
UML Modeling Guidelines
Version 1.1
November 30, 2015

ONF TR-514

UML Modeling Guidelines Version 1.1

Page 2 of 40 © Open Networking Foundation

ONF Document Type: Technical Recommendation
ONF Document Name: UML Modeling Guidelines V1.1

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation
2275 E. Bayshore Road, Suite 103, Palo Alto, CA 94303
www.opennetworking.org

©2015 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the
Open Networking Foundation, in the United States and/or in other countries. All other brands,
products, or service names are or may be trademarks or service marks of, and are used to identify,
products or services of their respective owners.

UML Modeling Guidelines Version 1.1

Page 3 of 40 © Open Networking Foundation

1 Introduction .. 6

2 References .. 6

3 Abbreviations ... 6

4 Overview ... 7
4.1 Documentation Overview ... 7
4.2 Modeling approach .. 8
4.3 General Requirements ... 9

5 UML Artifact Descriptions ... 9
5.1 Object Classes ... 9

5.1.1 Object Class Notation .. 9
5.1.2 Object Class Properties ... 10

5.2 Attributes in Object Classes ... 11
5.2.1 Attribute Notation ... 11
5.2.2 Attribute Properties .. 12

5.3 Associations ... 14
5.3.1 Association Notation .. 14
5.3.2 Association Properties ... 16

5.4 Interfaces ... 19
5.4.1 «Interface» Notation .. 19
5.4.2 «Interface» Properties ... 19

5.5 Interface Operations .. 20
5.5.1 Operation Notation ... 21
5.5.2 Operation Properties .. 21

5.6 Operation Parameters .. 23
5.6.1 Parameter Notation .. 23
5.6.2 Parameter Properties ... 23

5.7 Notifications ... 25
5.7.1 Notification Notation ... 25
5.7.2 Notification Properties .. 25

5.8 Types ... 26
5.8.1 Type Notation .. 27
5.8.2 Type Properties ... 27

5.9 Qualifiers .. 28

6 UML Profile Definitions .. 29
6.1 Additional Properties Definitions .. 29
6.2 Modeling Lifecycle Definitions .. 32

UML Modeling Guidelines Version 1.1

Page 4 of 40 © Open Networking Foundation

7 Recommended Modeling Patterns ... 33
7.1 File Naming Conventions ... 33
7.2 Model Structure .. 34

7.2.1 Generic Model Structure .. 34
7.2.2 Model Structure ... 34

7.3 Flexible Attribute Assignment to Object Classes ... 35
7.4 Use of Conditional Packages ... 36
7.5 Use of XOR/Choice .. 37

7.5.1 Xor Constraint .. 37
7.5.2 «Choice» .. 38

7.6 Diagram Guidelines ... 39

List of Figures
Figure 4.1: Specification Architecture .. 8
Figure 5.1: Graphical Notation for Object Classes ... 9
Figure 5.2: Graphical Notation for Object Classes without Attributes Compartment 9
Figure 5.3: Graphical Notation for Object Classes with Attributes and Deprecated Operations

Compartment ... 10
Figure 5.4: «OpenModelClass» Stereotype ... 10
Figure 5.5: Potential Choice Annotation for Object Classes .. 11
Figure 5.6: Graphical Notation for Object Classes with Attributes ... 12
Figure 5.7: «OpenModelAttribute» Stereotype .. 13
Figure 5.8: «PassedByReference» Stereotype .. 14
Figure 5.9: Bidirectional Association Relationship Notation ... 14
Figure 5.10: Unidirectional Association Relationship Notation .. 15
Figure 5.11: – Non-navigable Association Relationship Notation .. 15
Figure 5.12: Aggregation Association Relationship Notation ... 15
Figure 5.13: Composite Aggregation Association Relationship Notation ... 15
Figure 5.14: Generalization Relationship Notation (normal and conditional) ... 16
Figure 5.15: Dependency Relationship Notation (normal and naming) ... 16
Figure 5.16: Realization Relationship Notation .. 16
Figure 5.17: Owner of a navigable Member End ... 17
Figure 5.18: Potential Annotations for Associations .. 18
Figure 5.19: Graphical Notation for «Interface» ... 19
Figure 5.20: Graphical Notation for «Interface» without Attributes Compartment 19
Figure 5.21: «OpenModelInterface» Stereotype .. 20
Figure 5.22: Graphical Notation for «Interface» with Operations ... 21
Figure 5.23: «OpenModelOperation» Stereotype .. 22
Figure 5.24: Graphical Notation for «Interface» with Operations and Parameters 23
Figure 5.25: «OpenModelParameter» Stereotype ... 24
Figure 5.26: «PassedByReference» Stereotype .. 25
Figure 5.27: Graphical Notation for «Signal» ... 25
Figure 5.28: «OpenModelNotification» Stereotype .. 26
Figure 5.29: Graphical Notation for «DataType» ... 27
Figure 5.30: Graphical Notation for «Enumeration» .. 27
Figure 5.31: Graphical Notation for «PrimitiveType» ... 27
Figure 5.32: Potential Annotations for Data Types .. 28
Figure 6.1: UML Artifact «Stereotypes» ... 30
Figure 6.2: Lifecycle «Stereotypes» ... 33
Figure 7.1: Core Model and Sub-Models ... 34
Figure 7.2: Model Structure (snapshot) ... 35

UML Modeling Guidelines Version 1.1

Page 5 of 40 © Open Networking Foundation

Figure 7.3: Pre-defined Packages in a UML Module ... 35
Figure 7.4: Flexible Attribute Assignment to Object Classes ... 36
Figure 7.5: Enhancing Object Classes Using Conditional Packages ... 37
Figure 7.6: {xor} Notation ... 37
Figure 7.7: Information Model Element Example Using «Choice» Notation .. 38
Figure 7.8: Operations Model Element Example Using «Choice» Notation .. 39
Figure 7.9: Sink/Source/Bidirectional Termination Points Example Using «Choice» Notation 39

List of Tables
Table 5.1: Table 11.1/[3] – Collection Types for Properties ... 12
Table 6.1: UML Artifact Properties Defined in Complex «Stereotypes» .. 30

Document History

Version Date Description of Change

1.0 March 13, 2015 Initial version

1.1 Nov. 30, 2015 Version 1.1

UML Modeling Guidelines Version 1.1

Page 6 of 40 © Open Networking Foundation

1 Introduction
This Technical Recommendation defines the guidelines that have to be taken into account during
the creation of a protocol-neutral UML (Unified Modeling Language) information model. These
UML Modeling Guidelines are not specific to any SDO, technology or management protocol.

UML defines a number of basic model elements (UML artifacts). In order to assure consistent
and harmonized information models, only a selected subset of these artifacts are used in the
UML model guidelines in this document. The semantic of the selected artifacts is defined in [2].

The documentation of each basic model artifact is divided into three parts:

1. Short description

2. Graphical notation examples

3. Properties

The guidelines have been developed using the Papyrus open source UML tool [1].

Summary of main changes between version 1.0 and 1.1

The following guidelines have been added:

• isAtomic property on operations
• «OpenModelNotification» stereotype
• realization association along with the «PruneAndRefactor» stereotype
• «Deprecated» lifecycle stereotype.

The requirement to use “Ref” and “List” in attribute/parameter/role names has been deprecated
since the “Ref” property is already defined by the «PassedByReference» property and the “List”
property is already defined by the multiplicity property.

The Guidelines are no longer ONF dependent; i.e, they can now be used as is by other SDOs.

