/range of available addresses)

Functional Requirements for Transport API Version No.01

Page 45 of 71 © Open Networking Foundation

Figure 14: API Client’s View of Controller1 Context by retrieving 2 levels of Topology details

Figure 15: API Client’s View of Controller-1 Context by retrieving 3 levels of Topology details

• GetTopologyDetails (FD-B)

 returns Node-details of FD-A and

 NodeEdgePoint-details of LTP-01

 NodeEdgePoint-details of LTP-02

 NodeEdgePoint-details of LTP-05

 returns Node-details of FD-C and

 NodeEdgePoint-details of LTP-03

 NodeEdgePoint-details of LTP-04

 returns Link-details of Link-A-C

NCD 1-2A

Controller-1

Controller-2 Controller-3

B
A

C

01

02

03

04

05

• GetServiceEndPointList ()

• GetTopologyList()

 Returns NCD-1-2A

• GetTopologyDetails (NCD 1-2A)

 returns Node-details of FD-B

 NodeEdgePoint-details of LTP-01

 NodeEdgePoint-details of LTP-02

01.1

01.n

02.1

02.n

NCD 1-2A

Controller-1

Controller-2 Controller-3

B

C

02

03

• GetServiceEndPointList ()

• GetTopologyList()

 Returns NCD-1-2A

• GetTopologyDetails (NCD-1-2A)

 returns Node-details of FD-B and

 NodeEdgePoint-details of LTP-01

 NodeEdgePoint-details of LTP-02

01.1

01.n

02.1

02.n

• GetTopologyDetails (FD-B)

 returns Node-details of FD-A and

 NodeEdgePoint-details of LTP-01

 NodeEdgePoint-details of LTP-02

 NodeEdgePoint-details of LTP-05

 returns Node-details of FD-C and

 NodeEdgePoint-details of LTP-03

 NodeEdgePoint-details of LTP-04

 returns Link-details of Link-A-C

• GetTopologyDetails(FD-A)

 returns Node-details of FD-A.1 and

 NodeEdgePoint-details of LTP-01

 NodeEdgePoint-details of LTP-11

 NodeEdgePoint-details of LTP-12

 NodeEdgePoint-details of LTP-13

 returns Node-details of FD-A.2 and

 NodeEdgePoint-details of LTP-14

 NodeEdgePoint-details of LTP-15

 returns Node-details of ……

 NodeEdgePoint-details of ……

 returns Link-details of Link-A.1-A.2

 returns Link-details of Link-A.2-A.3

 returns Link-details of ……

A

A.1

A.2

A.3

A.5

A.4

01

04

05

11

12
13

14

15

16

17

18

19

20

• GetTopologyDetails (FD-C)

 returns Empty List

Functional Requirements for Transport API Version No.01

Page 46 of 71 © Open Networking Foundation

4.5 Service, Connection and Route

A Connectivity-Service represents an “intent-like” request for connectivity between two or more

Service-End-Points (a realization of LTP described in the ONF Core IM) exposed by the Context.

As such, Connectivity-Service is distinct from the Connection that realizes the Connectivity-

Service. The requestor of the Connectivity-Service is expected to be able to express their intent

using just an “external” Node view of Forwarding-Domain and the advertised Service-End-

Points and not require knowledge of the “internal” Topology details of the Forwarding-Domain.

The association of the Connectivity-Service to Service-End-Points is made via the Ports of the

Connectivity-Service.

The Connectivity-Service is modeled by the Forwarding-Construct entity defined in the ONF

Core Information Model.

The Connection represents an enabled potential for forwarding (including all circuit and packet

forms) between two or more Node-Edge-Points (another realization of LTP described in the ONF

Core IM) from the Node aspect of the Forwarding-Domain. A Connection is typically described

utilizing the “internal” Topology view of Forwarding-Domain.

The Connection is modeled by the Forwarding-Construct entity defined in the ONF Core

Information Model.

The association of the Connection to Connection-End-Points (yet another realization of LTP

described in the ONF Core IM) is made via the Ports of the Connection, where each Port of the

Connection has a role in the context of the Connection. The traffic forwarding between the

associated Connection-End-Points of the Connection depends upon the type of Connection.

The Connection can be used to represent many different structures including point-to-point (P2P),

point-to-multipoint (P2MP), rooted-multipoint (RMP) and multipoint-to-multipoint (MP2MP)

bridge and selector structure for linear, ring or mesh protection schemes.

