OPEN NETWORKING
FOUNDATION

OF-CONFIG 1.2

OpenFlow Management and Configuration
Protocol

ONF TS-016

Copyright © 2014 Open Networking Foundation

OF-CONFIG 1.2 | OpenFlow Management and Configuration Protocol Version 1.2

ONF Document Type: OpenFlow Config
ONF Document Name: of-config-1.2

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, ONF disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation
of this specification, and ONF disclaims all liability for cost of procurement of substitute goods
or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect,
or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of
use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectual property rights is granted herein.

Except that a license is hereby granted by ONF to copy and reproduce this specification for
internal use only.

Contact the Open Networking Foundation at https://www.opennetworking.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY ("RANDZ") LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS

OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

© Open Networking Foundation

https://www.opennetworking.org

Open Networking Foundation OF-CONFIG 1.2

Contents
R [o1 g Te [Tt i o T H O P PO T TR PPPTOPPPPP 5
B 1Y/ o 11171 {0 o PO P OO PPPTP 5
2.1 OF-CONFIG aNd OF-SWITCHutiieiiiieiitieeeitt ettt ettt siee e st e st e e sbe e e sibe e e sabe e e sabeeesabeeesabeeesnreeesaneeas 7
I Tolo T o ISP PUPPUPPPN 8
N o] 80 o - LAV R T = U - - I PP 9
LT =1 o2 PP PP PPPTP 9
5.1 OpenFlow Capable SWITCH ... e e e e e e e e et e e e e e e e e e e e e eeannnnns 9
5.2 OpenFlow Configuration POINT........ccuiiiiiiiiie ettt e e e e e e e e e e s bt e raeeeeeaaeeeeeennnnnns 9
5.3 0penFlow LOZICAl SWItCN....coiiii i e e e e et e e e e e e e e e e e e e eannnnes 9
5.4 OPENFIOW RESOUICE ...uuviiiiiiiiieeeeiiiiiititeeeeeeeeeeeeeeiittttaeeeeaaaeeeesssasatsaaassaeaaasesaasasnssssasssaaaeseesesannsenes 10
5.4.1 OPENFIOW QUEBUE.......uuiiiiiieiieee e e e eccccitrte ittt e e e e e e e e esebtareeeeeaaaeaesssaasstrasaseeaaaasessasasnstsssesaaaaasaeaans 10
R 0 o Y=Y o1 o Fo YV YA 2o o U UUPUR 10
LT T @ 1 Y=Y oY o (oY A @ o Nl e 11T U PUSURRROt 10
5B INDIM ittt ettt ettt e s b e ettt e s b et et et e e a b et e e b e e e aabe e e s be e e hbe e e eabe e e ehbeeeanbeeeanbeeeanreeenanes 10
oI U= To [0 L[=T 0 o T=] o) AP TPPPPPPTPPINN 10
6.1 Requirements from the OpenFlow 1.3 Protocol Specification.........ccccceeeeeiiiiciiiiiiiiieeee e, 10
6.1.1 Instantiation of one or more Openflow Data Planes on an Openflow Capable Switch......... 11
6.1.2 Connection Setup t0 @ CONTIOIIETuuviiiiieeee e e e e e e e e e 11
6.1.3 MUILIPIE CONTIOIIETS «.evtiiiiieeeeee et e e e e e e e et e e e e e e e e e e s s e sabbaaaeeaaaaaeaeaaas 11
6.1.4 OpenFlow LOZICal SWILCHES ..o e e e e e e e e e e e 11
SN R Oe] oY o [=Toru [o T o I [g L (=T 4 0] o) 1o] o VU PPPTTPR 11
00 I S =1 o ol V7 o] o] o KOS PP PPTRR 12
B.1.7 QUUEBUES ..ottt e e e e e e e e e s a et e e e e e s e s 12
B.1.8 POIES ittt e e e e e e e e e e e 12
(o I 0= o =1 o 11 [VA DY Y olo Y/ =] o U UPPURN 13
L O I D T =1 o - 1 o 1 1 0 I U UUPURN 13
6.2 ReqUIrEMENTS FOr NDIVIS....cciiiiiii ittt et ee e e e e e e e e e ettt b aaeeeeaaeeeseeasabssbasaeaaaaeeseesannsnnns 13
6.3 Operational REQUINEMENTSccci ittt e e e e e e e ee et rre e e e e aeeeeseesasabtabaseeaaaaeeeeessnnsnnns 14
6.4 Requirements for the Switch Management ProtocCol.........cccoociiiiiiiiii e 14
7 NETCONF as the Transport ProtOCO|uuii ittt e et r e e e e e e e e e e e abaaraeaeeeas 15
I D Y =11V, o Yo =] DT T PP PO T PP PRPTTRPRION 17