2 References
[1] Papyrus Eclipse UML Modeling Tool (https://www.eclipse.org/papyrus/)
[2] Unified Modeling Language™ (UML®) (http://www.uml.org/)
[3] OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4
[4] 3GPP/TM Forum Model Alignment JWG: FMC Model Repertoire

(ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-
SDO_Model_Alignment/S5eMA20139.zip)

3 Abbreviations
CORBA Common Object Request Broker Architecture

DS Data Schema

UML Modeling Guidelines Version 1.1

Page 7 of 40 © Open Networking Foundation

FMC Fixed-Mobile Convergence

HTTP Hypertext Transfer Protocol

IM Information Model

JMS Java Message Service

JSON JavaScript Object Notation

JWG Joint Working Group (TM Forum, 3GPP)

LCC Lower Camel Case

LTP Logical Termination Point

NA Not Applicable

OMG Object Management Group

PM Performance Monitoring

SDO Standards Developing Organization

UCC Upper Camel Case

UML Unified Modeling Language

XML Extensible Markup Language

WG Working Group

4 Overview

4.1 Documentation Overview
This document is part of a series of Technical Recommendations. The location of this document
within the documentation architecture is shown in Figure 4.1 below:

UML Modeling Guidelines Version 1.1

Page 8 of 40 © Open Networking Foundation

UML	 to	 DS	 Mapping
Guidelines

UML
|

XML

UML
|

JSON

Core	 Fragment

Technology
specific

…

Specific
Fragments

App
specific

G
ui
de

lin
es

xx

xx

gu
id
e

Interface-‐specific
Data	 Schemas

xx

xx

Interface-‐specific
Encodings

mapping

mapping

mapping
gu
id
e

pruning
re-‐factoring

pruning
re-‐factoring

pruning
re-‐factoring

a

Purpose-‐specific
IMs

b

gu
id
e

gu
id
e

U
M
L	 M

od
el
s

TR-‐513:	 Common	 Information	 Model	 Overview
(structure,	 development	 process)

guide

guide

guide

guide

guide

guide

guide

xx

UML
|
OF

TR-‐512:
Common	 Information	 Model

c

z

UML
|

YANG

Core	 Network	
(Forwarding,	 Topology,	

Termination,	 …),	
Foundation,	 …

Figure 4.1: Specification Architecture

4.2 Modeling approach
The information model is split into a static part and a dynamic part; i.e., data model is decoupled
from operations model.

Important note:

It is important to understand that the UML class diagrams always show only parts of the
underlying model data base (data dictionary). E.g., object classes shown without attributes do not
mean that the object class has no attributes, they could be hidden in a diagram. The complete
model is contained in the data dictionary which contains all definitions.

UML Modeling Guidelines Version 1.1

Page 9 of 40 © Open Networking Foundation

4.3 General Requirements
• The UML 2.4 (Unified Modeling Language) is used as a notation for the model.
• The model shall be protocol-neutral, i.e., not reflect any middleware protocol-specific

characteristics (like e.g., CORBA, HTTP, JMS).
• The model shall be map-able to various protocol-specific interfaces.

It is recommended to automate this mapping supported by tools.
• Traceability from each modeling construct back to requirements and use cases shall be

provided whenever possible.

5 UML Artifact Descriptions

5.1 Object Classes
Object classes are used to convey a static1 representation of an entity, including properties and
attributes; i.e., data model, the static part of the model.

5.1.1 Object Class Notation

Figure 5.1: Graphical Notation for Object Classes

As highlighted in Figure 5.1, an object class is represented with a name compartment and an
attributes compartment. The name compartment contains also the assigned lifecycle stereotypes.
The attributes compartment can be set in a diagram to not expose the attributes or to expose
some or all of the attributes.

In some diagrams the attributes are not exposed so as to reduce clutter, in others only a subset of
the attributes is exposed so as to focus attention. It is also possible to hide the attribute
compartment of a class in the class diagrams where a large number of classes need to be shown,
as depicted in Figure 5.2.

Figure 5.2: Graphical Notation for Object Classes without Attributes Compartment

1 Not about operations acting on the entity.

UML Modeling Guidelines Version 1.1

Page 10 of 40 © Open Networking Foundation

The name compartment may also show stereotypes for the class where relevant. When showing
stereotypes the compartment will include the stereotype «OpenModelClass» (as all classes in the
model have this stereotype by default) and may also include other stereotypes.

In the general UML definition a class may have name, attribute and operation compartments, as
shown in Figure 5.3, but since the static part and the dynamic part of the model are decoupled,
the operation compartment, is not used and always hidden.

Figure 5.3: Graphical Notation for Object Classes with Attributes and Deprecated Operations

Compartment

5.1.2 Object Class Properties

An object class has the following properties:

• Name
Follows Upper Camel Case (UCC). Each class in the model has a unique name. An
example of Upper Camel Case: SubNetworkConnection.

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied
comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The
complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Superclass(es)
Inheritance and multiple inheritance may be used to deal with shared properties.

• Abstract
Indicates if the object class can be instantiated or is just used for inheritance.

• Additional properties are defined in the «OpenModelClass» stereotype which extents
() by default (required) the «metaclass» Class:

Figure 5.4: «OpenModelClass» Stereotype

UML Modeling Guidelines Version 1.1

Page 11 of 40 © Open Networking Foundation

• objectCreationNotification (only relevant in the purpose-specific modules of the
information model; see Figure 4.1)
Defines whether an object creation notification has to be sent when the object
instance is created.

• objectDeletionNotification (only relevant in the purpose-specific modules of the
information model; see Figure 4.1)
Defines whether an object deletion notification has to be sent when the object
instance is deleted.

• support
This property qualifies the support of the object class at the management interface.
See definition in section 5.9.

• condition
This property contains the condition for the condition-related support qualifiers.

• Choice
This stereotype identifies an object class as a choice between different alternatives.

Figure 5.5: Potential Choice Annotation for Object Classes

• UML/Papyrus defined class properties that are not used:
• Is leaf (default = false)
• Is active (default = false)
• Visibility (default = public)

5.2 Attributes in Object Classes
Attributes contain the properties2 of an object class. Note that the roles of navigable association
ends become an attribute in the associated object class.

5.2.1 Attribute Notation

The notation is:

|«<list of stereotypes>»| <visibility> <attribute name> : <attribute type> [<multiplicity>] =
<default value>

Note: When no default is relevant or no default is defined, the “=” is not shown.

2 In Papyrus an attribute is a property.

UML Modeling Guidelines Version 1.1

Page 12 of 40 © Open Networking Foundation

Figure 5.6: Graphical Notation for Object Classes with Attributes

5.2.2 Attribute Properties

An attribute has the following properties:

• Name
Follows Lower Camel Case (LCC) and is unique across all attribute names within the
inheritance tree. An example of Lower Camel Case: subNetworkConnectionIdentifier.
Boolean typed attribute names always start with a verb like ‘is’, 'must', etc. (e.g.,
‘isAbstract’) and the whole attribute name must be composed in a way that it is possible
to answer it by "true" or "false".

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied
comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The
complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Ordered
For a multi-valued multiplicity; this specifies whether the values in an instantiation of
this attribute are sequentially ordered; default is false.

• Unique
For a multi-valued multiplicity, this specifies if the values of this attribute instance are
unique (i.e., no duplicate attribute values); default is true.

Excerpt from [3]: When Unique is true (the default), the collection of values may not
contain duplicates. When Ordered is true (false being the default) the collection of values
is ordered. In combination these two allow the type of a property to represent a collection
in the following way:

Table 5.1: Table 11.1/[3] – Collection Types for Properties

Ordered Unique Collection type
false true Set
true true OrderedSet
false false Bag
true false Sequence

UML Modeling Guidelines Version 1.1

Page 13 of 40 © Open Networking Foundation

• Read Only
If true, the attribute may only be read, and not changed by the client. The default value is
false.

• Type
Refers to a data type; see section 5.8.

• Default Value
Provides the value that the attribute has to start with in case the value is not provided
during creation, or already defined because of a system state.

• Multiplicity (*, 1, 1..*, 0..1, …)
Defines the number of values the attribute can simultaneously have.
 * is a list attribute with 0, one or multiple values;
 1 attribute has always one value;
 1..* is a list attribute with at least one value;
 0..1 attribute may have no or at most one value;
Default value is 1.
Other values are possible; e.g., “2..17”.