A Connection supports a recursive aggregation relationship such that the internal construction of

a Connection can be exposed as multiple lower-level Connection instances (partitioning). A

Connection can have zero or more Routes, each of which is defined as a list of lower level

Connection instances. At the lowest level of recursion, a Connection represents a cross-

connection within a switch matrix/fabric in a Network Element.

The Route represents the individual routes of a Connection. It is represented by a list of

Connections at a lower level. Note that depending on the characteristics of the Connectivity-

Service supported by a Connection, the Connection can have multiple Routes.

Functional Requirements for Transport API Version No.01

Page 47 of 71 © Open Networking Foundation

Figure 16: Service & Connections from Controller-1 perspective

Figure 17: Service & Connections from Controller-2 perspective

-Service1 (01.n - 02.n)1

-Conn1 (01.x-02.x)->Route((01.x-04.x), (03.x-02.x))

-Conn2 (01.x-04.x)->Route((01.x-12.x), (17.x-18.x),(20.x-04.x))

-Conn3 (01.x-12.x)->Route((01.x-51.x), (52.x-12.x))

-Conn4 (01.x-51.x)

-Conn5 (52.x-12.x)

-Conn6 (17.x-18.x)

-Conn7 (20.x-04.x)

-Conn8 (03.x-02.x)

B
A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

C

NCD 1

01

02

03

04

05

11

12
13

14

15

16

17

18

19

20

Controller-1

Controller-2 Controller-3

52

51

01.1

01.n

02.1

02.n

1. The service request end-point

addressing typically requires mapping

to controller-specif ic namespace for

connection (end-point) realization

Controller-1

Controller-2 Controller-3

A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

NCD 2-1
(Exported View

to Ctrl-1)

01

04

05

11

12
13

14

15

16

17

18

19

20

A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

NCD 2
(Actual View)

01

04

05

11

12
13

14

15

16

17

18

19

20

-Service3 (01.x-04.x)->Include((01.x-12.x), (17.x-18.x),(20.x-04.x))

-Conn1 (01.z-04.z)->Route((01.z-12.z),(17.z-18.z),(20.z-04.z))

-Conn2 (01.z-12.z)->Route((01.z-51.z),(52.z-12.z))

-Conn3 (01.z-51.z)

-Conn4 (52.z-12.z)

-Conn5 (17.z-18.z)

-Conn6 (20.z-04.z)

51

52

Functional Requirements for Transport API Version No.01

Page 48 of 71 © Open Networking Foundation

Figure 18: Service & Connections from Controller-3 perspective

4.6 Node Edge Point v/s Service End Point v/s Connection End Point

The Logical-Termination-Point (LTP) described in the ONF Core IM, represents encapsulation

of the addressing, mapping, termination, adaptation and OAM functions of one or more transport

layers (including circuit and packet forms). Where the client – server relationship is fixed 1:1 and

immutable, the different layers can be encapsulated in a single LTP instance. Where there is a n:1

relationship between client and server, the layers are split over separate instances of LTP.

Functions that can be associated/disassociated to/from an Connection, such as OAM, protection

switching, and performance monitoring are referenced as secondary entities through the

associated LTP instance.

Three forms of LTPs are realized in T-API model:

 Node-Edge-Point - The Node-Edge-Point represents the inward network-facing aspects

of the edge-port functions that access the forwarding capabilities provided by the Node.

Hence it provides an encapsulation of addressing, mapping, termination, adaptation and

OAM functions of one or more transport layers (including circuit and packet forms)

performed at the entry and exit points of the Node. The Node-Edge-Points have a specific

role and directionality with respect to a specific Link.

