

4th Wireless Transport SDN Proof of Concept White Paper

V1 2017-06-29

ONF Document Type: White Paper

ONF Document Name: Wireless Transport SDN PoC White Paper

Disclaimer

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation 2275 E. Bayshore Road, Suite 103, Palo Alto, CA 94303 www.opennetworking.org

©2017 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the Open Networking Foundation, in the United States and/or in other countries. All other brands, products, or service names are or may be trademarks or service marks of, and are used to identify, products or services of their respective owners.

1	Executive Summary			
2	Introduction	4		
	2.1 Mission of WTP and benefits of open SDN	5		
	2.2 Overview of previous Proof of Concepts	6		
	2.2.1 First PoC	6		
	2.2.2 Second PoC	6		
	2.2.3 Third PoC	7		
3	SDN Network Architecture and Configuration	7		
	3.1 Overview	7		
	3.2 PoC Test Network Setup	9		
4	Use Cases and Applications	10		
	4.1 Applications based on MW information model	11		
	4.1.1 Wireless power management	11		
	4.1.2 Performance monitoring management	11		
	4.1.3 Network map visualization	12		
	4.1.4 Management of microwave devices	12		
	4.1.5 Fault management	12		
	4.2 Applications based on Synchronization model	13		
	4.2.1 Management of PTP-capable devices	14		
	4.2.2 Detection and visualization of synchronization path	14		
	4.3 Applications based on Ethernet model	15		
	4.3.1 Management of Ethernet-capable devices	16		
	4.3.2 Path re-routing	17		
5	Test Results	18		
6	Conclusions			
7	Acknowledgments	19		
8	References	20		
9	9 Terminology			

1 Executive Summary

This white paper provides an overview of the contents and results of the Proof of Concept (PoC) conducted from 26 to 29 June 2017 by the Wireless Transport Project (WTP) of the Open Networking Foundation (ONF) at Deutsche Telekom premises in Bonn (Germany).

This PoC was focused on demonstrating the capabilities and benefits of utilizing a common Information Model for multi-vendor control of wireless network elements through open management interfaces, as defined in the Wireless Transport Project of ONF Optical Transport Working Group (OTWG) and documented in the technical report TR-532 [TR532]. In addition some basic Ethernet capabilities were shown and the possibility to manage a synchronization network via SDN approach in order to distribute the frequency & phase/time information using PTP (IEEE 1588v2) [IEEE1588v2].

The PoC included wide participations from the wireless transport industry including operator representatives, microwave (MW) equipment vendors, integrators and applications providers. It followed the third PoC [WP_3PoC] organized in the last October 2016, where the Microwave Information Model was implemented and demonstrated by some vendors; moreover more use cases were shown.

Different uses cases were included in this PoC to demonstrate wireless transport SDN applications such as topology planning and discovery, with dynamic view in real time, configuration, discrepancy monitoring and detection, and event handling.

A standard OpenDaylight (ODL) version was used as the SDN controller. Mediators were used for translating the information model to vendor specific configurations.

All vendors implemented the model and completed all the test cases successfully demonstrating the viability of the concept for using a common information model for configuring and management of wireless network elements using open management interfaces.

2 Introduction

The 4th Wireless Transport Proof of Concept (PoC) took place from 26 to 29 June at Deutsche Telekom premises in Bonn, Germany.

This 4th PoC had 3 main objectives:

- 1. Continue to expand on the ONF Microwave Information Model standard (TR532) [TR532]
- Show applications based on the Synchronization model per ITU-T G.8275.1 Telecom profile
- 3. Show applications based on an ONF derived Ethernet model

These objectives / use cases are explained in Section 4 and results are explained in Section 5.

All the codes (applications) developed during the 4^{th} PoC are stored and publically available as open source at CENTENNIAL GitHUB [CENTEN].

The PoC was supported by representatives from the wireless transport eco system including operators, equipment vendors, integrators and application providers – in total 19 participating companies.

The following equipment vendors participated in the PoC with their equipment:

- Ceragon
- Ericsson
- Fujitsu
- Huawei
- NEC
- Nokia

- SIAE
- ZTE
- ADVA Optical Networking
- DragonWave
- Aviat
- ELVA-1
- Intracom Telecom

The following integrators and application providers provided buildings block and applications:

- Frinx
- Highstreet Technologies

Content and organizational support for the PoC was provided by the following operators:

- Deutsche Telekom
- AT&T
- Telefónica

The measurement equipment (traffic generator and analyser) was provided by:

Spirent

2.1 Mission of WTP and benefits of open SDN

The mission and long-term targets of ONF Wireless Transport Project are as follows:

- Adoption of SDN architecture and principles for wireless transport networks. Identification of and addressing of different use cases.
- Definition and standardization of open interfaces and open source information models integration of information models into the open source ecosystem. Open standardized interfaces allow connecting of multi-vendor devices to an open source SDN Controller and development of independent third-party applications ("network programming" Network Function Virtualization (NFV)). The operators/service providers will not differentiate by the functionality, which is provided by the controller itself, but by the applications.