• Additional properties are defined in the «OpenModelAttribute» stereotype which extents
() by default (required) the «metaclass» Property:

Figure 5.7: «OpenModelAttribute» Stereotype

• attributeValueChangeNotification (only relevant in the purpose-specific modules of
the information model; see Figure 4.1)
This property defines whether a notification has to be raised when the attribute
changes its value or not.

• isInvariant
Identifies if the value of the attribute can be changed after it has been created.

• valueRange
Identifies the allowed values for the attribute.

• support
This property qualifies the support of the attribute at the management interface. See
definition in section 5.9.

• condition
This property contains the condition for the condition-related support qualifiers.

UML Modeling Guidelines Version 1.1

Page 14 of 40 © Open Networking Foundation

• Other properties:
• passedByReference

This property shall only be applied to attributes that have an object class defined as
their type; i.e., on a case by case basis.
The property defines that the attribute contains only the reference (name, identifier,
address) of the referred object instance(s) when being transferred across the interface.
Otherwise the attribute contains the complete information of the object instance(s)
when being transferred across the interface.

Figure 5.8: «PassedByReference» Stereotype

• UML/Papyrus defined attribute properties that are not used:
• Is derived (default = false)
• Is derived union (default = false)
• Is leaf (default = false)
• Is static (default = false)
• Visibility (default = public)

5.3 Associations
Associations are defined between object classes. Associations have association-ends. The
association ends specify the role that the object at one end of a relationship performs.

5.3.1 Association Notation

The following examples show the different kinds of associations that are used in the model.

Figure 5.9 shows a bi-directional navigable association where each object class has a pointer to
the other. The role name becomes the name of the corresponding attribute. I.e., in the example:
ClassA will have an attribute named “_classB” pointing to ClassB and vice versa.

Figure 5.9: Bidirectional Association Relationship Notation

UML Modeling Guidelines Version 1.1

Page 15 of 40 © Open Networking Foundation

Figure 5.10 shows a unidirectional association (shown with an open arrow at the target object
class) where only the source object class has a pointer to the target object class and not vice-
versa.

Figure 5.10: Unidirectional Association Relationship Notation

Figure 5.11 shows a uni-directional non-navigable association where each object class does not
have a pointer to the other; i.e., such associations are just for illustration purposes.

Figure 5.11: – Non-navigable Association Relationship Notation

An aggregation is a special type of association in which objects are assembled or configured
together to create a more complex object. Aggregation protects the integrity of an assembly of
objects by defining a single point of control called aggregate, in the object that represents the
assembly.

Figure 5.12: Aggregation Association Relationship Notation

A composite aggregation association is a strong form of aggregation that requires a part instance
be included in at most one composite at a time. If a composite is deleted, all of its parts are
deleted as well; i.e., the lifecycle of ClassB is tied to the lifecycle of ClassA.

Note: In the example below, ClassA names ClassB instances; defined by the «Names»
stereotype.

Figure 5.13: Composite Aggregation Association Relationship Notation

UML Modeling Guidelines Version 1.1

Page 16 of 40 © Open Networking Foundation

A generalization association indicates a relationship in which one class (the child) inherits from
another class (the parent). A generalization relationship may be conditional, identified by the
«Cond» stereotype.

Figure 5.14: Generalization Relationship Notation (normal and conditional)

“A dependency is a relationship that signifies that a single or a set of model elements requires
other model elements for their specification or implementation. This means that the complete
semantics of the depending elements is either semantically or structurally dependent on the
definition of the supplier element(s)...“, an extract from [2].
A dependency relationship may define naming identified by the «NamedBy» stereotype.

Figure 5.15: Dependency Relationship Notation (normal and naming)

The realization relationship along with the «PruneAndRefactor» stereotype indicates the
association between a Core Model object class or relationship and the cloned Purpose Specific
Model object class or relationship.

Figure 5.16: Realization Relationship Notation

5.3.2 Association Properties

An association has the following properties:

UML Modeling Guidelines Version 1.1

Page 17 of 40 © Open Networking Foundation

• Name
Follows Upper Camel Case (UCC) and is unique across all association names defined in
the whole model.
The format is "<Class1Name><VerbPhrase><Class2Name>" where the verb phrase
creates a sequence that is readable and meaningful.

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied
comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The
complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Abstract
Associations which are just for explanation to the reader of the model are defined as
"abstract". Their ends are not navigable and have no role names. Abstract associations
must not be taken into account in a protocol specific implementation.

• Type
The following types are used:
• inheritance,
• simple association,
• composition,
• aggregation.

• Role Name
Follows Lower Camel Case (LCC) with an underscore “_” prefix and identifies the role
that the object plays at this end (Member End) of the association.
Only navigable Member Ends have role names and follow the definitions made for
attributes in section 5.2.

• Role Type
The type of the role is fixed to the object class attached to the association end. Therefore
it is important to define the type as passedByReference or passedByValue. The
«PassedByReference» stereotype identifies that the role (becoming an attribute) that has
the stereotype associated, contains only the reference (name, identifier, address) to the
referred object instance(s) when being transferred across the interface. Otherwise the role
(becoming an attribute) contains the complete information of the object instance(s) when
being transferred across the interface.
Note: The Owner of a navigable Member End has to be the Classifier to become an
attribute in the object class.

Figure 5.17: Owner of a navigable Member End

UML Modeling Guidelines Version 1.1

Page 18 of 40 © Open Networking Foundation

• Role Multiplicity
Identifies the number of object instances that can participate in an instance of the
association.

• Additional properties:
• «Names»

The «Names» stereotype identifies that the association is used to define the naming.
• «NamedBy»
• The «NamedBy» stereotype identifies that a dependency relationship is used to define

naming.
• «Cond»

The «Cond» stereotype identifies that the association is conditional. The condition is
also provided.

• «StrictComposite»
The «StrictComposite» stereotype can only be applied to associations with a
composite end (i.e., composite aggregation association). It means that the content of
the composed classes is part of the parent class and has no opportunity for
independent lifecycle. The composed classes are essentially carrying attributes of the
parent class where the composite is used to provide grouping of similar properties.
The composed classes just provide groups of attributes for the parent class; i.e., they
are abstract and cannot be instantiated.
Whereas in an association with a composite end that is not StrictComposite the
composed class is a part that has a restricted independent lifecycle. In this case an
instance of the composed class can be created and deleted in the context of the parent
class and should be represented as a separate instance from the parent in an
implementation. This is especially true where there is a recursive composition. It is
possible that in some cases the composed instance could move from one parent to
another so long as it exists with one parent only at all points of the transaction. This
move is not meaningful for a class associated via a StrictComposite association.

• «PruneAndRefactor»
This «PruneAndRefactor»stereotype identifies that a realization association is used to
identify pruning and refactoring.

Figure 5.18: Potential Annotations for Associations

• UML/Papyrus defined attribute properties that are not used:
• Visibility (default = public)

UML Modeling Guidelines Version 1.1

Page 19 of 40 © Open Networking Foundation

5.4 Interfaces
An «Interface» is used to group operations, i.e., models the dynamic part of the model.
Groupings of operations can be used to modularize the functionalities of the specification.

Note: Interfaces (and operations) may only be defined in the purpose-specific modules of the
information model; see Figure 4.1.

5.4.1 «Interface» Notation

Interfaces are identified by the stereotype «Interface».

Figure 5.19: Graphical Notation for «Interface»

«Interfaces» usually have name, attributes and operations compartments. The static part and the
dynamic part of the model are decoupled. Therefore, the attributes compartment is not used and
always empty. It is also possible to hide the attributes compartment in the interface diagrams.

Figure 5.20: Graphical Notation for «Interface» without Attributes Compartment

Note: The graphical notation of an «Interface» may show an empty operation compartment so as
to reduce clutter even if the «Interface» has operations.

5.4.2 «Interface» Properties

An «Interface» has the following properties:

• Name
Follows Upper Camel Case (UCC) and is unique across all «Interface» names in the
model.