Controller-1

Controller-2 Controller-3

C

D.1

D.2

D.3

D.5

D.4

D.2.3

D.1.1

D.2.2

D.1.2

D.1.3

D.2.1

03

02

05

21

22
23

24

25

26

27

28

29

30

NCD 3
(Actual View)

C

02

03

NCD 3-1
(Exported View to

Ctrl-1)

-Service2 (03.x-02.x)

-Conn2 (03.y-02.y)->Route((03.y-22.y), (27.y-28.y),(30.y-02.y))

-Conn3 (03.y-22.y)->Route((03.y-61.y), (62.y-22.y))

-Conn4 (03.y-61.y)

-Conn5 (62.y-22.y)

-Conn6 (27.y-28.y)

-Conn7 (30.y-02.y)

61

62

Functional Requirements for Transport API Version No.01

Page 49 of 71 © Open Networking Foundation

 Service-End-Point - The Service-End-Point represents the outward customer-facing

aspects of the edge-port functions that access the forwarding capabilities provided by the

Node. Hence it provides a limited, simplified view of interest to external clients (e.g.

shared addressing, capacity, resource availability, etc.), that enable the clients to request

connectivity without the need to understand the provider network internals. Service-End-

Point have a mapping relationship (one-to-one, one-to-many, many-to-many) to Node-

Edge-Points.
10

 The Service-End-Points have a specific role and directionality with

respect to a specific Connectivity-Service.

 Connection-End-Point - The Connection-End-Point represents the ingress/egress port

aspects that access the forwarding function provided by the Connection. The Connection-

End-Points have a client-server relationship with the Node-Edge-Points. The Connection-

End-Points have a specific role and directionality with respect to a specific Connection.

10
Criteria for assigning/mapping ServiceEndPoints to NodeEdgePoints are out of scope of this FRD, but are

typically part of implementation agreement (IAs) and some examples are provided by the use cases in the

appendices B & C.

Functional Requirements for Transport API Version No.01

Page 50 of 71 © Open Networking Foundation

5 Appendix B: Transport API Examples Use cases

Figure 13 below shows the reference physical network (“God View”) where Service Provider

(SP) physical NEs (colored in blue) are interconnected each other within the SP network and

three Customer Edge (CE) NEs (colored in red) are connected through the SP network.

The circles represent the “interface number” of the physical interfaces attached to each node.

The UNI links (in read) are 10GE physical links while the NNI links (in blue) are 100G OTN

physical links (OTU4).

It is also assumed that the CE NEs are IP routers using the SP network to setup IP links between

them.

Interface P.4 (interface number 4 of node P) is not connected to any peer NE.

It is assumed that the whole SP network is managed by a single-domain SDN controller (SP

Controller).

Figure 19: Example Physical Network Topology

In order to be able to setup a connectivity service, Service EndPoints, representing shared

knowledge between the customer and the provider, needs to be pre-configured, based on

customer and provider negotiation.

We consider three different scenarios where connectivity services can be requested:

a) In the simplest case, there is no information about an abstract network topology shared

between the client application and service provider.

In this case, only the service end points are shared knowledge.

PE
1

PE
3

P

PE
2

CE1
CE2

CE3

1
1

1

1

1

1

12

3

2
3

3

3

2

2

4

4

Open port (not connected)

CE – Customer Edge

PE – Provider Edge

P - Provider

Functional Requirements for Transport API Version No.01

Page 51 of 71 © Open Networking Foundation

Only the connectivity service APIs are used by the client to manage connectivity services

between service end points. No path constraints can be requested in the connectivity

setup request and no path information can be returned for a connection.

When a connectivity service request T-API is received, a connection controller within the

service provider will internally call its path computation to setup the connection within

the service provider network. This interaction is outside the scope of this document.

Topology and Path Computation T-APIs are not used between the client application and

the service provider.

b. The client application and service provider can also have shared knowledge of an abstract

network topology.

The shared topology could be known a priori or retrieved via Topology API. This

topology can be used to provide path constrains in the connectivity setup request and/or

as a reference topology for returning the path of a connection.

The client application can internally call its path computation to derive the path

constraints, based on this shared network topology view, of a connectivity setup request.

This interaction is outside the scope of this document.

Path Computation T-APIs are not used.

c. When the client application and service provider can also have shared knowledge of an

abstract network topology, a further enhancement is possible.

Client application call the Path Computation T-API, with set of constrains based on

abstracted NW view, to get a “list” of paths matching customer application constrains.

Client application can use this information to provide path constraints in the Connectivity

Request Setup T-API to force the SP controller to select the path it prefers from the list

returned by the Path Computation API.

This approach seems more useful in more complex scenarios e.g., a multi-domain

network scenario where an orchestrator controller can request a domain controller to

setup a sub-optimal path within its domain which would be part of the optimal multi-

domain path.