The benefits of an SDN-based open standardized system are as follows:

Vendor-specific element management systems can be substituted by a single generic element
management system that leverages from open standardized Southbound interfaces. The myriad
of tools for network planning and operations could be converged on a single platform (e.g.
OpenDaylight) on which seamlessly integrated network applications would provide that
functionality. This would greatly reduce the complexity of the overall network management
solution and thus save time and money.

 Decoupling the functions from the device to centralized controller will reduce the duration and costs of homologation and integration processes - a new function is configured and tested just once.

2.2 Overview of previous Proof of Concepts

Proof of Concepts are executed roughly every half year to demonstrate the progress in development and to verify the functionality and completeness of implemented enhancements in a multi-vendor wireless transport network using real network devices. The results and conclusions of the PoCs are published in the form of White Papers and detailed reports.

The following table summarizes key components used during PoCs such as version of SDN controller, ONF CoreModel and SBI protocol.

	1 st PoC	2 nd PoC	3 rd PoC	4 th PoC
SDN controller	ONOS	ODL Lithium SR4	n SR4 ODL Beryllium SR2 ODL Boron SR1	
MW model	OF port extensions	TR-532 (partial)	TR-532	TR-532
ONF CoreModel	n.a.	CM 1.1	CM 1.1	CM 1.2
SBI protocol	OpenFlow	Netconf/YANG	Netconf/YANG	Netconf/YANG

2.2.1 First PoC

The 1st PoC was performed in Madrid, Spain in October 2015 and hosted by Telefónica Global CTO unit, IMDEA Networks in cooperation with Universidad Carlos III. OpenFlow protocol was used at the Southbound Interface (SBI) while ONOS was used as the SDN controller. The use cases supported by the following applications were demonstrated:

- Capacity-Driven Air Interface switching on/off one polarization of the microwave link in dependence on the traffic demand to efficiently optimize wireless resources for a more energy efficient operation of the transport network.
- Flow-based Shaping illustrating inter-domain interaction between microwave devices and routers by activating policing at the router in case of packet loss at the microwave device due to the weather changing conditions

Results were reported in an ONF White Paper [WP 1PoC].

2.2.2 Second PoC

The 2nd PoC was performed in Munich, Germany in April 2016 and hosted by Telefónica Germany. In contrast to the 1st PoC, Netconf/YANG protocol was used at SBI while OpenDaylight (ODL) was used as the SDN controller. The initial simplified MW Information Model (reduced set of attributes) was developed and implemented. The use cases supported by the following applications focusing mainly on the management and configuration of a multi-vendor wireless transport network were demonstrated:

- Detection and configuration of new microwave devices
- Detection and operator-driven correction of discrepancies between actual and planned network configuration
- Detection and visualization of the configured transport network
- Detection and visualization of the currently effective transport network
- Receiving, displaying and storing of network-related alarms and events

Results and conclusions were reported in an ONF White paper [WP_2PoC], and the MW Information Model is described in TR-532 [TR532].

2.2.3 Third PoC

The 3rd PoC was performed in New Jersey, USA in October 2016 and hosted by AT&T in cooperation with WINLAB (Wireless Information Network Laboratory) research centre at Rutgers University. The complete MW Information Model (including all the attributes) was developed and implemented. The use cases supported by the following applications were demonstrated:

- The above mentioned applications from the 2nd PoC
- Spectrum management comparison of configured and planned frequencies and reallocation in case of mismatch
- Closed-loop automation ("zero-touch deployment and maintenance") a basic response to external/internal/time triggers

Results and conclusions were reported in an ONF White paper [WP_3PoC], and the MW Information Model is described in TR-532 [TR532].

3 SDN Network Architecture and Configuration

3.1 Overview

The overall SDN architecture and configuration of the test setup in the 4th ONF WTP PoC is illustrated in Figure 1 below:

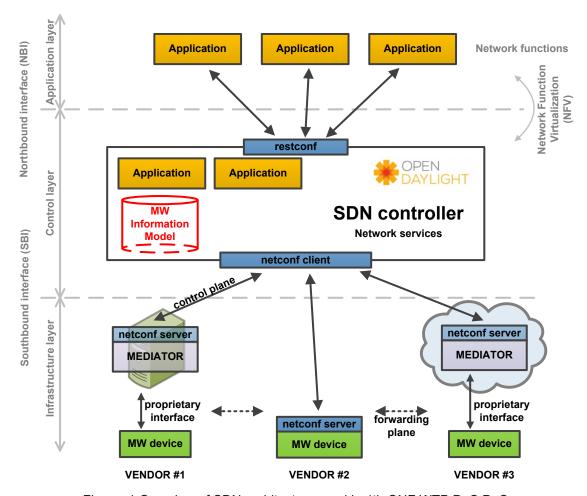


Figure 1 Overview of SDN architecture used in 4th ONF WTP PoC PoC

The architecture identifies the main objects which were target of implementation and subsequent verification: the ODL SDN controller, the vendor-specific mediators, the Netconf interface and the northbound applications.