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied

UML Modeling Guidelines Version 1.1

Page 20 of 40 © Open Networking Foundation

comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The
complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Superinterface(s)
Inheritance and multiple inheritance may be used.

• Abstract
Indicates if the «Interface» can be instantiated or is just used for inheritance.

• Additional properties are defined in the «OpenModelInterface» stereotype which extents
() by default (required) the «metaclass» Interface:

Figure 5.21: «OpenModelInterface» Stereotype

• support
This property qualifies the support of the «Interface» at the management interface.
See definition in section 5.9.

• condition
This property contains the condition for the condition-related support qualifiers.

• UML/Papyrus defined interface properties that are not used:
• Is leaf (default = false)
• Visibility (default = public)

5.5 Interface Operations

Operations can be defined within an «Interface». An «Interface» must have at least one
operation.

Note: Operations may only be defined in the purpose-specific modules of the information model;
see Figure 4.1.

UML Modeling Guidelines Version 1.1

Page 21 of 40 © Open Networking Foundation

5.5.1 Operation Notation

Figure 5.22: Graphical Notation for «Interface» with Operations

5.5.2 Operation Properties

An operation has the following properties:

• Name
Follows Lower Camel Case (LCC) and is unique across all operation names defined in
the whole model.

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied
comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The
complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Pre-condition(s)
This property defines the conditions that have to be true before the operation can be
started (i.e., if not true, the operation will not be started at all and a general “precondition
not met” error will be returned, i.e., exception is raised).

• Post-condition(s)
This property defines the state of the system after the operation has been executed (if
successful, or if not successful, or if partially successful).
Note that partially successful post-condition(s) can only be defined in case of non-atomic
operations.
Note that when an exception is raised, it should not be assumed that the post-condition(s)
are satisfied.

• Parameter(s)
See section 5.6.

• Operation Exceptions
List the allowed exceptions for the operation.
The model uses predefined exceptions which are split in 2 types:
- generic exceptions which are associated to all operations by default
- common exceptions which needs to be explicitly associated to the operation.

Note: These exceptions are only relevant for a protocol neutral information model.
Further exceptions may be necessary for a protocol specific information model.

Generic exceptions:

• Internal Error: The server has an internal error.

UML Modeling Guidelines Version 1.1

Page 22 of 40 © Open Networking Foundation

• Unable to Comply: The server cannot perform the operation. Use Cases may identify
specific conditions that will result in this exception.

• Comm Loss: The server is unable to communicate with an underlying system or
resource, and such communication is required to complete the operation.

• Invalid Input: The operation contains an input parameter that is syntactically incorrect
or identifies an object of the wrong type or is out of range (as defined in the model or
because of server limitation).

• Not Implemented: The entire operation is not supported by the server or the operation
with the specified input parameters is not supported.

• Access Denied: The client does not have access rights to request the given operation.

Common exceptions:

• Entity Not Found: Is thrown to indicate that at least one of the specified entities does
not exist.

• Object In Use: The object identified in the operation is currently in use.
• Capacity Exceeded: The operation will result in resources being created or activated

beyond the capacity supported by the server.
• Not In Valid State: The state of the specified object is such that the server cannot

perform the operation. In other words, the environment or the application is not in an
appropriate state for the requested operation.

• Duplicate: Is thrown if an entity cannot be created because an object with the same
identifier/name already exists.

• Additional properties are defined in the «OpenModelOperation» stereotype which extents
() by default (required) the «metaclass» Operation:

Figure 5.23: «OpenModelOperation» Stereotype

• isOperationIdempotent (Boolean)
This property defines if the operation is idempotent (true) or not (false).
Example: When an operation is going to create an object instance which does already
exist, an idempotent operation would return success and a non-idempotent operation
would return an exception.

• isAtomic (Boolean)
This property identifies if the operation is best effort or is successful / not successful
as a whole.

UML Modeling Guidelines Version 1.1

Page 23 of 40 © Open Networking Foundation

• support
This property qualifies the support of the operation at the management interface. See
definition in section 5.9.

• condition
This property contains the condition for the condition-related support qualifiers.

• UML/Papyrus defined operation properties that are not used:
• Is leaf (default = false)
• Is query (default = false)
• Is static (default = false)

5.6 Operation Parameters
Parameters define the input and output signals of an operation.

Note: Operations and their parameters may only be defined in the purpose-specific modules of
the information model; see Figure 4.1.

5.6.1 Parameter Notation

The notation is:

<visibility> <direction> <parameter name> : <parameter type> [<multiplicity>] = <default
value>

Note: When no default is relevant or no default is defined, the “=” is not shown

Figure 5.24: Graphical Notation for «Interface» with Operations and Parameters

5.6.2 Parameter Properties

A parameter has the following properties:

• Name
Follows Lower Camel Case (LCC)

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied
comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The

UML Modeling Guidelines Version 1.1

Page 24 of 40 © Open Networking Foundation

complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Direction
Parameters can be defined as:
- input parameters
- output parameters
- in out parameters

• Type
Refers to a data type.
Note that a list of parameters can also be combined in a complex data type.

• Default Value
Defines the value that the parameter has in case the value is not provided. If it is
mandatory to provide a value, the default value is set to NA.

• Is Ordered
Defines for a multi-valued parameter that the order of the values is significant.

• Multiplicity
Defines the number of values the parameter can simultaneously have.

• Additional properties are defined in the «OpenModelParameter» stereotype which extents
() by default ({required}) the «metaclass» Parameter:

Figure 5.25: «OpenModelParameter» Stereotype

• valueRange
Identifies the allowed values for the parameter.

• support
This property qualifies the support of the parameter at the management interface. See
definition in section 5.9.

• condition
This property contains the condition for the condition-related support qualifiers.

• Other properties:
• passedByReference

This property shall only be applied to parameters that have an object class defined as
their type; i.e., on a case by case basis.
The property defines if the attribute contains only the reference (name, identifier,
address) to the referred object instance(s) when being transferred across the interface.

UML Modeling Guidelines Version 1.1

Page 25 of 40 © Open Networking Foundation

Otherwise the parameter contains the complete information of the object instance(s)
when being transferred across the interface.

Figure 5.26: «PassedByReference» Stereotype

• UML/Papyrus defined parameter properties that are not used:
• Is exception (default = false)
• Is stream (default = false)
• Is unique (default = true)
• Visibility (default = public)

5.7 Notifications
Note: Notifications may only be defined in the purpose-specific modules of the information
model; see Figure 4.1.

The UML «Signal» artifact is used to define the content of a notification. The information is
defined in the attributes of the «Signal».

5.7.1 Notification Notation

Figure 5.27: Graphical Notation for «Signal»

5.7.2 Notification Properties

A notification/signal has the following properties:

• Name
Follows Upper Camel Case (UCC). Each notification/signal in the model has a unique
name. An example of Upper Camel Case: ObjectCreationNotification.

UML Modeling Guidelines Version 1.1

Page 26 of 40 © Open Networking Foundation

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied
comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The
complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Superclass(es)
Inheritance and multiple inheritance may be used to deal with shared properties.

• Abstract
Indicates if the notification/signal can be instantiated or is just used for inheritance.

• Additional properties are defined in the «OpenModelNotification» stereotype which
extents () by default (required) the «metaclass» Signal:

Figure 5.28: «OpenModelNotification» Stereotype

• triggerConditionList
This property provides the list of conditions that cause the notification.

• support
This property qualifies the support of the notification/signal at the management
interface. See definition in section 5.9.

• condition
This property contains the condition for the condition-related support qualifiers.

• UML/Papyrus defined class properties that are not used:
• Is leaf (default = false)
• Visibility (default = public)

5.8 Types
Types are used as type definitions of attributes and parameters.

Data Types are divided into 3 categories:
- dataType
- enumeration
- primitiveType

Papyrus already provides the following UML primitive types:

UML Modeling Guidelines Version 1.1

Page 27 of 40 © Open Networking Foundation

5.8.1 Type Notation

Figure 5.29: Graphical Notation for «DataType»

Note: Default values may not be shown in any class diagram.