5.1 10GE EPL Service over ODU2 Connection over 100G OTN network

In this use case the customer is willing to dynamically create a 10G IP Link between two of its

CE routers connected to the SP network via two 10GE physical interfaces: for example an IP

Link between CE1 and CE2 routers.

Functional Requirements for Transport API Version No.01

Page 52 of 71 © Open Networking Foundation

In this use case, it is assumed that the customer is requesting the service provider to forward all

the Ethernet frames in the same manner, so only one Priority/CoS is implicitly defined for the

EPL service.

In order to support this use case in the reference network example, it is sufficient to pre-

configure three Service EndPoints: X, Y and Z such that, to create an IP Link between CE1 and

CE2, a 10GE EPL Service needs to be requested between SEPs X and Y. Configuring a

bandwidth constraint for this service is optional since, by definition, is shall be the same fixed

bandwidth used on both the UNI Links associated with SEPs X and Y.

PE1

PE3

P

PE2

CE1
CE2

CE3

1

1

1

1

1

1

12

3

2
3

3

3

2

2

4

X

Y

Z

NodeEdgePoint

ServiceEndPoint
LTP Types

ConnectionEndPoint

Potential ConnectionEndPoint

Figure 20: Example 10GE EPL Service over ODU2

In the shared T-API context, X is a pool of one and only one potential L-EC (Link Ethernet

Connection, as defined in G.8021) Connection EndPoint (CEP).

The customer controller knows also the mapping between this potential L-EC CEP within the

shared context and the potential L-EC CEP associated to the CE1, port 1, and therefore it can

infer that the SEP X maps to that L-EC CEP within its context.

CE1 CE2
CE1.1

CE2.1

X Y

Shared View/Context (assumption: no shared topology information)

Customer View/Context

Figure 21: 10G EPL - Customer View of Connectivity

In a similar manner, the SP controller can infer that the SEP X maps to the potential L-EC CEP,

within its context, associated with PE1, port 1:

Functional Requirements for Transport API Version No.01

Page 53 of 71 © Open Networking Foundation

ODU Network

PE1.1

PE3.4

PE2.2

PE1 PE2

PE3

P
PE1.2

PE1.3

P.1

P.4

P.2

P.4

PE3.1

PE3.2

PE3.3

PE2.1

PE2.3

X Y

Shared Context (assumption: no shared topology information)

Provider Context

01
01

ETH Network
TL TL

01

Figure 22: 10G EPL - Provider’s View of Topology exported to the Customer

Similar one-to-one mappings apply to Y and Z Service EPs.

When the 10GE EPL service is requested, an L-EC (Link Ethernet Connection, as defined in

G.8021.1) connection (between PE1.1 and PE2.2) within the SP network will be created:

ODU Network

PE1.1

PE3.4

PE2.2

PE1 PE2

PE3

P
PE1.2

PE1.3

P.1

P.4

P.2

P.4

PE3.1

PE3.2

PE3.3

PE2.1

PE2.3

X Y

Shared Context (assumption: no shared topology information)

Provider Context

10GE EPL Service

01
01

01
01

ETH Link

L-EC connection

ETH Network

ODU2 connection

TL TL

Figure 23: 10G EPL - Provider’s View of Service/Connections exported to the Customer

Three different implementations, within the service provider, are possible

 ODU2 connection

 Service EC (S-EC) connection

 PW connection

Functional Requirements for Transport API Version No.01

Page 54 of 71 © Open Networking Foundation

The choice can be based on network capability, service-provider policy, a pre-negotiated policy

between customer and provider, dynamically chosen by the service provider controller e.g. based

on the feedbacks from the path computation used within the SP controller.

Note – if there is a multi-layer shared abstract topology view, the path constraints of the service

request can be used by the customer to constrain also the selection of the connection type.

Detailed description of this use case is for further study.

As soon as the service is successfully created, the customer can create the IP Link, within the

customer controller context, since there is a one-to-one mapping between the SEPs and the IP

NEPs of the IP Link supported by the 10GE EPL Service:

CE1 CE2
CE1.1

CE2.1

X Y

Shared View/Context (assumption: no shared topology information)

Customer View/Context

10GE EPL Service

IP Link

Figure 24: 10G EPL - Customer's view of Service/Connectivity

In this use case, there is one and only one L-EC connection within the shared context that can

support the requested service. There is no need to report this L-EC connection, since it does not

provide to the customer controller any additional information besides the fact that the service has

been successfully setup.