Open Networking Foundation OF-CONFIG 1.2

8.1 YANG MOGUIE .ttt ettt ettt et e st e e st e s bbe e e sabe e e sbbeeesabeeesabeesanbeeenans 18
8.2 COre Data MOTEl ...t s e e e et e e anre e e nans 18
8.3 OpenFlow Capable SWITCH ... e e e e e et re e e e e e e e e e e e e eanneaes 19
20 T A U 11 L D 1 =T =4 = o 4 DO PP OUPUPPTPPNt 20
T T D |V, LI =Y o o] [UUUUR 20
8.4 OpenFlow Configuration POINT.......cccuiiiiiiiiii ettt e e e e e e e e e e e bt areeeeeaeeeeeeeeannnnnns 20
30t R U 1\ LI D 1 =T =4 =T o o DO PP OPPUPPTPPRt 21
N D |V, LI - Y o o] [SUUUR 21
8.5 OpenFlow LOZICal SWItCN...ccoiiii i e e e e et re e e e e e e e e e e e e eaanenes 21
2 T A U 11 LI D 1= T=4 =1 o o DO PP OPPUPPIPPRt 22
T D |V, LI - Y o o] [UUUUR 22
8.6 Logical SWItch Capabilities......ccciieeciiiiiiiiieee e e e e e e e e e e e e eanaees 23
3 ST A U 11 LI D 1= T=4 =T o o DO PP OPPUPPIPPNt 23
R I D |V, LI - Y o o] [UUUUR 23
S A @ T Y=Y oY ol (oY A @ o Nl e 11T U PUSURROt 24
2 20 R U 1\ LI D 1 =T =4 =1 o o DO PP OPPUPPIPPNt 25
T I |V, LI - Y o o] [UUUUR 25
8.8 OPENFIOW RESOUICE ...uuviiiiiiiiieeeeiieiiitiieeeeeeeeeeeeeseittbtaaeeeaaaeeeesssasatsaaassaaaaasssaasasnssssasaaaaaesessesannsrnes 26
2% A U 1\ LI D 1= T=4 =T o o DO PP OPPUPPIPPNt 26
T D |V, LI =Y o o] [UUUUR 26
3 B @1 Y=Y oY ol (o 1V = T o U PUUURROt 26
38 I R U 1\ LI D 1 =T =4 =1 o o DO PP OPPUPPIPPNt 27
8.9.2 XML EXGMPIES eeeeiiiiieiieecitiee ettt et e e e e e e e e et b b e e e e e aeeeeee e s ababbaaaeeeaaaaseeaaannstaranaeeeas 27
8.10 OPENFIOW POIt FEATUIE ..eciiiiii ettt e e e e e e e e e e e e e e e e e s e enabbabaeeeaaaeeeseesnnsenes 29
20 0 I R U1 Y I B 1 - - - o U OUPUPPTPPNt 30
0 O T D 1Y T == 1 Y o] L= UUUUR 30
8.11 OPENFIOW QUUEUE ...cuvviiiiieiiee e e ettt e e e e e e e e eect b e e e e e eaeaeeesesbabraaaeseaaaaessaasasnssssasaaaaaasessesnnnsrnes 30
2 700 It R U1 Y I B 1 - -4 =Y o PP OPPUPPTPPNt 31
0 D 1Y I == 1 Y o] L= UUUUR 31
8.12 EXEErNal CortifiCatl. . ittt s 31
2 20 e R U 1Y I B 1 - = - o PP OUPPPPTPPNt 32
8.12.2 XML EXGMPI .ciiiiiiiiiiiiieiitieeee et ettt e e e e e e e e ettt e e e e e e e e e e e e e s ababbaaaeeeaaaeeeeaaannararaaaeeaas 32
8.13 OWNEA CertifiCate ..eeeeieieiieie ittt et s e et e e st e e bb e e eabe e e saree e enbe e e nans 32

Open Networking Foundation OF-CONFIG 1.2

270 e 0t R U1 Y I B 1 - = - o PP OUPUPPIPPNt 33
8.13.2 XIMIL EXAMPI ceiiiiiiiiiieeeiitieeee ettt et e e e e e e e e ettt e e e e e e e e e e e e e s ababbaaaeeeaaaeeeeaannnararaaaeaaas 33
8.14 OPENFIOW FIOW TabBI@..uiiiiiiiieie ettt e e e e e e ae e e e e e e e e e s e aabtabaeeeeaaeeeeeesnnsenes 34
2 200 0 ot R U Y I D 1 - = - o PP OPPUPPTPPNt 34
8.14.2 XML EXGMPI .eiiiiiiiiiiiieiitieee ettt e e e e e e e e e ettt a e e e e aaeeeeeesaabsbbaaaeeeeaaeeeeaaannarararaeeens 34
815 INDIM ettt ettt et ettt e s b e et e e st e e a b et e sa b et e e b et e e abe e e s b et e abe e e eabe e e ahb e e e enbeeeaateeeanbeeenanes 35
T T R U Y I 1 - -4 - o o PP OUPUPPTPPNt 36
8.15.2 XML EXGMPI .ceiiiiiiiieiiieiitieeee ettt e e e e e e e e e et bt r e e e e aeeeeeeesababbaaaeeeaaaeeeeaaannarararaeeens 36

1S B = 11 o To [T o =48 o 31 V1 = (] Y1 SRR 37
S IO R 0= Yo [U T =10 g 1= o] PP UOPPUTPTR PPN 37
9.2 How the Data Model is Bound to NETCONF........coociiiiiiieiiieeiiie ettt e e e 37
Lo B0 R Vo [oo o - UUUUU 37

L B R - -1 e olo] o = UUUUR 39

Lo B0 T oo o)Y oo] o1 - UUUUR 40

Lo B o [T =Y Rt olo]] = U UUUUR 41
SRS T o G =T o o | PSP O PPN 41
APPENAIX A RETEIENCES ...ttt ettt e e e e e e et e e e e e e e e e e e e s e ta bt aaaeeeaaaeessasssnttsraaeeaaaaeeaaans 43
F Yool Yo [= T O =T L £ U UPPPRPRN 43

Open Networking Foundation OF-CONFIG 1.2

1 Introduction

This document describes the motivation, scope, requirements, and specification of the standard
configuration and management protocol of an operational context which is capable of containing an
OpenFlow 1.3 (or previous versions) switch as described in Figure 1. This configuration and management
protocol is referred to as OF-CONFIG and is a companion protocol to OpenFlow. This document specifies
version 1.2 of OF-CONFIG.