Figure 5.30: Graphical Notation for «Enumeration»

Figure 5.31: Graphical Notation for «PrimitiveType»

5.8.2 Type Properties

A type has the following properties:

• Category
Three categories are used in the model:

UML Modeling Guidelines Version 1.1

Page 28 of 40 © Open Networking Foundation

- dataType
- enumeration
- primitive

• Name
Follows Upper Camel Case (UCC) and is unique across all data type names defined in
the whole model.

• Documentation
Contains a short summary of the usage. The documentation is carried in the “Applied
comments” field in Papyrus; i.e., the “Owned comments” field must not be used. The
complete documentation should be written in a single comment; i.e., at most one
“Applied comment”.

• Data type attributes (only in dataTypes)
Follow the definitions made for attributes in section 5.2 with the following exceptions:
- the isInvariant property can be ignored and is fixed to "true"
- the notification property can be ignored and is fixed to "NA".

• Enumeration literals (only in enumerations)
The name contains only upper case characters where the words are separated by "_".

• Additional properties
• Choice

This stereotype identifies a data type as a choice between different alternatives; see
also section 7.5.

• Exception
This stereotype defines a data type used for an operation exception.

Figure 5.32: Potential Annotations for Data Types

• UML/Papyrus defined attribute properties that are not used:
• Is abstract (default = false)
• Is leaf (default = false)

5.9 Qualifiers
This clause defines the qualifiers applicable for model elements specified in this document, e.g.,
the «OpenModelClass» (see section 5.1.2), and the «OpenModelAttribute» (see section 5.2.2).
The qualifications are M, O, CM, CO and C. Their meanings are specified in this section. This
type of qualifier is called Support Qualifier.

UML Modeling Guidelines Version 1.1

Page 29 of 40 © Open Networking Foundation

• Definition of M (Mandatory) qualification:
The capability shall be supported.

• Definition of O (Optional) qualification:
The capability may or may not be supported.

• Definition of CM (Conditional-Mandatory) qualification:
The capability shall be supported under certain conditions, specifically:
When qualified as CM, the capability shall have a corresponding constraint defined in the
specification. If the specified constraint is met then the capability shall be supported.

• Definition of CO (Conditional-Optional) qualification:
The capability may be supported under certain conditions, specifically:
When qualified as CO, the capability shall have a corresponding constraint defined in the
specification. If the specified constraint is met then the capability may be supported.

• Definition of C (Conditional) qualification:
Used for items that have multiple constraints. Each constraint is worded as a condition
for one kind of support, such as mandatory support, optional support or "no support". All
constraints must be related to the same kind of support. Specifically:
Each item with C qualification shall have the corresponding multiple constraints defined
in the specification. If all specified constraints are met and are related to mandatory, then
the item shall be supported. If all the specified constraints are met and are related to
optional, then the item may be supported. If all the specified constraints are met and are
related to "no support", then the item shall not be supported.

6 UML Profile Definitions

6.1 Additional Properties Definitions
Section 5 has already described the additional properties for each UML artifact. All defined
stereotypes are shown as an overview in Figure 6.1 and Table 6.1 below.

UML Modeling Guidelines Version 1.1

Page 30 of 40 © Open Networking Foundation

Figure 6.1: UML Artifact «Stereotypes»

Table 6.1: UML Artifact Properties Defined in Complex «Stereotypes»

Stereotype Name of
property Type Allowed values Default value Associated to

metaclass

OpenModelClass

objectCreation
Notification enumeration

NO,
YES,
NA

NA

Class

objectDeletion
Notification enumeration

NO,
YES,
NA

NA

support enumeration

MANDATORY
OPTIONAL
CONDITIONAL_
MANDATORY
CONDITIONAL_
OPTIONAL
CONDITIONAL

MANDATORY

condition string

OpenModelAttri
bute

attributeValue
Change
Notification

enumeration
NO,
YES,
NA

NA
Property

isInvariant Boolean true/false false
valueRange string NA

UML Modeling Guidelines Version 1.1

Page 31 of 40 © Open Networking Foundation

Stereotype Name of
property Type Allowed values Default value Associated to

metaclass

support enumeration

MANDATORY
OPTIONAL
CONDITIONAL_
MANDATORY
CONDITIONAL_
OPTIONAL
CONDITIONAL

MANDATORY

condition string

OpenModelInter
face

support enumeration

MANDATORY
OPTIONAL
CONDITIONAL_
MANDATORY
CONDITIONAL_
OPTIONAL
CONDITIONAL

MANDATORY
Interface

condition string

OpenModelOper
ation

isOperationIdem
potent Boolean true/false false

Operation

isAtomic Boolean true/false false

support enumeration

MANDATORY
OPTIONAL
CONDITIONAL_
MANDATORY
CONDITIONAL_
OPTIONAL
CONDITIONAL

MANDATORY

condition string

OpenModelPara
meter

valueRange string NA

Parameter support enumeration

MANDATORY
OPTIONAL
CONDITIONAL_
MANDATORY
CONDITIONAL_
OPTIONAL
CONDITIONAL

MANDATORY

condition string

OpenModelNotif
ication

triggerCondition
List String

Signal support enumeration

MANDATORY
OPTIONAL
CONDITIONAL_
MANDATORY
CONDITIONAL_
OPTIONAL
CONDITIONAL

MANDATORY

condition string

UML Modeling Guidelines Version 1.1

Page 32 of 40 © Open Networking Foundation

6.2 Modeling Lifecycle Definitions
The UML artifacts (packages, classes, attributes, interfaces, operations, parameters, data types,
associations and generalizations) can be appended with the following modeling lifecycle states:

• Deprecated
This stereotype indicates that the entity may become obsolete in the near future. It may
still be used in new implementation.

• Example
This stereotype indicates that the entity is NOT to be used in implementation and is in the
model simply to assist in the understanding of the model (e.g., a specialization of a
generalized class where the generalized class is to be used as is and the specialization is
simply offered to more easily illustrate an application of the generalized class).

• Experimental
This stereotype indicates that the entity is at a very early stage of development and will
almost certainly change. The entity is NOT mature enough to be used in implementation.

• Faulty
This stereotype indicates that the entity should not be used in new implementation and
that attempts should be made to remove it from existing implementation as there is a
problem with the entity. An update to the model with corrections will be released.

• LikelyToChange
This stereotype indicates that although the entity may be mature, work in the area has
indicated that change will be necessary (e.g., there are new insights in the area or there is
now perceived benefit to be had from further rationalization). The entity can still be used
in implementation but with caution.

• Obsolete
This stereotype indicates that the entity should not be used in new implementation and
that attempts should be made to remove it from existing implementation.

• Preliminary
This stereotype indicates that the entity is at a relatively early stage of development and is
likely to change but is mature enough to be used in implementation.

UML Modeling Guidelines Version 1.1

Page 33 of 40 © Open Networking Foundation

Figure 6.2: Lifecycle «Stereotypes»

7 Recommended Modeling Patterns

7.1 File Naming Conventions
tba

UML Modeling Guidelines Version 1.1

Page 34 of 40 © Open Networking Foundation

7.2 Model Structure

7.2.1 Generic Model Structure

Figure 7.1 shows a generic Information Model containing a core model and various sub-models
A, B, C structured by packages:

Figure 7.1: Core Model and Sub-Models

Note:
Figure 7.1 shows only the schematic structure of the core and sub-models as necessary for these
guidelines.

Each Model can be optionally organized into multiple modules. Each Model or each of its
constituent modules is further divided into packages containing associations, diagrams, object
classes, rules and type definitions. Sub-models may contain in addition packages for (UML-)
interfaces (and their operations) and notifications.

7.2.2 Model Structure

The Information Model is structured into a Common Information Model and additional Specific
Views which are based on the Core Model. Specific models may also be added by other SDOs.

UML Modeling Guidelines Version 1.1

Page 35 of 40 © Open Networking Foundation

A Core Modeling team (with members from many SDOs) defines and maintains the generic
functions in the Core Model.