5.2 1G EVPL Service over ODU0 Connection over 100G OTN network

In this use case the customer is willing to dynamically create a 1G IP Link between two of its CE

routers, connected to the SP network via two 10GE physical interfaces which can be shared by

different IP Links (using VLANs).

Also in this use case, it is assumed that the customer is requesting the service provider to forward

all the Ethernet frames in the same manner, so only one Priority/CoS is implicitly defined for the

EVPL service.

In order to support this use case in the reference network example, it is sufficient to pre-

configure three SEPs: X, Y and Z such that, to create a 1G VLAN-based IP Link between CE1

and CE2, a 1G EVPL Service needs to be requested between SEPs X and Y. In this case the

bandwidth profile for the EVPL service needs to be configured: it is assumed that the CIR is 1

Gb/s while the EIR is zero. The configuration of the CBS parameter is optional: if not specified,

it can be chosen by the operator.

Functional Requirements for Transport API Version No.01

Page 55 of 71 © Open Networking Foundation

PE1

PE3

P

PE2

CE1
CE2

CE3

1

1

1

1

1

2

3

2
3

3

3

2

NodeEdgePoint

ServiceEndPoint
LTP Types

ConnectionEndPoint

Pool of potential ConnectionEndPoint

X

1

4

Y

Z

1

2

Figure 25: Example 1G EVPL Service over ODU0

In the shared T-API context, X is a pool of 4k C-EC (Customer Ethernet Connection, as defined

in G.8021) potential CEPs.

The customer controller knows also the mapping between these 4k potential C-EC CEPs, within

the shared context, and the 4k potential C-EC CEPs as within its context, associated to the CE1,

port 1, and therefore it can infer that the SEP X maps to those 4k potential C-EC CEPs within its

context.

CE1 CE2
CE1.1

CE2.1

X Y

Shared View/Context (assumption: no shared topology information)

Customer View/Context

Figure 26: 1G EVPL - Customer View of Connectivity

In a similar manner, the SP controller can infer that the SEP X maps to all the 4k potential C-EC

CEPs, within its context, associated with PE1, port 1:

Functional Requirements for Transport API Version No.01

Page 56 of 71 © Open Networking Foundation

ODU Network

PE1.1

PE3.4

PE2.2

PE1 PE2

PE3

P
PE1.2

PE1.3

P.1

P.4

P.2

P.4

PE3.1

PE3.2

PE3.3

PE2.1

PE2.3

X Y

Shared Context (assumption: no shared topology information)

Provider Context

01
01

ETH Network
TL TL

Figure 27: 1G EVPL - Provider’s View of Topology exported to the Customer

Similar mappings apply to Y and Z Service EPs.

When the 1G EVPL service is requested, a C-EC connection (between PE1.1 and PE2.2) within

the SP network will be created:

ODU Network

PE1.1

PE3.4

PE2.2

PE1 PE2

PE3

P
PE1.2

PE1.3

P.1

P.4

P.2

P.4

PE3.1

PE3.2

PE3.3

PE2.1

PE2.3

Shared Context (assumption: no shared topology information)

Provider Context

1G EVPLService

01
01

01
01

ETH Link

ETH Network

ODU2 connection

TL TL

X Y

C-EC connection

C-EC connection

Figure 28: 1G EVPL - Provider’s View of Service/Connections exported to the Customer

Three different implementations, within the service provider, are possible

 ODU0 connection

 S-EC connection

 PW connection

Functional Requirements for Transport API Version No.01

Page 57 of 71 © Open Networking Foundation

The choice can be based on network capability, service-provider policy, a pre-negotiated policy

between customer and provider, dynamically chosen by the service provider controller e.g. based

on the feedbacks from the path computation used within the SP controller.

Note – if there is a multi-layer shared abstract topology view, the path constraints of the service

request can be used by the customer to constrain also the selection of the connection type.

Detailed description of this use case is for further study.

As soon as the service is successfully created, the Service Provider shall also report, within the

shared context, a C-EC connection between C-EC CEPs that map to the actual C-EC CEPs,

within the SP network. In particular, the actual C-EC CEPs, within the shared context, provide

information of the C-VLAN ID values to be used at the edge of the SP network. Alternately, if

the Customer wants to force (for whatever reason) a specific C-VLAN value to be used inside

the pool (top-down choice), the intended C-VLAN can be specified as part of the constraints

related to the setup of the C-EC connection.