The network deployment included a single SDN controller (running inside the cloud in case of 4th ONF WTP PoC), an application layer which implemented specific functions that are intended to operate over the network via northbound interfaces and a wireless network layer. The wireless network layer was composed of pairs of devices (wireless link) and mediators and interoperated with the controller via Netconf/YANG protocol. The vendor-specific mediator was a piece of software-per-device (integrated inside MW device or running outside MW device on a dedicated server or inside the cloud) that translated standard Netconf/YANG into the device-specific proprietary language (e.g. SNMP) and vice-versa (the firmware inside MW devices is not modified). The mediator should become part of the firmware of the microwave devices within the final implementation.

The developed functional information model was incorporated into OpenDaylight via Netconf/YANG plugins able to populate the MD-SAL (Model-Driven - Service Abstraction Layer) data store.

- The OpenDaylight has been object of implementation to allow upstreamed message exchange
- Further packages have been implemented on top of the ODL DLUX GUI bundle
- Microwave applications can be installed and run on top of the extended OpenDaylight SDN controller with the microwave plugins

Netconf has been chosen over OpenFlow as a protocol for configuration and management of the microwave devices for several reasons. It is by design a general-purpose management protocol, while OpenFlow is primarily intended for operating the traffic forwarding plane of the device (e.g. traffic flows). Also, YANG can be used to describe the data model for Netconf, coming to a representation of a clearer and more readable information model. Instead of implementing Netconf protocol handlers in the devices, some external mediators (adapters) were used for translating the Netconf/YANG Microwave Information Model to/from the existing proprietary management protocols of each vendor's devices. This approach allowed:

- · being more flexible
- saving time in the development and the debugging phase
- · sharing code between PoC participants

In addition to the mediators required to connect the physical network elements (NEs), an NE simulator ("Default Values Mediator") has been developed. It behaves like a generic NE, which allows redemonstrating the use cases and applications from the PoC without the actual need and installation of physical microwave equipment. This supports ONF WTP plans on maintaining a server running a demonstration and testing environment for future application developments.

3.2 PoC Test Network Setup

Existing Deutsche Telekom Cloud environment was used to remotely run the ODL SDN controller, northbound applications and some of the vendor-specific mediators. The cloud was connected via VPN tunnel (tunnel via public internet) to the test room in Bonn, where network elements (devices under test) were physically located and interconnected via switch, and where the tests were conducted.

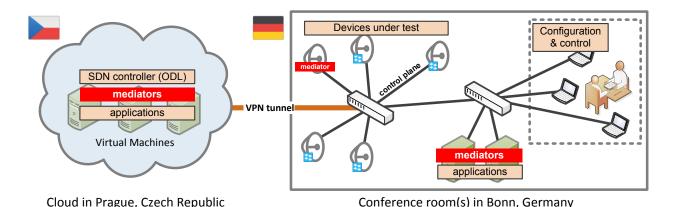


Figure 2 Network topology of control plane

The network topology of the control plane was a star topology (same for all models and applications) while the topology of the data-plane varied for each implemented model and its applications (MW, Ethernet, and Synchronization models) and is illustrated in Figure 4. All network elements (devices under test) were connected via cables/optics (forwarding and control planes). The vendor-specific mediator can be deployed/installed in the following three ways:

Integration inside the network element as a part of device – preferred final solution

- Installation inside the cloud running on dedicated Virtual Machine temporary solution
- Installation on the local server/computer temporary solution

All three deployment options were successfully demonstrated during the 4th ONF WTP PoC.

From data-plane point of view all the microwave links were connected in order to have a complete traffic chain, with test instruments injecting traffic and verifying that traffic was received without errors:

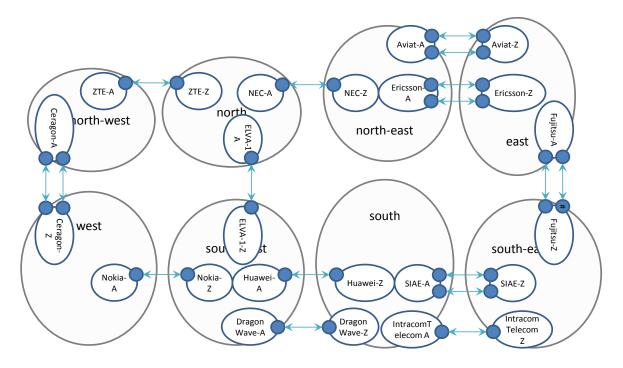


Figure 3 Physical network topology of data plane. Blue lines are MW links.