OpenFlow
Configuration OppetIAlEy
. Controller
Point
OF-CONFIG OpenFlow
Protocol
|
OpenFlow
Switch

Operation Context

Figure 1: An OpenFlow Configuration Point communicates with an operational context which is capable of
supporting an OpenFlow Switch using the OpenFlow Configuration and Management Protocol (OF-CONFIG)

The reader of this document is assumed to be familiar with the OpenFlow protocol and OpenFlow
related concepts. Reading the OpenFlow whitepaper [2] and the OpenFlow Specification [1] is
recommended prior to reading this document.

It is strongly recommended that switches which implement OF-CONFIG make changes to the OpenFlow
logical switch described in this document via OF-CONFIG and limit changes to the OpenFlow logical
switch via other methods (e.g. command line interfaces and other legacy management protocols).
Future versions may better support out-of-band changes with detailed notification to the OpenFlow
Configuration Point via OF-CONFIG.

2 Motivation

The OpenFlow protocol assumes that an OpenFlow switch (e.g. an Ethernet switch which supports the
OpenFlow protocol) has been configured with various artifacts such as the IP addresses of OpenFlow
controllers. The motivation for the OpenFlow Configuration Protocol (OF-CONFIG) is to enable the
remote configuration of OpenFlow switches. While the OpenFlow protocol generally operates on a time-

Open Networking Foundation OF-CONFIG 1.2

scale of a flow (i.e. as flows are added and deleted), OF-CONFIG operates on a slower time-scale. An
example is building forwarding tables and deciding forwarding actions which are done via Openflow
protocol while enabling/disabling a port generally does not need to be done at the timescale of a flow
and, hence, is done via OF-Config protocol.

OF-CONFIG defines an OpenFlow switch as an abstraction called an OpenFlow Logical Switch. The OF-
CONFIG protocol enables configuration of essential artifacts of an OpenFlow Logical Switch so that an
OpenFlow controller can communicate and control the OpenFlow Logical switch via the OpenFlow
protocol.

OF-CONFIG introduces an operating context called an OpenFlow Capable Switch for one or more
OpenFlow swithes. An OpenFlow Capable Switch is intended to be equivalent to an actual physical or
virtual network element (e.g. an Ethernet switch) which is hosting one or more OpenFlow Logical
Switches by partitioning a set of OpenFlow related resources such as ports and queues among the
hosted OpenFlow Logical Switches . The OF-CONFIG protocol enables dynamic association of the
OpenFlow related resources of an OpenFlow Capable Switch with specific OpenFlow Logical Switches
which are being hosted on the OpenFlow Capable Switch. OF-CONFIG does not specify or report how the
partitioning of resources on an OpenFlow Capable Switch is achieved. OF-CONFIG assumes that
resources such as ports and queues are partitioned between multiple OpenFlow Logical Switches such
that each OpenFlow Logical Switch can assume full control over the resources that is assigned to it.

OF-CONFIG 1.2 makes simplifying assumptions about the architecture of OpenFlow switches. The
specification is deliberately decoupled from whether the switch supports virtualization models or
specific hybrid operational models, for example.

The service which sends OF-CONFIG messages to an OpenFlow Capable Switch is called an OpenFlow
Configuration Point. No assumptions are made about the nature of the OpenFlow Configuration Point.
For example, it may be provided by software acting as an OpenFlow controller or it may by a service
provided by a traditional network management framework. In some deployment contexts, the
OpenFlow Configuration Point and OpenFlow controller may belong to different administrative entities,
e.g., provider and customer, respectively. Interactions between the OpenFlow Configuration Points and
OpenFlow controllers is outside the scope of OF-CONFIG 1.2, but is expected to be addressed in future
versions of the specification.

Figure 2 shows the basic abstractions detailed in OF-CONFIG 1.2 and the lines indicate that the
OpenFlow Configuration Points and OpenFlow Capable Switches communicate via OF-CONFIG. The
configuration settings then take effect on targeted logical switch(es). OpenFlow Controllers and
OpenFlow Logical Switches communicate via OpenFlow.

Open Networking Foundation OF-CONFIG 1.2

OpenFlow OpenFlow OpenFlow
Configuration Point(s) Controller(s) Controller(s)
OpenFlow OpenFlow

OF-Config

OpenFlow Capable Switch

OF Logical Switch

OF OF OF OF
L Resource Resource Resource Resource
(e.g. (e.g. (e.g. (e.g.

OF Logical Switch

Port) Port) Port) Port)

Figure 2: Relationship between components defined in this specification, the OF-CONFIG protocol and the
OpenFlow protocol

A guiding principle in the development of this specification is to keep the protocol and schema simple
and leverage existing protocols and schema models where possible. This helped in quick development of
this specification and hopefully will also enable easier adoption, the motivation being to supplement the
OpenFlow specification in a meaningful way to further drive the adoption of the software defined
networking vision.