Based on the C-EC connection, the customer controller can create the 1G VLAN-based IP Link,

supported by the EVPL Service, between IP NEPs that map to the actual C-EC CEPs, within the

shared context. In particular, the configuration of the C-VLAN ID values to be used on the IP

NEPs, within the customer context, is inferred from the information in the associated actual C-

EC CEPs, within the shared context.

CE1 CE2
CE1.1

CE2.1

Shared View/Context (assumption: no shared topology information)

Customer View/Context

1G EVPL Service

IP Link

X Y

C-EC connection

Figure 29: 1G EVPL - Customer's view of Service/Connectivity

In this use case, there is many possible C-EC connections within the shared context that can

support the requested service. There is a need to report, within the shared context, the actual C-

EC connection implementing the requested service to provide the customer controller the

information it needs to properly configure the IP NEPs within its own context (e.g., the C-VLAN

ID values).

5.3 Var-rate EVPL Service over EVC Connection over 100G OTN network

For further study

5.4 EVPL Service with Load Balancing

Detailed description of this use case is for further study. This section just provides few

guidelines:

Functional Requirements for Transport API Version No.01

Page 58 of 71 © Open Networking Foundation

PE1

PE3

P

PE2

CE2

CE3

1

1

1

1

2

3

2
3

3

3

2

4

CE1
1

1
1

2

2

4

NodeEdgePoint

ServiceEndPoint
LTP Types

ConnectionEndPoint

Pool of potential ConnectionEndPoint

K

Y

X

Z

Figure 30: EVPL Service with Load Balancing

In order to support this use case in the reference network example, in addition to the X, Y and Z

SEPs, another SEP K needs to be created, such that, to create a 1G VLAN-based IP Link

between CE1 and CE2, a 1G EVPL Service needs to be requested between SEPs X and K.

K is a pool of 8k C-EC potential CEPs in the shared context which, within the context of the

Customer controller, maps with all the 8k potential VLAN-based IP Node EndPoints that can be

created over CE2, ports 1 and 2.

Within the Provider controller, these 8k C-EC potential CEPs map with all the 8k potential C-EC

CEPs associated with PE2, ports 2 and 4.

It is worth noting that SEPs Y and K have an overlapping set of potential CEPs.

5.5 Anycast EVPL Service

Detailed description of this use case is for further study. This section just provides few

guidelines:

PE1

PE3

P

PE2

CE1
CE2

CE3

1
1

1

1

1

1

12

3

2
3

3

3

2

2

4 H

Y= VLANs pool of pool

Y

X

Z

Figure 31: Example Anycast EVPL Service

In order to support this use case in the reference network example, in addition to the X, Y and Z

SEPs, another SEP H needs to be created, such that, to create a 1G VLAN-based IP Link

Functional Requirements for Transport API Version No.01

Page 59 of 71 © Open Networking Foundation

between CE1 and either CE2 or CE3, a 1G EVPL Service needs to be requested between SEPs X

and H.

H is a pool of 8k C-EC potential CEPs in the shared context which, within the context of the

Customer controller, maps with all the 8k potential VLAN-based IP Node EndPoints that can be

created over CE2, port 1 and CE3, port 1.

Within the Provider controller, these 8k C-EC potential CEPs map with all the 8k potential C-EC

CEPs associated with PE2, port 2 and PE3, port 1.

It is worth noting that SEPs Y and Z K have overlapping set of potential CEPs with SEP H.

Functional Requirements for Transport API Version No.01

Page 60 of 71 © Open Networking Foundation

6 Appendix C: Multi-layer and Multi-domain Use cases

This section gives the usage examples of TAPI information model and API in multi-layer and

multi-domain network.

We assume a multi-layer and multi-domain network configuration as shown in the following

figure. The network elements are packet OTN equipments. The network contains two domains,

domain A and domain B, which are controlled by Controller-2 and Controller-3 respectively.

Controller-1 controls the overall network (domain C) through Controller 2 and 3. Domain A and

B are interconnected with OTU-4 links. The edge ports that connect to the client equipments are

10GE Ethernet ports.

An example service of 1GE EVPL over ODU0 (multi-layer and multi-domain service) between

ServiceEndPoint 1 and ServiceEndpoint 2 is requested in this network.