4 Use Cases and Applications

The following use cases were implemented for the purpose of demonstrating dynamic network view, configuration, discrepancy monitoring and detection, and event handling:

- Applications based on MW Information Model (TR-532) [TR532]:
 - o Wireless power management
 - Performance monitoring management
 - Network map visualization
 - Management of microwave devices
 - Fault Management
- Applications based on Ethernet model
 - Management of Ethernet-capable devices
 - Path re-routing
- Applications based on Synchronization model according to the PTP IEEE 1588v2 standard and the ITU-T G.8275.1 telecom profile [G8275.1]

- Management of PTP-capable devices
- Detection and visualization of synchronization path

Brief description of each application is provided in the subsections below.

	Required Information model				
	MW Info. model (TR-532)	Ethernet model	Synchronization model		
	Wireless Power Manager	Management of Ethernet-capable devices	Management of PTP-capable devices		
Applications	Performance management	Path re-routing	Detection and visualization of synchronization path		
oplic	Network map visualization				
₹	Management of MW devices				
	Fault management				

Each vendor demonstrated at least one application, and each application was demonstrated by at least one vendor.

4.1 Applications based on MW information model

For this 4th ONF WTP PoC, the updated Microwave Information Model in TR 532 [TR532] has been verified by running the upgraded applications utilized during the 2nd and 3rd PoCs. The updates in the information model assumed in the 4th PoC relate to the alignment of the MW Information Model with the ONF Core Information Model 1.2 [ONF_Core] and UML guidelines and UML2YANG 2.0 tool [UML_Tool].

4.1.1 Wireless power management

This application comes from the idea that in some cases, the Microwave links usually work on the highest modulation that can be reached, which need higher transmitting power correspondingly, while the throughput of the services on these links may be very low and far less than the link capacity. This result unnecessary high transmitting power and power consumption. So, in such cases, the application attempts to lower the transmitting power of the whole links, making the capacity of these links matching with the throughput of the services.

This application fully makes use of TR532 MW Information Model [TR532], showing the capability of automatic controlling of microwave links using TR532 model.

4.1.2 Performance monitoring management

The application is capable of providing performance values of *AirInterface* (SES, rxLevel, availability, ES, CSES, txlevel) of 15 minutes period according to MW Information Model as standardized in TR-532 [TR532]. The performance values are displayed in the form of table.

4.1.3 Network map visualization

The application is capable of providing up-to-date information about the currently active network (supporting one or multiple links between sites) using GIS maps (e.g. Google maps, OpenStreetMaps) with context-sensitive highlighting of objects, navigation to objects and launch of parent-child windows. This requires detecting and displaying the currently active network elements and their topology. The application can scale for huge number of network elements (up to thousands of sites with thousands of network elements).

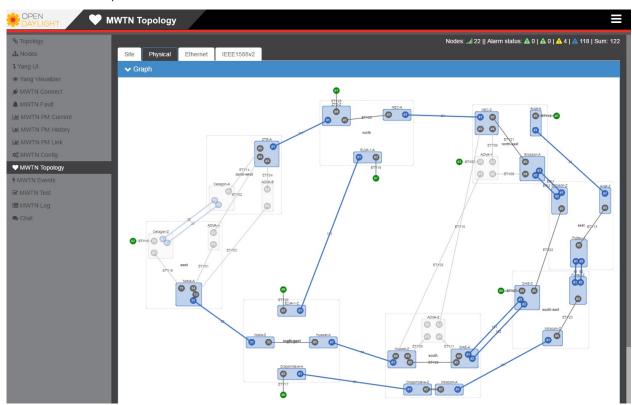


Figure 4 Visualization of network topology of forwarding plane

4.1.4 Management of microwave devices

The application is capable of providing (read) up-to-date information about MW devices (attributes such as central frequency, current modulation scheme, transmit power, code rate, channel BW). This requires automatically detecting new devices and displaying current devices configuration. The application shall be also capable of configuring (write) MW device within the network (attributes such as tx channel BW, AirInterface name, modulation scheme). On top of that, the detection of aberrances between actual and planned configurations of MW devices is also provided.

This application combines the functionalities of two applications from 2nd and 3rd PoCs, namely "Detection and configuration of new microwave devices" and "Detection of aberrances".

4.1.5 Fault management

The application is capable of receiving, displaying and storing (logging) of all traffic alarms from microwave devices as standardized in TR-532 [TR532]. The alarms are classified according to the