2.1 OF-CONFIG and OF-SWITCH

Although OF-CONFIG is considered a complementary protocol to the main OpenFlow switch
specification (OF-SWITCH), it is useful to describe the differences that motivate the need for a separate
protocol specification in ONF. The table below summarizes the key differences.

OpenFlow

OF-CONFIG

Primary purpose

Modification of match-action rules
effecting flows of network packets
across an OpenFlow datapath

Remote configuration of possibly
multiple OpenFlow datapaths on a
physical or virtual platform

Terminology

Newer versions of the OpenFlow 1.3
specification adopt the term OpenFlow
Logical Switch and distinguish it from
the earlier “datapath” term. The terms
OpenFlow Logical Swtich and OpenFlow
Switch are interchangeable

In the OF-Config 1.1.1 specification the
term OpenFlow Capable Switch
introduces a new abstraction.

OpenFlow Capable Switch = a new
element

OpenFlow Configuration Point = a new
element

Transport

A bit-level protocol specified in the

An XML data model and operational

7

Open Networking Foundation

OF-CONFIG 1.2

OpenFlow standard currently supported
over TCP, TLS, or SSL

behavior specified in the OF-Config
standard bound to the NETCONF
operations and transport standard for
network device configuration and
management

Protocol
endpoints

1) An OpenFlow datapath, also referred
to as OpenFlow Logical Switch (OFLS)

2) An OpenFlow Controller (OFC)

1) An OpenFlow Capable Switch (OFCS)
able to instantiate one or more
OpenFlow Logical Switches (i.e.
OpenFlow datapaths)

2) An OpenFlow Configuration Point
(OFCP)

Example usage

An OpenFlow Controller adds a flow
modification to an OpenFlow datapath
(OFLS) which allows Ethernet frames
containing IP packets which originated
from 192.168.3.10 and are coming in on
the datapath's port 2 to be forwarded
out on the datapath's port 14

An OpenFlow Configuration Point
configures a particular OpenFlow
Logical Switch (OF datapath) to be
associated with a particular OpenFlow
Controller

It should be noted that some properties of the OpenFlow Logical Switch (i.e. OpenFlow switch) are
available and configurable via both OpenFlow and OF-CONFIG. Having multiple channels for some of
the same data is considered appropriate since the primary purpose of OpenFlow Configuration Points
and OpenFlow Controllers are quite different. The ONF strives for synchronization of the data models
and semantics between the OpenFlow and OF-CONFIG standards prior to update of either standard.

3 Scope

OF-CONFIG 1.2 is focused on the following functions needed to configure an OpenFlow 1.3 logical

switch:

* The assignment of one or more OpenFlow controllers to OpenFlow data planes

* The configuration of queues and ports

* The ability to remotely change some aspects of ports (e.g. up/down)

* Configuration of certificates for secure communication between the OpenFlow Logical Switches
and OpenFlow Controllers

* Discovery of capabilities of an OpenFlow Logical Switch

* Configuration of a set of specific tunnel types such as IP-in-GRE, NV-GRE, VxLAN

New functionality introduced in OF-CONFIG 1.2 includes:

Instantiation of OpenFlow data planes (called OpenFlow Logical Switches)

Open Networking Foundation OF-CONFIG 1.2

Assignment of resources of an OpenFlow Capable Switch to one or more OpenFlow Logical Switches

Support for the emerging Negotiable Datapath Model (NDM) being developed in the ONF
* Versioning Support for negotiating which version(s) of OF-CONFIG are supported

Other functions and/or the description of their use have been improved.

While limited in scope, OF-CONFIG 1.2 lays the foundation on top of which various automated and more
advanced configurations will be possible in future revisions. The ONF Configuration and Management
working group will publish additional specifications for network operations, administration, and
management (OAM), including, topology discovery, event management, and bootstrap of the OpenFlow
capable network.

Note that even though this specification refers to OpenFlow 1.3, OF-CONFIG 1.2 supports previous
OpenFlow versions, specifically, OpenFlow 1.0, 1.1 and 1.2.

4 Normative Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC
2119 [3].

5 Terms

The following section lists several terms and definitions used in this document.

5.1 OpenFlow Capable Switch

An OpenFlow Capable switch is a physical or virtual switching device which can act an as operational
context for an OpenFlow Logical Switch. OpenFlow Capable Switches contain and manage OpenFlow
Resources which may be associated with an OpenFlow Logical Switch context.

5.2 OpenFlow Configuration Point

An OpenFlow Configuration Point configures one or more OpenFlow Capable Switches via the OpenFlow
Configuration and Management Protocol (OF-CONFIG).

5.3 OpenFlow Logical Switch

An OpenFlow Logical Switch is a set of resources (e.g. ports) from an OpenFlow Capable Switch which
can be associated with a specific OpenFlow Controller. An OpenFlow Logical switch is an instantiation of
an OpenFlow Switch as specified in [1].

Open Networking Foundation OF-CONFIG 1.2

5.4 OpenFlow Resource

An OpenFlow Resource is a resource (e.g. port or queue) which is associated with an OpenFlow Capable
Switch and may be associated with an OpenFlow Logical Switch.