Figure 7.2: Model Structure (snapshot)

Each module is divided into a set of pre-defined packages. Not all packages need to be
established. Figure 7.3 shows the pre-defined packages.

Figure 7.3: Pre-defined Packages in a UML Module

Additional packages can be added when needed.

7.3 Flexible Attribute Assignment to Object Classes
Since it is not possible to add attributes once an object instance has been created, it is necessary
to differentiate case (a) where attributes are assembled before the object instance is created, and
case (b) where further attributes (functions) are added after the object instance is created.

For case (a), attributes are grouped in object classes called “Pacs” and are associated to the base
object class using a conditional composition association (see section 7.4 below).

An example for (a) is a specific LTP instance which has specific Pacs associated, based on the
functions that this LTP supports. Once the LTP is created, it is no longer possible to add further
attributes or remove attributes.

UML Modeling Guidelines Version 1.1

Page 36 of 40 © Open Networking Foundation

à Object instances are (automatically) created as an assembly of the base object plus a list of
Pacs (depending on the supported functionality).

For case (b), attributes are grouped in “normal” object classes and are associated to the base
object class using a composition association.

An example for (b) is a specific, already existing LTP instance which will be configured to do
performance monitoring (PM). In this case an additional PM object instance (created on the basis
of the corresponding object class (i.e., not Pac)) is separately instantiated and associated to the
already existing LTP. Note that it is also possible to remove the PM object instance from the
LTP afterwards without impacting the life cycle of the base LTP instance.

à Object instances are created on an explicit request and associated to already existing object
instances (depending on the requested additional functionality).

Figure 7.4: Flexible Attribute Assignment to Object Classes

7.4 Use of Conditional Packages
Conditional packages are used to enhance (core) object classes / interfaces with additional
attributes / operations on a conditional basis. The attributes / operations are defined in special
object classes called packages.

UML Modeling Guidelines Version 1.1

Page 37 of 40 © Open Networking Foundation

Figure 7.5: Enhancing Object Classes Using Conditional Packages

Package names follow the same rules as defined for object classes; i.e., UCC. The name ends
with the suffix "_Pac".
The role name of the navigable end pointing to the package follows the same rules as defined for
attributes; i.e., LCC. The name ends with the suffix "_Pac".

7.5 Use of XOR/Choice

7.5.1 Xor Constraint

7.5.1.1 Description
“A Constraint represents additional semantic information attached to the constrained elements. A
constraint is an assertion that indicates a restriction that must be satisfied by a correct design of
the system. The constrained elements are those elements required to evaluate the constraint
specification…“, an extract from 9.6.1 Constraint of [3].

For a constraint that applies to two elements such as two associations, the constraint shall be
shown as a dashed line between the elements labeled by the constraint string (in braces). The
constraint string, in this case, is xor.

7.5.1.2 Example
The figure below shows a ServerObjectClass instance that has relation(s) to multiple instances of
a class from the choice of ClientObjectCLass_Alternative1, ClientObjectClass_Alternative2 or
ClinetObjectCLass_Alternative3.

Figure 7.6: {xor} Notation

7.5.1.3 Name style
It has no name so there is no name style.

UML Modeling Guidelines Version 1.1

Page 38 of 40 © Open Networking Foundation

7.5.2 «Choice»

7.5.2.1 Description
The «Choice» stereotype represents one of a set of classes (when used as an information model
element) or one of a set of data types (when used as an operations model element).

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor}
constraint (see 7.5.1).

7.5.2.2 Example
Sometimes the specific kind of class cannot be determined at model specification time. In order
to support such scenario, the specification is done by listing all possible classes.

The following diagram lists 3 possible classes. It also shows a «Choice, InformationObjectClass»
named SubstituteObjectClass. This scenario indicates that only one of the three
«InformationObjectClass» named Alternative1ObjectClass, Alternative2ObjectClass,
Alternative3ObjectClass shall be realized.

The «Choice» stereotype represents one of a set of classes when used as an information model
element.

Figure 7.7: Information Model Element Example Using «Choice» Notation

Sometimes the specific kind of data type cannot be determined at model specification time. In
order to support such scenario, the specification is done by listing all possible data types.

The following diagram lists 2 possible data types. It also shows a «Choice» named
ProbableCause. This scenario indicates that only one of the two «DataType» named
IntegerProbableCause, StringProbableCause shall be realized.

The «Choice» stereotype represents one of a set of data types when used as an operations model
element.

UML Modeling Guidelines Version 1.1

Page 39 of 40 © Open Networking Foundation

Figure 7.8: Operations Model Element Example Using «Choice» Notation

Sometimes models distinguish between sink/source/bidirectional termination points. A generic
class which comprises these three specific classes can be modeled using the «Choice» stereotype.

Figure 7.9: Sink/Source/Bidirectional Termination Points Example Using «Choice» Notation

7.5.2.3 Name style
For «Choice» name, use the same style as «OpenModelClass» (see 5.1.2).

7.6 Diagram Guidelines

UML Modeling Guidelines Version 1.1

Page 40 of 40 © Open Networking Foundation

Classes and their relationships shall be presented in class diagrams.

Interfaces and their operations shall be presented in class diagrams.

It is recommended to create:

• An overview class diagram containing all classes related to a specific management area:
- The class name compartment should contain the location of the class definition (e.g.
"Qualified Name").
The class attributes should show the "Signature" (see section 7.3.45 of [2] for the
signature definition).

• A separate inheritance class diagram in case the overview diagram would be overloaded
when showing the inheritance structure (Inheritance Class Diagram).

• A class diagram containing the user defined data types (Type Definitions Diagram).
• Additional class diagrams to show specific parts of the specification in detail.
• State diagrams for complex state attributes.
• State transition diagrams for attributes with defined value transitions.
• Activity diagrams for operations with high complexity.

	cover.pdf
	onf2015.332_UML_Modeling_Guidelines_v1.0.06.pdf

{
 "NDM_metadata": {
 "authority": "org.opennetworking.fawg",
 "type": "TTPv1",
 "name": "L2-L3-ACLs",
 "version": "1.0.0",
 "OF_protocol_version": "1.3.3",
 "doc": ["Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),",
 "and an ACL table."]
 },

 "security": {
 "doc": ["This TTP is not published for use by ONF. It is an example and for",
 "illustrative purposes only.",
 "If this TTP were published for use it would include",
 "guidance as to any security considerations in this doc member."]
 },

 "table_map": {
 "ControlFrame": 0,
 "IngressVLAN": 10,
 "MacLearning": 20,
 "ACL": 30,
 "L2": 40,
 "ProtoFilter": 50,
 "IPv4": 60,
 "IPv6": 80
 },

 "identifiers": [
 {"var": "<port_vid>",
 "doc": "A VLAN ID to be assigned to untagged or priority tagged frames received on a port."},
 {"var": "<local_vid>",
 "range": "1..4094",
 "doc": "A VLAN ID valid on the wire at a port."},
 {"var": "<relay_vid>",
 "doc": "A VLAN ID valid internal to the switch."},
 {"var": "<VID>",
 "doc": "A VLAN ID"},
 {"var": "<Router_MAC_DA>",
 "doc": "A unicast MAC address used to reach the L3 flow tables"},
 {"var": "<Group_MAC>",
 "doc": "A group (multicast) MAC address."},
 {"var": "<Router_IP>",
 "doc": ["An IP address used to reach L3 control functions,",
 "e.g. a loopback address in the Router."]}, {"var": "<LocalSubnet>",
 "doc": "An IP subnet (address prefix) allocated to a directly attached L2 network or link."},
 {"var": "<port_no>",
 "doc": "A valid port number on the logical switch."},
 {"var": "<local_MAC>",
 "doc": "The unicast MAC address of a Router port on which a new L2 frame is transmitted."},
 {"var": "<dest_MAC>",
 "doc": "The destination MAC address for a new L2 frame."},
 {"var": "<subnet_VID>",
 "doc": "The VLAN ID of a locally attached L2 subnet on a Router."},
 {"var": "<<group_entry_types:name>>",
 "doc": ["An OpenFlow group identifier (integer) identifying a group table entry",
 "of the type indicated by the variable name"]}
],