MWTN Fault % Topology Nodes: ...il 22 || Alarm status: ▲ 0 | ▲ 0 | ▲ 4 | ▲ 139 | Sum: 143 ♣ Nodes ∨ Timestamp ▼ V Node name Count.x. Object Id Alarm type Severity **№** MWTN Connec 2017-07-14 09:07:05.1 UTC | SDN-Controller 340 ADVA-Z ▲ MWTN Fault notConnected 339 ADVA-B 2017-07-14 09:07:05.0 UTC | SDN-Controller notConnected Lid MWTN PM Curr Warning Lilil MWTN PM History 2017-07-14 09:07:05.0 UTC SDN-Controller 338 ADVA-A Warning 2017-07-14 09:07:05.0 UTC SDN-Controller notConnected ▲ 2017-07-14 08:55:17.2 UTC SDN-Controller 332 ADVA-Z noConnectionMediator Minor 331 ADVA-B ▲ 2017-07-14 08:54:17.1 UTC SDN-Controller noConnectionMediator MWTN Topology Minor noConnectionMediator MWTN Event ▲ 2017-07-14 08:53:17.0 UTC SDN-Controller 330 ADVA-A Minor 329 ADVA-Y ▲ 2017-07-14 08:52:17.0 UTC SDN-Controller noConnectionMediator 20190 LTP-MWPS-ODU-A-LP-1 Warning 2017-06-30 12:18:20.9 UTC ELVA-1-Z signallsLost 2017-06-30 12:18:20.9 UTC ELVA-1-Z 20189 LTP-MWPS-ODU-A-LP-1 modulationIsDownShifted Chat 3 2017-06-30 12:18:20.7 UTC ELVA-1-Z 20206 LTP-MWPS-ODU-A-LP-1 modemisFaulty Warning 3 2017-06-30 12:18:20.7 UTC ELVA-1-Z 20204 LTP-MWS-ODU-A-LP-1 structureAlarm Warning 20205 LTP-ETC-C1-LP-1 3 2017-06-30 12:18:20.7 UTC ELVA-1-Z framingIsFaulty 2017-06-30 12:18:20.4 UTC ELVA-1-Z 20201 LTP-MWPS-ODU-A-LP-1 temperaturelsExceeded Warning 2017-06-30 12:18:18.4 UTC ELVA-1-A 20206 LTP-MWPS-ODU-A-LP-1 modemIsFaulty 2017-06-30 12:18:18.4 UTC ELVA-1-A 20204 | TP-MWS-ODU-A-I P-1 structureAlarm Warning 0 2017 06 20 12:10:10 A LITC FIVA 1

severity level (warning, major, critical), which can be set by application **Error! Reference source not found.** (section 4.1.4)..

Figure 5 Fault management

4.2 Applications based on Synchronization model

> Alarm notifications (9 since 2017-07-14 13:13:07.702 UTC)

Synchronization over the packet network (IEEE 1588-2008 Annex F - Transport of PTP over IEEE 802.3 /Ethernet) is an important feature which is required for future 5G deployments. This is because GNSS (such a GPS) support at every base station requires backup and is not feasible for many deployment scenarios such as small cells deployments.

The Synchronization model used for the 4th PoC is based on the Precision Time Protocol (PTP) according to IEEE 1588-2008 [IEEE1588v2] standard and ITU-T G.8275.1 [G8275.1] telecom profile.

For the purpose of 4th PoC, all network devices are assumed to support the Telecom Boundary Clock T-BC as specified in [G8275.1].

Two applications have been developed for the 4th PoC to verify the applicability of the synchronization models adopted from the ITU-T G.8275.1 [G8275.1]. These are:

- Management of PTP-capable devices
- Detection and visualization of synchronization path

The basic setup for the synchronization applications together with synchronization paths (dashed green and blue line) during an error free operation is shown in the figure below.

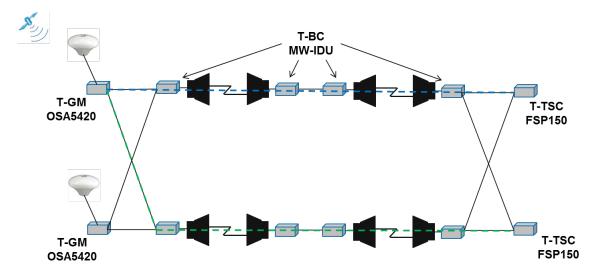


Figure 6 Physical network topology showing data-plane and synchronisation path during normal (error-free) operation.

4.2.1 Management of PTP-capable devices

This application is capable to configure PTP-capable devices supporting ITU-T G.8275.1 telecom profile as well as to receive, display and store PTP-related status & states messages and performance values (via Netconf/Yang). The application can be used for a verification of expected/planned configuration.

For this purpose the following steps were defined:

- Retrieval of all PTP-relevant data from all PTP clocks and display in appropriate forms on GUI
- Configuration of all PTP clocks incl. assignment of Ethernet interfaces with appropriate forms on GUI

Detailed steps for demonstrating the PTP-capable devices are as follows:

- Ask all NEs for PTP clocks (none, one or more than one)
 - Get list ptp-datasets
- · Assign PTP clocks to PTP domain.
- Verify PTP model implemented in each node by listing of PTP clocks generated at each node.
 - defaultDS, currentDS, parentDS, and timePropertiesDS attributes
 - List of PTP ports with portDS per PTP port
 - transparentClockDS and transparentClockPortDS are ignored.
- Visualize 'nominal' PTP topology. This should be as shown in Figure 6.
- Visualize PTP links. This is as shown in Figure 6.