5.4.1 OpenFlow Queue

An OpenFlow Queue is a queuing resource of an OpenFlow Logical Switch as described in the OpenFlow
specification as the queue component of an OpenFlow switch.

5.4.2 OpenFlow Port

An OpenFlow Port is a forwarding interface of an OpenFlow Logical Switch as described in the OpenFlow
specification as the port component of an OpenFlow switch. An Openflow Port may map to a physical
port on a physical switch or a logical port on a physical or virtual switch.

5.5 OpenFlow Controller

An OpenFlow Controller is software which controls OpenFlow Logical Switches via the OpenFlow
protocol.

5.6 NDM

A Negotiable Datapath Model (NDM) is an abstract switch model that describes specific switch
forwarding behaviors controllable via the OpenFlow-Switch protocol. The NDM describes specific
requirements for switch behavior so that implementers can perform optimizations or deliver more
complex forwarding behaviors (beyond what can be scalably represented in a single OpenFlow table)
than they could otherwise.

6 Requirements

This section describes requirements for the design of OF-CONFIG 1.2.

6.1 Requirements from the OpenFlow 1.3 Protocol
Specification

The specification of version 1.3 of the OpenFlow protocol [1] includes explicit and implicit requirements
for the configuration of OpenFlow switches. In [1] the term ‘configuration’ is used for two different kinds
of operations: configuration using the OpenFlow protocol and configuration outside of the OpenFlow
protocol. The first kind of configuration is dealt within [1]. OF-CONFIG 1.2 enables other configuration of
OpenFlow switches. The specification of OF-CONFIG 1.2 is written with extensibility in mind. This
includes versioning and backward compatibility.

10

Open Networking Foundation OF-CONFIG 1.2

6.1.1 Instantiation of one or more Openflow Data Planes on an Openflow
Capable Switch

An OpenFlow capable switch is capable of hosting one or more OpenFlow data planes (also refered to as
OpenFlow logical switch). Initially, the OpenFlow capable switch owns all the resources of the switch and
does not have any data plane instantiated. Using the OF-CONFIG 1.2 protocol, OFCP can instantiate one
or more OpenFlow data planes and can assign resources such as queues and ports to these OpenFlow
data planes. Some of the resources like management port may not be assigned to any OpenFlow data
plane.

6.1.2 Connection Setup to a Controller

Section 6.3 (Connection Setup) of [1] indicates that an OpenFlow switch must be able to initiate the
connection to the OpenFlow controller and discusses the process of setting up a connection between
the OpenFlow switch and an OpenFlow controller. The switch initiates the connection applying three
parameters that need to be configured in advance. Note that OpenFlow 1.3 also allows the OpenFlow
controller to optionally initiate the connection to the switch (described in [1]).

e the IP address of the controller

* the port number at the controller (optional) if the default OpenFlow transport port 6653 is not
being used

* the transport protocol to use, either TLS or TCP
* the port number at the switch (optional) if controller-initiated connections are used

OF-CONFIG 1.2 must provide means for configuring these parameters. Note that in future, alternative
mechanisms for discovering the OpenFlow controller may be supported.

6.1.3 Multiple Controllers

Section 6.3 of [1] discusses how a switch deals with multiple controllers simultaneously. This implicitly
requires OF-CONFIG 1.2 to provide means for configuring multiple instances of the parameter set listed
in 6.1.1 for specifying the connection setup to multiple controllers.

6.1.4 OpenFlow Logical Switches

The OpenFlow 1.3 protocol specifies various kinds of OpenFlow resources associated with an OpenFlow
Logical Switch. The OF-CONFIG protocol must support the configuration of these OpenFlow resources
associated with an OpenFlow Logical Switch. Examples of resources include queues and ports that have
been assigned to an OpenFlow Logical Switch. It is assumed that OpenFlow Logical Switches have been
instantiated out of band, for example, an administrator may have created them upfront. In addition,
partitioning/assignment of OpenFlow resources amongst multiple OpenFlow switches that may exist in
an OpenFlow Capable Switch has also been done out of band.

6.1.5 Connection Interruption

Section 6.4 of [1] discusses the choice of two modes the switch should immediately enter after losing
contact with all controllers. The modes are

11

Open Networking Foundation OF-CONFIG 1.2

* fail secure mode
* fail standalone mode
OF-CONFIG protocol must provide means for configuring the mode to enter in such a case.

6.1.6 Encryption

Section 6.5 of [1] discusses encryption of connections to controllers that use TLS. It explicitly states
“Each switch must be user-configurable with one certificate for authenticating the controller (controller
certificate) and the other for authenticating to the controller (switch certificate)”. Hence, OF-CONFIG
must provide means for configuring a switch certificate and a controller certificate for each controller
that is configured to use TLS.

6.1.7 Queues

Section A.3.6 of [1] describes the configuration of queues. Queue in [1] have three parameters that may
be configurable:

* min-rate
* max-rate
* experimenter
OF-CONFIG 1.2 must provide means for configuring these parameters.

6.1.8 Ports

The OpenFlow protocol already contains methods to configure a limited amount of port parameters of
OpenFlow switches. The OpenFlow protocol specification [1] does not explicitly require an external
configuration means, and therefore we cannot derive the requirement for configuring ports from [1].
However, the configuration of ports is an essential step of configuring a network and thus a requirement
for OF-CONFIG 1.2. Section A.3.4.3 of [1] defines the following parameters for port configuration:

®* no-receive
* no-forward
* no-packetin
* admin-state
OF-CONFIG 1.2 must provide means for configuring these parameters.