 "features": [
 {"feature": "ext187",
 "doc": "Flow entry notification Extension – notification of changes in flow entries"},
 {"feature": "ext235",
 "doc": "Group notifications Extension – notification of changes in group or meter entries"}
],

 "meter_table": {
 "meter_types": [
 {"name": "ControllerMeterType",
 "bands": [{"type": "DROP", "rate": "1000..10000", "burst": "50..200"}]
 },
 {"name": "TrafficMeter",
 "bands": [{"type": "DSCP_REMARK", "rate": "10000..500000", "burst": "50..500"},
 {"type": "DROP", "rate": "10000..500000", "burst": "50..500"}]
 }
],
 "built_in_meters": [
 {"name": "ControllerMeter", "meter_id": 1,
 "type": "ControllerMeterType", "bands": [{"rate": 2000, "burst": 75}]},
 {"name": "AllArpMeter", "meter_id": 2,
 "type": "ControllerMeterType", "bands": [{"rate": 1000, "burst": 50}]}
]
 },

 "flow_tables": [
 {
 "name": "ControlFrame",
 "doc": ["Filters L2 control reserved destination addresses and",
 "may forward control packets to the controller.",
 "Directs all other packets to the Ingress VLAN table."],
 "flow_mod_types": [
 {
 "name": "Frame-To-Controller",
 "doc": ["This match/action pair allows for flow_mods that match on either",
 "ETH_TYPE or ETH_DST (or both) and send the packet to the",
 "controller, subject to metering."],
 "match_set": [
 {"field": "ETH_TYPE", "match_type": "all_or_exact"},
 {"field": "ETH_DST", "match_type": "exact"}
],
 "instruction_set": {"exactly_one": [
 [
 {"instruction": "METER", "meter_name": "ControllerMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]
 }],
 [
 {"instruction": "APPLY_ACTIONS",
 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]
 }]
]}
 }
],
 "built_in_flow_mods": [
 {
 "name": "Control-Frame-Filter",
 "doc": "Mandatory filtering of control frames with C-VLAN Bridge reserved DA.",
 "priority": 1,
 "match_set": [{"field":"ETH_DST","mask":"0xfffffffffff0","value":"0x0180C2000000"}],
 "instruction_set": []
 },
 {
 "name": "Non-Control-Frame",
 "doc": "Mandatory miss flow_mod, sends packets to IngressVLAN table.",
 "priority": 0,
 "match_set": [],
 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "IngressVLAN"}]
 }
]
 },
 {
 "name": "IngressVLAN",
 "doc": ["Ingress VID processing table, including:",
 " - accepting or blocking untagged and priority tagged frames",
 " - accepting or blocking VLAN tagged frames",
 " - ingress VID filtering control",
 " - (optional) ingress VID translation"],
 "flow_mod_types": [
 {"all": [
 {
 "name": "Block-Untagged",
 "priority": "2..3",
 "doc": "Block untagged traffic on a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}
],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "Allow-Untagged",
 "priority": 3,
 "doc": "Allow untagged traffic.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "PUSH_VLAN"},
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Block-Priority-Tagged",
 "priority": "5..7",
 "doc": "Block priority tagged traffic on a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "Allow-Priority-Tagged",
 "priority": "6..7",
 "doc": "Allow priority tagged traffic on a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 }

],
 "zero_or_more": [
 {
 "name": "Enable-Ingress-VID-Filter",
 "priority": "2..3",
 "doc": "Used to enable ingress VID filtering on all ports or a specific port.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "Disable-Ingress-VID-Filter",
 "priority": 3,
 "doc": "Used to disable ingress VID filtering on a specific port.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "exact"},
 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Ingress-VID-Allow",
 "priority": 4,
 "doc": "Used to allow a specific VID to ingress at a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<local_vid>"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "opt_tag": "VID-X",
 "name": "Ingress-VID-Translate",
 "priority": "4..5",
 "doc": "Used to translate specific VIDs at ingress at a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<local_vid>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<relay_vid>"}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 }
]}
],
 "built_in_flow_mods": [
 {
 "name": "Default-Allow-Untagged",
 "priority": 1,
 "doc": "Default to allow untagged traffic on all ports, default port VID is 1.",
 "match_set": [
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "PUSH_VLAN"},
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Default-Allow-Priority-Tagged",
 "priority": 4,
 "doc": ["Default flow_mod to allow priority tagged traffic on all ports,",
 "default port VID is 1."],
 "match_set": [
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Default-Disable-Ingress-VID-Filter",
 "priority": 1,
 "doc": "Default to disable ingress VID filtering on all ports.",
 "match_set": [
 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 }
],	
 "table_subsets": [
 {"name": "IV-pass",
 "subset": ["Allow-Untagged", "Allow-Priority-Tagged", "Disable-Ingress-VID-Filter",
 "Ingress-VID-Allow", "Ingress-VID-Filter", "Ingress-VID-Translate",
 "Default-Allow-Untagged", "Default-Allow-Priority-Tagged",
 "Default-Disable-Ingress-VID-Filter"]
 },
 {"name": "IV-drop",
 "subset": ["Block-Untagged", "Block-Priority-Tagged", "Enable-Ingress-VID-Filter",
 "MISS"]
 }
]
 },
 {
 "name": "MacLearning",
 "doc": ["By default sends packets whose Source MAC address is ",
 "received on a new IN_PORT to controller for learning.",
 "The controller is expected to install flow_mods for learned",
 "addresses, and remove stale entries when required.",
 "The controller may also disable MAC learning for a VLAN ",
 "by installing a flow_mod to simply go to the next table."],
 "flow_mod_types": [
 {
 "name": "Known-MAC",
 "priority": 2,
 "doc": "Type used to create an entry for a learned MAC",
 "match_set": [
 {"field": "IN_PORT"},
 {"field": "VLAN_VID"},
 {"field": "ETH_SRC"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 },
 {
 "name": "Disable-MAC-Learning",
 "priority": 2,
 "doc": "Type used to disable MAC learning on a VLAN",
 "match_set": [{"field": "VLAN_VID"}],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 },
 {
 "name": "MAC-Miss-limit",
 "doc": "Send unknown MACs to the controller, subject to metering.",
 "priority": 1,
 "match_set": [],
 "instruction_set": [
 {"instruction": "METER", "meter_name": "ControllerMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}
]
 },
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 }
],
 "built_in_flow_mods": [
 {
 "name": "MAC-Miss",
 "doc": "Send unknown MACs to the controller.",
 "priority": 0,
 "match_set": [],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}
]
 },
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 }
]
 },
 {
 "name": "ACL",
 "doc": "Simple 5-tuple firewalling ACL table.",
 "flow_mod_types": [
 {
 "name": "IP5-Tuple-Block",
 "doc": ["This type allows matching on an IP 5-tuple and",
 "dropping packets."],
 "match_set": [{
 "exactly_one": [
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
]
]
 }],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "IP-5Tuple-Intercept",
 "doc": ["This type allows matching on an IP 5-tuple and",
 "forwarding to the controller."],
 "match_set": [{
 "exactly_one": [
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
]
]
 }],
 "instruction_set": [
 {"instruction": "METER", "meter_name": "ControllerMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 },
 {
 "name": "IP-5Tuple-Allow",
 "doc": ["This type allows matching on an IP 5-tuple and",
 "sending on to the L2 table, overriding a lower",
 "priority block or intercept."],
 "match_set": [{
 "exactly_one": [
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
]
]
 }],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "L2"}
]
 }
],
 "built_in_flow_mods": [
 {
 "name": "ACL-skip",
 "doc": "Mandatory miss flow mod, sends packets to L2 table.",
 "priority": 0,
 "match_set": [],
 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "L2"}]
 }
]
 },
 {
 "name": "L2",
 "doc": ["MAC forwarding table"],
 "flow_mod_types": [
 {
 "name": "VID-flood",
 "priority": 1,
 "doc": "Flood frames with unknown DA.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<VIDflood>"}
]
 },
 {"zero_or_one": {"instruction": "GOTO_TABLE", "table": "ProtoFilter",
 "doc": "Include this instruction of the VID is registered on the Router port."}}
]
 },
 {
 "name": "L2-Unicast",
 "priority": 2,
 "doc": "Unicast forwarding entry.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"},
 {"field": "ETH_DST"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<EgressPort>"}
]
 }
]
 },
 {
 "name": "L2-Router-MAC",
 "priority": 2,
 "doc": "Router MAC address, so send toward IP flow tables.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"},
 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "ProtoFilter"}
]
 },
 {
 "name": "L2-Multicast",
 "priority": 2,
 "doc": "L2 Multicast forwarding entry.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"},
 {"field": "ETH_DST", "value": "<Group_MAC>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<L2Mcast>"}
]
 }
]
 }
],
 "built_in_flow_mods": [
 {
 "name": "L2-Drop",
 "priority": 0,
 "doc": ["Discard frames with no VID registration,",
 "i.e., VID without a <VIDflood> group and",
 "corresponding VIDflood flow table entry."],
 "match_set": [],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 }
],
 "table_subsets": [
 {"name": "L2-Forward",
 "subsets": ["VIDflood", "L2Unicast", "L2Multicast"]
 }
]
 },
 {
 "name": "ProtoFilter",
 "doc": ["Selects IP version flow table and forwards ARPs to controller."],
 "built_in_flow_mods": [
 {
 "name": "IPv4",
 "priority": 1,
 "doc": "Direct IPv4 packets to IPv4 flow table.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "GOTO_TABLE", "table": "IPv4"}
]
 },
 {
 "opt_tag": "IPv6",
 "name": "IPv6",
 "priority": 1,
 "doc": "Direct IPv6 packets to IPv6 flow table.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "GOTO_TABLE", "table": "IPv6"}
]
 },
 {
 "name": "Router-ARP",
 "priority": 2,
 "doc": "Direct targeted ARP packets to controller.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 2054},
 {"field": "ARP_TPA", "value": "<Router_IP>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 },
 {
 "name": "All-ARP",
 "priority": 1,
 "doc": "Direct ARP packets to controller.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 2054}
],
 "instruction_set": [
 {"instruction": "METER", "meter_name": "AllArpMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller. A separate controller meter is used",
 "here, with a lower rate than main controller meter, to limit ARPs",
 "before limiting other packets to the controller."]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 }
]
 },
 {
 "name": "IPv4",
 "doc": ["IPv4 unicast forwarding table. To achieve LPM the flow_mod",
 "priority must be the length of the prefix mask."],
 "flow_mod_types": [
 {
 "name": "v4-Unicast",
 "doc": ["LPM forwarding entry. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV4_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<NextHop>"}]
 }
]
 },
 {
 "name": "v4-Unicast-ECMP",
 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV4_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<L3ECMP>"}]
 }
]
 },
 {
 "name": "Local-ARP",
 "doc": ["Local subnet address needing ARP. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV4_DST", "value": "<LocalSubnet>", "match_type": "prefix"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 }
]
 },
 {
 "opt_tag": "IPv6",
 "name": "IPv6",
 "doc": ["IPv6 unicast forwarding table. To achieve LPM the flow_mod",
 "priority must be the length of the prefix mask."],
 "flow_mod_types": [
 {
 "name": "v6-Unicast",
 "doc": ["LPM forwarding entry. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV6_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<NextHop>"}]
 }
]
 },
 {
 "name": "v6-Unicast-ECMP",
 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV6_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<L3ECMP>"}]
 }
]
 },
 {
 "name": "Local-ND",
 "doc": ["Local subnet address needing Neighbor Discovery. Valid only",
 "if the priority value matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV6_DST", "value": "<LocalSubnet>", "match_type": "prefix"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }]
 }
]
 }
],