4.2.2 Detection and visualization of synchronization path

This application demonstrates the capability of an SDN controller to detect and visualize the synchronization path across the transport network for the selected T-TSC device (Telecom - Time Slave Clock), i.e. detection of the Telecom Grandmaster Clock T-GM for a given T-TSC. The sync status per each T-BC shall be also displayed.

For this purpose, the procedure for testing this application is shown as follows.

- Starting with the network setup and configuration as shown in Figure 6, visualize and confirm the synchronisation path in the normal (error-free) operation.
- Simulate a link failure as illustrated in Figure 7.

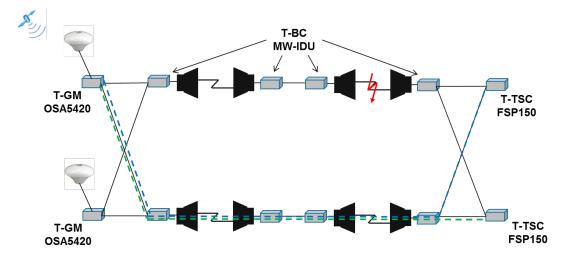


Figure 7 Simulation of link failure and rerouting of synchronization path

- Verify that the synchronisation path has been rerouted as illustrated in Figure 7
- Go back to the normal operation as in Figure 7.
- Simulate a failure of the Grandmaster clock, e.g. T-GM OSA5420 as illustrated in Figure 8.

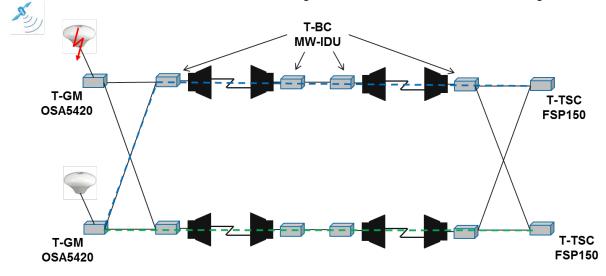


Figure 8 Simulation of GM clock failure and rerouting of the synchronization path accordingly

 Verify that the GM clock is switched to the other GM clock and the synchronisation path has been rerouted accordingly as illustrated in Figure 8.

4.3 Applications based on Ethernet model

The Ethernet model used for the 4th ONF WTP PoC is based on the ONF Core Information Model 1.2 [ONF Core] with focus on the ForwardingDomain object classes. The related applications demonstrate

configuration of the Ethernet capable devices such as creation, modification and deletion and detection and rerouting of Ethernet flows when a problem with a link along a path is detected.

Two applications are defined and demonstrated for that purpose:

- Management of Ethernet capable devices.
- Path rerouting

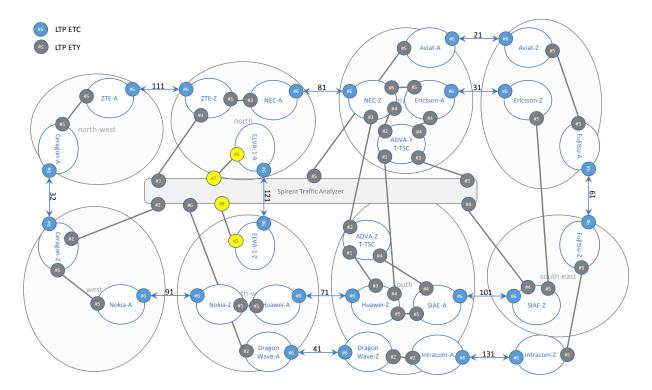


Figure 9 Physical Ethernet topology. The yellow ports are optical ports; the grey ports are metallic ports.

Blue lines are MW links.

4.3.1 Management of Ethernet-capable devices

This use case demonstrates the capability of an SDN application of configuring Ethernet parameters (only one parameter is supported in the simplified model for the purpose of 4th ONF WTP PoC) at Ethernet-capable transport devices as well as receiving, displaying and storing of Ethernet-related status & states messages and performance values from Ethernet-capable transport devices (via Netconf/Yang protocol).

This is achieved by the application setting up a VLAN service by configuring ForwardingDomain-related attributes such as FC, FC-Port, associated LTP, and LP with only a VLAN parameter for simplification.

Test procedure is as follows:

- Management of Ethernet-capable devices from different vendors verifies that the parameters are present
- No FC (Forwarding Construct) present at the beginning
- Run the script to create the e2e path
- Verify that the FC is created in the different NEs

- Start with traffic running over the main path
- Verify counters on instrument

4.3.2 Path re-routing

The purpose of this application is to show interaction between the physical layer of the microwave transport and the Ethernet protocol layer. In particular, bandwidth variation caused by Adaptive Modulation shall influence service routing. Within the application, the services shall be distinguished by following criterion:

Guaranteed Bit Rate to be Assured (GBA)

Routing of the service shall be successful, if the GBA of the allocated service is lower than the capacity (calculated from configuration and status information of the physical layer) of all links within the path of the service

Routing shall be calculated according to the following algorithm:

For all links along this path, the capacity should be checked. If capacity of any link along the
path is lower than GBA of the routed service, then another path fulfilling the GBA criterion will
be selected.