Also defined in Section A.2.1 of the OpenFlow protocol specification [1] are port features. There are four
sets of these features for current, advertised, supported, and peer-advertised features. Feature sets
current, supported, and peer-advertised contain state information and cannot to be configured. Only
advertised features could potentially be configured with the following parameters:

* speed

12

Open Networking Foundation OF-CONFIG 1.2

¢ duplex-mode

* copper-medium

¢ fiber-medium

* auto-negotiation
* pause

* asymmetric-pause

OF-CONFIG 1.2 must provide means for configuring these advertised features and for obtaining current,
supported and peer-advertised state information for these features.

Section 4.4 of [1] defines logical ports that are higher level abstratcions and that may include
encapsulation. In addition, logical ports support passing of meta data to the controller. These logical
ports may be used in for example, datacenter scenarios for setting up virtual networks. OF-CONFIG 1.2
must support the configuration of these logical ports. However, the configuration of logical ports in OF-
CONFIG 1.2 is limited to a small number of tunnels (specifically to IPinGRE, VXLAN and NVGRE) that may
be used in datacenter scenarios like network virtualization. Future versions of OF-CONFIG will support
configuration of additional types of tunnels.

6.1.9 Capability Discovery

OpenFlow 1.3 describes the various capabilities that an OpenFlow Logical Switch may implement eg
there are several actions in OpenFlow 1.3 that are optional. While configuration of these capabilities is
outside the scope of OF-CONFIG 1.2, it supports discovery of these capabilities. It is assumed that
capabilities have been configured for OpenFlow Logical switches either as part of instantiation of these
switches or through some out of band mechanisms.

6.1.10 Datapath ID

Section A.3.1 of [1] discusses the datapath ID of a switch. It is a 64-bit field with the lower 48 bit
intended for the switch MAC address and the remaining 16 bit left to the switch operator. Although not
explicitly requested by [1], OF-CONFIG should provide means for configuring the datapath ID.

6.2 Requirements for NDMs

OF-CONFIG 1.2 includes optional support for Negotiable Datapath Models (NDMs) [5]. An NDM is an
abstract switch model that describes specific switch forwarding behaviors controllable via the
OpenFlow-Switch protocol.

When a capable switch implements the NDM framework (which is an optional enhancement to
OpenFlow), an OFCP and a capable switch agree on an NDM to be associated with a logical switch prior
to sending control messages, such as flowmods, to the logical switch. This agreement may be implicit
(i.e., each side is configured a priori) or negotiated when the control relationship is established.

NDMs are characterized by parameters related to table sizes or optional functionality. The NDM
framework allows for implementations to have a range of flexibility in their parameters. Some

13

Open Networking Foundation OF-CONFIG 1.2

implementations may have no flexibility; others will allow some adjustment of parameters at the time
the OFCP associates the NDM with a logical switch. NDM implementations that support parameter
adjustment should also offer an RPC mechanism to allow the OFCP and the capable switch to determine
the parameters in a specific situation.

The NDM framework simplifies the job of implementing an OpenFlow controller or OpenFlow agent for
a switch. The NDM describes specific requirements for switch behavior so that implementers can
perform optimizations or deliver more complex forwarding behaviors (beyond what can be represented
in a single OpenFlow table) than they could otherwise.

The optional NDM manageability feature must support the following requirements:
1. The ability to query the capable switch about support for NDMs
2. The ability to query the capable switch for the set of available supported NDMs
3. The ability to associate a logical switch with a parameterized NDM

4. The ability to remove a parameterized NDM from a logical switch

6.3 Operational Requirements
The OF-CONFIG 1.2 must meet support the following scenarios:

1. OF-CONFIG 1.2 must support an OpenFlow Capable Switch being configured by multiple
OpenFlow Configuration Points.

2. OF-CONFIG 1.2 must support an OpenFlow Configuration Point managing multiple OpenFlow
Capable Switches.

3. OF-CONFIG 1.2 must support an OpenFlow Logical Switch being controlled by multiple
OpenFlow Controllers.

4. OF-CONFIG 1.2 must support configuring ports and queues of an OpenFlow Capable Switch that
have been assigned to an OpenFlow Logical Switch.

5. OF-CONFIG 1.2 must support discovery of capabilities of an OpenFlow Logical Switch.

6. OF-CONFIG 1.2 must support configuration of tunnels such as IP-in-GRE, NVGRE and VxLan that
are represented as logical ports of an OpenFlow Logical Switch.

6.4 Requirements for the Switch Management Protocol

OF-CONFIG 1.2 defines a communication standard between an OpenFlow switch and an OpenFlow
Configuration Point. It consists of a network management protocol specified in Section 7 and a data
model defined in Section 8. This subsection specifies requirements for the network management
protocol. Note that these requirements are a superset of the requirements that may be needed for the
limited scope of configuration specified in this specifications. The intent for the below requirements is to
future proof the protocol choice so that we are able to address the future scenarios without having to
modify the protocol choice itself. The protocol must comply with the following requirements:

14

Open Networking Foundation OF-CONFIG 1.2

10.

11.

12.

13.

14.

15.

16.

17.