 "group_entry_types": [
 {
 "name": "EgressPort",
 "doc": ["Output to a port, removing VLAN tag if needed.",
 "Entry per port, plus entry per untagged VID per port."],
 "group_type": "INDIRECT",
 "bucket_types": [
 {"name": "OutputTagged",
 "action_set": [{"action": "OUTPUT", "port": "<port_no>"}]
 },
 {"name": "OutputUntagged",
 "action_set": [{"action": "POP_VLAN"},
 {"action": "OUTPUT", "port": "<port_no>" }]
 },
 {"opt_tag": "VID-X",
 "name": "OutputVIDTranslate",
 "action_set": [{"action": "SET_FIELD", "field": "VLAN_VID", "value": "<local_vid>"},
 {"action": "OUTPUT", "port": "<port_no>" }]
 }
]
 },
 {
 "name": "VIDflood",
 "doc": ["Output to all ports registered for a VID (except IN_PORT).",
 "Entry per VID."],
 "group_type": "ALL",
 "bucket_types": [
 {"name": "VIDport",
 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]
 }
]
 },
 {
 "name": "L2Mcast",
 "doc": ["Output to all ports in a multicast tree (except IN_PORT).",
 "Entry per L2 group address."],
 "group_type": "ALL",
 "bucket_types": [
 {"name": "MCASTport",
 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]
 }
]
 },
 {
 "name": "NextHop",
 "doc": ["Decrement IP TTL and add L2 header for next hop.",
 "Entry per next hop IP address."],
 "group_type": "INDIRECT",
 "bucket_types": [
 {"name": "KnownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<EgressPort>"}]
 },
 {"name": "UnknownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<Flood>"}]
 }
]
 },
 {
 "name": "L3ECMP",
 "doc": ["Output to one port in an ECMP set.",
 "Entry per destination border node."],
 "group_type": "SELECT",
 "bucket_types": [
 {"name": "nextHopOption",
 "action_set": [{"action": "GROUP", "group_id": "<NextHop>"}]
 }
]
 },
 {"zero_or_more": {
 "name": "NextHopFF",
 "doc": ["Decrement IP TTL and add L2 header for next hop.",
 "Entry per next hop IP address.",
 "Fast Failover allows multiple buckets, picks first operational."],
 "group_type": "FF",
 "bucket_types": [
 {"name": "KnownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<EgressPort>"}]
 },
 {"name": "UnknownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<Flood>"}]
 }
]
 }}
],
 "parameters": [
 {"name": "ACL::TableSize", "type": "integer"},
 {"name": "L2::TableSize", "type": "integer"},
 {"name": "IPv4::TableSize", "type": "integer"},
 {"name": "IPv6::TableSize", "type": "integer"},
 {"name": "Meter::TableSize", "type": "integer",
 "doc": "Number of meters that can be configured in the switch."},
 {"name": "Meter::Accuracy", "type": "integer",
 "doc": "Accuracy of meters on the switch."},
 {"name": "OptFunc", "type": "array of opt_tag values",
 "doc": "Support for optional functions can be negotiated using the OptFunc parameter."}
],
 "flow_paths": [
 {"doc": ["This object contains just a few examples of flow paths, it is not",
 "a comprehensive list of the flow paths required for this TTP. It is",
 "intended that the flow paths array could include either a list of",
 "required flow paths or a list of specific flow paths that are not",
 "required (whichever is more concise or more useful."],
 "name": "L2-2",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Unicast",
 "EgressPort"]
 },
 {"name": "L2-3",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Multicast",
 "L2Mcast", ["EgressPort"]]
 },
 {"name": "L2-4",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACL-skip","VID-flood",
 "VIDflood", ["EgressPort"]]
 },
 {"name": "L2-5",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Drop"]
 },
 {"name": "v4-1",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",
 "IPv4","v4-Unicast",
 "NextHop", "EgressPort"]
 },
 {"name": "v4-2",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",
 "IPv4","v4-Unicast-ECMP",
 "L3ECMP", "NextHop", "EgressPort"]
 }
]
}