Routing of service shall be technically based on VLAN bridging.

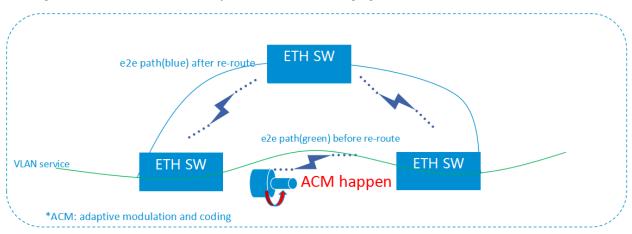


Figure 10 Demonstration of re-route use case

Procedure:

- Setup a VLAN service and monitor traffic as described in the procedure in section 4.3.1
- Reduce the power of one of the MW links
- Failure notification is received by SDN controller
- Application will recalculate route and will provision it
- Traffic is rerouted and recovered

5 Test Results

The wireless transport equipment vendors and application providers listed in section 2 participated successfully in the tests. The tests were performed with an OpenDaylight (version Boron SR1) SDN controller. Additional functions required for the PoC use cases were provided by various SDN applications which had been implemented for the purpose of PoC and integrated into the SDN controller (see section 4).

The same south bound interface (using NETCONF protocol and YANG data models) was used between the SDN controller and the mediators of all vendors. The interfaces between mediators and network elements were proprietary interfaces which were not subject of the tests in this PoC.

The first series of tests demonstrated the application of the final version of the Microwave Information Model (as documented in the technical report TR-532 [TR532]) for managing a network of microwave equipment. All network elements were visible in a graphical representation of the PoC network in the related northbound application. Microwave specific data for each network element could be explored in the application. The configuration of the network was then modified in two ways: by switching off the transmitter of one link through the GUI respectively by increasing the attenuation of one link. As a consequence, the affected links provided less or no capacity and the overall capacity of the network was reduced. This effect could be seen both at the application and at the GUI of the traffic analyzer. The original capacity was restored as soon as the respective configuration was reverted to the initial values. The changes of configuration also triggered the network elements to report alarms which were forwarded as NETCONF notifications to the controller and displayed at the northbound application.

The second series of tests demonstrated the management of the Precision Timing Protocol (PTP) described in IEEE 1588 v2 [IEEE1588v2]. The application showed a graphical representation of the synchronization paths based on the data retrieved from the network elements. The PTP specific data for each network element could be explored at the application. The configuration of the network was then modified by switching off the link to one of the two Grandmaster clocks. As a consequence, the whole network synchronized on the second Grandmaster clock. The updated parent and Grandmaster clock identities could be seen at the application.

The third series of tests demonstrated the rerouting of Ethernet traffic transported over the microwave links. The rerouting application, first, established a path for Ethernet traffic by configuring a Layer 2 connection (VLAN) in each of the network elements along the path. Then a path degradation was simulated by manually reducing the modulation of one MW link. The resulting reduced capacity was detected by the application which then deleted the VLANs in the existing path and created new VLANs in the network elements along the new path. The traffic analyzer GUI showed that the traffic was restored.

6 Conclusions

The 4th Wireless Transport SDN PoC has reaffirmed the importance of the Wireless Transport Model (as documented in TR-532), for the adoption of SDN in the Wireless Transport Domain. In this PoC applications from the previous PoCs as well as new applications have been successfully tested and demonstrated by a larger group of vendors (in total 13 vendors). This shows that the model effectively covers the different aspects of operating and controlling Wireless Transport network elements in a SDN network.

After ONF Microwave Information Model (TR-532) has been released at the end of 2016, it has been widely adopted by the microwave vendors. In total 12 microwave/millimeter wave equipment vendors have implemented it, and demonstrated it during the PoC. As a matter of fact, all the significant providers of microwave equipment were attending the PoC, some of them for the first time. This proves the maturity of the model and the commitment of all the significant equipment vendors to provide a standard interface

that will facilitate the operator ability to install them as part of multi-vendor SDN Wireless Transport network.

The PoC has proved to be a significant step toward common way of controlling and managing Wireless Transport Networks including Microwave, Ethernet connectivity and Network synchronization allowing non-proprietary open source SDN controller (e.g. OpenDaylight) to manage multi-vendor wireless transport networks. This will enable the operators to control all aspects of the network elements. It will facilitate the ability to have multi-vendor, multi-technology, multi-layer control, and advance innovative applications that control and optimize the different aspects of a network and not only microwave specific aspects.

All the developed applications have been successfully executed on top of the SDN controller toward different network elements implementing the same information model. This has been possible thanks to the fact that the same southbound interface was implemented by all vendors, and it adds another reason to implement the same model.