The protocol must be secure providing integrity, privacy, and authentication. Authentication of
both ends, switch and configuration point, must be supported.

The protocol must support reliable transport of configuration requests and replies.

The protocol must support connection setup by the configuration point.

The protocol should support connection setup by the switch.

The protocol must be able to carry partial switch configurations.

The protocol must be able to carry bulk switch configurations.

The protocol must support the configuration point setting configuration data at the switch

The protocol must support the configuration point retrieving configuration data from the switch.

The protocol should support the configuration point retrieving status information from the
switch.

The protocol must support creation, modification and deletion of configuration information at
the switch.

The protocol must support reporting on the result of a successful configuration request.

The protocol must support reporting error codes for partially or completely failed configuration
requests.

The protocol should support sending configuration requests independent of the completion of
previous requests.

The protocol should support transaction capabilities including rollback per operation.

The protocol must provide means for asynchronous notifications from the switch to the
configuration point. An example may be, even though this scenario is out of scope for OF-
CONFIG 1.2, is if an administrator changes a configuration out of band, the switch may need to
provide an appropriate notification to the OFCP.

The protocol should be extensible.

The protocol should support reporting its capabilities.

7 NETCONF as the Transport Protocol

The OF-CONFIG1.2 protocol provides a standard way to modify basic OpenFlow configuration for the
operation of an OpenFlow logical switch within the context of an OpenFlow Capable Switch. At the same
time, it provides vendors the ability to extend and innovate by providing new and improved
configuration capabilities. To achieve these goals, OF-CONFIG 1.2 requires that devices supporting OF-
CONFIG MUST implement the NETCONF protocol [4] as their transport protocol. This in turn implies as
specified by the NETCONF specification that OpenFlow Capable Switches supporting OF-CONFIG must

15

Open Networking Foundation OF-CONFIG 1.2

implement SSH as a transport protocol. In addition, the OpenFlow Capable Switches implementing OF-
CONFIG protocol may implement additional transports such as Web Services-Management or something
else. Future versions of OF-CONFIG may specify binding to these additional transports.

NETCONF is a stable protocol that has been standardized for several years now. It is widely available on
various platforms and achieves the needs for OF-CONFIG. NETCONF defines a set of operations on top of
a messaging layer (RPC). The diagram below shows the various layers of the NETCONF protocol.

Layer Example
Content <capable-switch>...</capable-switch>
Operations <get-config>,<set-config>,<notification>
RPC <rpc>,<rpc-reply>
UIElnefaelis SSH. TLS, BEEP, SOAP
Protocol

Figure 36 NETCONF Layers and Examples

The OpenFlow capable switches MUST support the schema as defined in this specification as the content
layer in the above diagram. The schema currently covers basic configuration elements and will be
extended in the next versions of this document.

The NETCONF protocol meets the OF0O CONFIG 1.2 requirements for communication between an
OpenFlow Configuration Point and an OpenFlow switch as listed in Section 6.4. In addition, if future
needs of OF-CONFIG are not met by the NETCONF protocol, NETCONF is extensible which will allow OF-
CONFIG to extend NETCONF for its purpose.

1 It supports TLS as communication transport protocol (directly or with SOAP or BEEP in
between) that can be used for providing integrity, privacy, and mutual authentication.

2 All specified transport mappings for NETCONF use TLS or TCP as underlying transport
protocol and thus provide reliable transport.

3 The common way to establish a connection with NETCONF is from the Configuration Point
(configuration point) to the managed device (switch).

4 The NETCONTF standards support reversed configuration setup only if BEEP is used as
transport protocol.

16

Open Networking Foundation OF-CONFIG 1.2

5 It supports partial switch configuration to the most fine-grain level.

6 It supports full switch configuration with a single operation.

7 It supports setting of configuration data.

8 It supports the retrieval of configuration data.

9 It supports the retrieval of (non-configuration) status data.

10 It supports creation, modification and deletion of configuration information.
11 It supports returning success codes after completing a configuration operation.

12 It supports support reporting error codes for partially or completely failed configuration
requests.

13 It supports sending configuration requests independent of the completion of previous
requests. Requests may be queued or processed concurrently at a switch. Each request has
a request ID. Success or failure indications can be sent independently of other requests
individually for each request ID.

14 It supports transaction capabilities including rollback per operation.

15 With its extension defined in RFC 5277 it supports asynchronous notifications from the
managed device (switch) to the Configuration Point (configuration point).

16 It is extensible. New operations can be added and its support can be checked by capability
retrieval.

17 It supports reporting its capabilities.

8 Data Model

This section specifies the data model for OF-CONFIG 1.2. Configurations of an OpenFlow Capable Switch
or for portions of it are encoded in XML. The data model is structured into classes and attributes of
classes. Each class is described in a separate sub-section by

1. a UML diagram giving an overview of the class,
2. an example for XML code encoding an instance of the class

The full XML schema is provided as a separate companion file. Normative for OF-CONFIG 1.2 is the XML
schema and the normative constraints in the descriptions of the individual elements.

One of the design goals of the model is efficient and clear encoding of switch configurations in XML.
Human readability is a strong feature of XML. But since the XML schema will mainly be created and
parsed by the protocol entity, the ease of encoding and parsing was preferred over readability. This
implies that in case of a trade-off between cleanness and simplicity of the XML-based configuration and

17

Open Networking Foundation OF-CONFIG 1.2

simplicity of the XML schema, usually cleanness and simplicity of the XML-based configuration has been
preferred.