Figure 32: Multi-layer and Multi-domain Example Network Configuration

6.1 Multi-layer and Multi-domain Topology Initialization

We assume that all the 3 controllers are within one service provider’s scope, so that all the

internal topology in domain A and B are exposed to Controller 1. Since this is a multilayer

network, there should be two topology instances for Ethernet and ODUk respectively. The two

layer topologies are interconnected with transitional links between internal Ethernet port and

ODU port (NodeEP 24, 25, 26, 27) inside node A.1 and B.4 (as shown in the following figure).

This multi-layer topology enables cross-layer route computation in the controller. The

serviceEndPoints at domain boundaries (serviceEP 3 and 4) should be instantiated for cross-

domain service setup.

Functional Requirements for Transport API Version No.01

Page 61 of 71 © Open Networking Foundation

Figure 33: Network Topology in Controller 1

6.2 Multi-layer and multi-domain services/connections

To setup Ethernet over OTUk service in this multi-domain and multi-layer network, there are

two options.

Option A: Setup multi-layer services within each domain.

This option allows controller 1 to send multi-layer service request to its subordinate controllers

(Ethernet serviceEP to ODUk ServiceEP). The following are the API message exchange between

controller 1 and controller 2, 3.

1. User sends ETH Connectivity Service Request to Controller 1.

2. Controller 1 receives ETH Connectivity Service Request.

3. Controller 1 computes multi-layer and multi-domain path using its knowledge of overall

topology.

4. Controller 1 sends multilayer Connectivity Service 1 Request (between Ethernet

serviceEP 1 to ODUk ServiceEP 3) to Controller 2.

5. Controller 2 receives multi-layer Connectivity Service Request from Controller 1.

6. Controller 2 computes multilayer path, and selects the internal NodeEPs for connection

setup.

7. Controller 2 creates ODUk connection 1 and ETH connection 1 internally and returns

them to Controller 1.

Functional Requirements for Transport API Version No.01

Page 62 of 71 © Open Networking Foundation

8. Controller 1 sends multilayer Connectivity Service 2 Request (between Ethernet

serviceEP 1 to ODUk ServiceEP 3) to Controller 3.

9. Controller 3 receives multi-layer Connectivity Service Request from Controller 1.

10. Controller 3 computes multilayer path, and selects the internal NodeEPs for connection

setup.

11. Controller 3 creates ODUk connection 2 and ETH connection 2 internally and returns

them to Controller 1.

12. Controller 1 creates end-to-end ODUk connection 3 internally based on the received

ODUk connection 1 and 2.

13. Controller 1 creates ETH link internally between A.1 and B.4 on top of connection 3.

14. Controller 1 creates the requested end-to-end ETH connection 3 based on the received

ETH connection 1, 2 and ETH link internally.

15. Controller 1 returns ETH service to User.

Figure 34: Multi-layer and Multi-domain service/connection setup (Option A)

Option B: Setup single-layer services within each domain.

This option only allows controller 1 to send single layer service request to its subordinate

controllers. The following are the API message exchange between controller 1 and controller 2, 3.

Functional Requirements for Transport API Version No.01

Page 63 of 71 © Open Networking Foundation

1. User sends ETH Connectivity Service Request to Controller 1.

2. Controller 1 receives ETH Connectivity Service Request.

3. Controller 1 computes multi-layer and multi-domain path using its knowledge of overall

topology.

4. Controller 1 sends ODU Connectivity Service Request (between ServiceEP3 and NodeEP

26) to Controller 2. (NodeEP 26 should also be assigned a serviceEP).

5. Controller 1 sends ETH Connectivity Service Request (between ServiceEP1 and NodeEP

24) to Controller 2. (NodeEP 24 should also be assigned a serviceEP).

6. Controller 2 creates requested ODUk connection 1 and ETH connection 1 internally and

returns them to Controller 1.

7. Controller 1 sends ODU Connectivity Service Request (between ServiceEP3 and NodeEP

27) to Controller 3. (NodeEP 27 should also be assigned a serviceEP).

8. Controller 1 sends ETH Connectivity Service Request (between ServiceEP2 and NodeEP

28) to Controller 3. (NodeEP 28 should also be assigned a serviceEP).

9. Controller 3 creates requested ODUk connection 1 and ETH connection 1 internally and

returns them to Controller 1.