This PoC does not conclude the activities of ONF WTP, that need to work to extend the standard models for Ethernet ports control, Ethernet connectivity, Quality of Service model and others. This can be done by taking advantage of models developed by other standardization teams and adapting them to the ONF architecture. For this purpose, the PoC demonstrated that the Microwave Transport SDN Network architecture can smoothly integrate models defined by different standardization bodies (e.g. IETF model for IEEE1588 PTP).

Next target for WT activities will also include coordination with other domains and layers of the network (e.g. RAN, Core, OTN) to achieve a multi-layer and multi-domain hierarchical SDN solely based on open source models and open interfaces

7 Acknowledgments

Thank you to Deutsche Telekom for hosting this event and for the perfect organization in terms of logistic and resources, in particular to Petr Jurcik, Thomas Kessler and Dimitris Siomos for the effort spent and the personal commitment for the success of the event. Thank you to all the team participating to the event (AT&T, Telefonica, Deutsche Telekom, ADVA, Aviat, Ceragon, DragonWave, ELVA-1, Ericsson, Fujitsu, Huawei, Intracom Telecom, NEC, Nokia, SIAE, ZTE, Highstreet Technologies, FRINX, Spirent).

Finally, thank you to the contributors and reviewers to the various sections of this White Paper, namely:

- Alexandru Stancu Ceragon
- James Ries Nokia
- Michael Binder Ericsson
- Yossi Victor Ceragon
- Alfons Mittermaier Highstreet Technology
- Martin Skorupski Highstreet Technology
- Nader Zein NEC
- Lukáš Beleš FRINX
- Giorgio Cazzaniga SM Optics (SIAE Microelettronica group)
- Petr Jurcik DT
- Thomas Kessler DT
- Yang Yongang ZTE

8 References

[IEEE1588v2] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", available at https://standards.ieee.org/findstds/standard/1588-2008.html

[CENTEN] GitHUB CENTENNIAL available at https://github.com/OpenNetworkingFoundation/CENTENNIAL

[G8275.1] "Precision time protocol telecom profile for phase/time synchronization with full timing support from the network", available at https://www.itu.int/rec/T-REC-G.8275.1/en

[TR532] "Microwave Information Model, v1.0, 2016-12", available at https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-532-Microwave-Information-Model-V1.pdf

[WP_3PoC] "Third Wireless Transport SDN Proof of Concept White Paper, 2016-12", available at https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Third-Wireless-Transport-SDN-Proof-of-Concept-White-Paper.pdf

[WP_1PoC] "Wireless Transport SDN PoC White Paper, v1.0, 2015-10-09", available at https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/ONF Microwave SDN PoC White Paper%20v1.0.pdf

[WP_2PoC] "Wireless Transport SDN Proof of Concept 2 Detailed Report, v1.0, 2016-06-06", available at https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Wireless_Transport_SDN_PoC_White_Paper.pdf

[ONF_Core] ONF Core Model 1.2 (TR-512) https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR-512_CIM_(CoreModel)_1.2.zip[UML_Tool] UML to Yang Conversion

[UML_Tool] UML2YANG 2.0 – UML to Yang mapping tool, available at https://github.com/OpenNetworkingFoundation/EAGLE-Open-Model-Profile-and-Tools/tree/ToolChain/UmlYangTools

9 Terminology

API Application Programming Interface

CoS Class of Service

CVID Customer VLAN ID

CVLAN Customer VLAN

CSES Consecutive Severely Errored Seconds

DVM Default Values Mediator

ETH Ethernet MAC Layer

ETY Ethernet Physical Layer

EVC Ethernet Virtual Circuit/Connection

ES Errored Seconds

FC Forwarding Construct (as defined in ONF CoreModel)

GBA Guaranteed Bandwidth Available

GNSS Global Navigation Satellite System

GPS Global Positioning System

IDU In Door Unit

LP Layer Protocol (as defined in ONF CoreModel)

LTP Logical Termination Point

MWPS MicroWave Physical Section

NBI Northbound Interface

NE Network Element (= device under test)

Netconf Network Configuration Protocol

NFV Network Function Virtualisation

OAM Operation, Administration and Maintenance

ODL OpenDaylight

ONF Open Networking Foundation

ONOS Open Network Operating System

OSGi Open Services Gateway initiative

OTWG Open Transport Working Group

PoC Proof of Concept

PTP Precision Time Protocol

QoS Quality of Service

SBI Southbound Interface

SDN Software Defined Networking

SES Severely Error Seconds

SNMP Simple Network Management Protocol

SVLAN Service/Provided VLAN

T-BC Telecom Boundary Clock

T-GM Telecom Grandmaster Clock
T-TSC Telecom Time Slave Clock
TR Technical Recommendation

UML Unified Modelling Language
VLAN Virtual Local Area Network

WTE Wireless Transport Emulator

WTP Wireless Transport Project

XML Extensible Markup Language

END OF DOCUMENT