10. Controller 1 creates end-to-end ODUk connection 3 internally based on the received

ODUk connection 1 and 2.

11. Controller 1 creates ETH link internally between A.1 and B.4 on top of connection 3.

12. Controller 1 creates the requested end-to-end ETH connection 3 based on the received

ETH connection 1, 2 and ETH link internally.

13. Controller 1 returns ETH service to User.

Functional Requirements for Transport API Version No.01

Page 64 of 71 © Open Networking Foundation

Figure 35: Multi-layer and Multi-domain service/connection setup (Option B)

6.3 Topology after service/connection Setup

After service and connection setup, the related connectionEndPoints and internal connections

will be created. The following figure gives an example topology instance diagram of node A.1

after the EVPL service/connection setup. S-VLAN ConnEP in this figure is optional based on

vendor implementation.

Figure 36: Topology instance diagram after service/connection setup

Functional Requirements for Transport API Version No.01

Page 65 of 71 © Open Networking Foundation

6.4 Further work

Multi-domain protection and multi-domain P2MP/MP2MP service use cases are for further study.

Functional Requirements for Transport API Version No.01

Page 66 of 71 © Open Networking Foundation

7 Appendix D: Transport API Information Model Skeleton

Figure 37: Transport API Information Model Skeleton

Functional Requirements for Transport API Version No.01

Page 67 of 71 © Open Networking Foundation

Figure 38: Topology Service Skeleton

Functional Requirements for Transport API Version No.01

Page 68 of 71 © Open Networking Foundation

Figure 39: Connectivity Service Skeleton

Functional Requirements for Transport API Version No.01

Page 69 of 71 © Open Networking Foundation

Figure 40: Virtual Network Service Skeleton

Functional Requirements for Transport API Version No.01

Page 70 of 71 © Open Networking Foundation

Figure 41: Path Computation Service Skeleton

Functional Requirements for Transport API Version No.01

Page 71 of 71 © Open Networking Foundation

8 Contributors

The Transport API Design team responsible for the writing of this document included:

 Chen Qiaogang, ZTE

 Erez Segev, ECI

 Eve Varma, ALU

 Guoying Zhang, CATR

 Hui Ding, RITT

 Italo Busi, Huawei

 Jia He, Huawei

 Karthik Sethuraman, NEC (Editor)

 Lyndon Ong, Ciena

 Nigel Davis, Ciena

 Ricard Vilalta, CTTC

 Sergio Bellotti, ALU

 Victor Lopez, Telefonica

Special thanks to everyone who provided their input and comments to make this a better document.

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 References
	1.4 Abbreviations
	1.5 Terms and Definitions
	1.6 Conventions

	2 Functional Architecture
	3 Functional Requirements
	3.1 Topology Service
	3.1.1 Topology Retrieval APIs

	3.2 Connectivity Service
	3.2.1 Connectivity Retrieval APIs
	3.2.2 Connectivity Request APIs

	3.3 Path Computation Service
	3.3.1 Path Computation Request APIs

	3.4 Virtual Network Service
	3.4.1 Virtual Network Retrieval APIs
	3.4.2 Virtual Network Request APIs

	3.5 Notification Service
	3.5.1 Notification Subscription and Filtering APIs
	3.5.2 Notification Message Types

	3.6 TAPI Data Types

	4 Appendix A: Transport API Concepts Overview
	4.1 Context
	4.2 Node and Topology Aspects of Forwarding Domain
	4.3 Hierarchical Control Domains and Contexts
	4.4 Topology Traversal using APIs
	4.5 Service, Connection and Route
	4.6 Node Edge Point v/s Service End Point v/s Connection End Point

	5 Appendix B: Transport API Examples Use cases
	5.1 10GE EPL Service over ODU2 Connection over 100G OTN network
	5.2 1G EVPL Service over ODU0 Connection over 100G OTN network
	5.3 Var-rate EVPL Service over EVC Connection over 100G OTN network
	5.4 EVPL Service with Load Balancing
	5.5 Anycast EVPL Service

	6 Appendix C: Multi-layer and Multi-domain Use cases
	6.1 Multi-layer and Multi-domain Topology Initialization
	6.2 Multi-layer and multi-domain services/connections
	6.3 Topology after service/connection Setup
	6.4 Further work

	7 Appendix D: Transport API Information Model Skeleton
	8 Contributors