8.1 YANG Module

OF-CONFIG 1.2 has a companion YANG module, also distributed as a separate file to aid in
implementation of the OF-CONFIG data model. It incorporates the XML schema specifications as well as
the normative constraints though is not normative for this specification. The YANG module conforms to
the normative constraints given in XML schema of 2013 and the additional explanations in this section.
Most of the constraints that are given in the description of the XML schema are automatically enforced
in the YANG module by syntax elements already built into the YANG language. Implementers that
already use the NETCONF tools could profit by using the YANG module to reduce implementation time.
Nevertheless, they need to ensure that all normative constraints are obeyed — including those that are
not expressible by the YANG syntax.

8.2 Core Data Model

The following UML diagram describes the top-level classes of the data model.

OpenFlow
Configuration gzﬁ:"‘:)ll?ewr
Point
* *
Configures Controls
OpenFlow [@—Instantiates OpenFlow o 1 Lo(g)?;rl‘Fsl\Z?t,ch
Capable Switch P Logical Switch Capabilities
{the set of used
Resources
| _ _ isasubsetoftne _ _ |
contained Resources Uses
of a Capable
Switch instance}
Contains *
OpenFlow
*i Resource
Type
Parameterized- . OpenFlow OpenFlow External Owned
ndm available-ndm Port Queue Certificate Certificate Flow Table

Figure 4: UML Class Diagram for OF-CONFIG Data Model

The core of the model is an OpenFlow Capable Switch that is configured by OpenFlow Configuration
Points.

18

Open Networking Foundation OF-CONFIG 1.2

The switch contains a set of resources of different types. For OF-CONFIG 1.2, several types of resources
are included in the model: OpenFlow Ports, OpenFlow Queues, External Certificate, Owned Certificate
and Flow Table. More resource types may be added in future revisions of OF-CONFIG. OpenFlow
resources can be made available for use to OpenFlow Logical Switches.

Instances of OpenFlow logical switches are contained within the OpenFlow Capable Switch. A set of
OpenFlow Controllers is assigned to each OpenFlow logical switch.

The data model contains several identifiers, most of them encoded as an XML element <id>. Currently
these IDs are defined as strings with required uniqueness in a certain context. Beyond uniqueness
requirements, no further guidance is given on how to build these strings. This may be changed in the
future. Particularly, the use of Universal Resource Names (URNSs) is envisioned. This requires developing
a naming scheme for URNs in OF-CONFIG and registering a URN namespace for the ONF. It is expected
that recommendations for URN-based identifiers will be introduced by a future version of OF-CONFIG.
Since URNs are represented as strings, such recommendations can be made compatible with identifiers
in OF-CONFIG 1.2.

The UML models in this document are intended to represent high-level structure of the data model and
may not reflect all details of each attribute. The full schema reference is in the companion YANG
module and XML schema files.

8.3 OpenFlow Capable Switch

The OpenFlow Capable Switch serves as the root element for an OpenFlow configuration. It has
relationships to

* OpenFlow Configuration Points that manage and particularly configure the OpenFlow Capable
Switch,

* OpenFlow logical switches that are contained and instantiated within the OpenFlow Capable
Switch,

* OpenFlow Resources contained in the OpenFlow Capable Switch that may be used by OpenFlow
Logical Switches.

19

Open Networking Foundation OF-CONFIG 1.2

8.3.1 UML Diagram

OpenFlow Capable Switch

id: OFConfiglD
config-version: string

* * *
OpgnHow OpenFlow OpenFlow
Configuration : .
Point Resource Logical Switch

Figure 5: Data Model Diagram for OpenFlow Capable Switch

8.3.2 XML Example

<capable-switch>
<id>CapableSwitchO0</id>
<configuration-points>

</configuration-points>
<resources>

</resources>
<logical-switches>

</logical-switches>
</capable-switch>

8.4 OpenFlow Configuration Point

The Configuration Point is an entity that manages the switch using the OF-CONFIG protocol. Attributes
of an OpenFlow Configuration Point allow the OpenFlow Capable Switches to identify a Configuration
Point and specify which protocol is used for communication between Configuration Point and OpenFlow
Capable Switch. The OpenFlow Capable Switch stores a list of Configuration Points that manage it or
have managed it. An OpenFlow Configuration Point is to an OpenFlow Capable Switch what an
OpenFlow Controller is to an OpenFlow Logical switch.

Instances of the Configuration Point class are used by switches to connect to a configuration point.
Currently the only transport mapping that supports a connection set-up initiated by the switch to be
configured is the mapping to the BEEP protocol (5). Other NETCONF transport mappings (6,7,8) may be

20

Open Networking Foundation OF-CONFIG 1.2

extended in the future to also support connection set-up in this direction. Nevertheless SSH is used as a
default connection protocol because connection initiation by the switch is optional.

8.4.1 UML Diagram

OpenFlow Configuration
Point

id: OFConfigIlD
uri:: inet:uri
protocol:

{ssh,

soap,

tls,
beep}

Figure 6: Data Model Diagram for an OpenFlow Configuration Point

8.4.2 XML Example

<configuration-point>
<id>ConfigurationPointl</id>
<uri>urilO</uri>
<protocol>ssh</protocol>

<configuration-point>

8.5 OpenFlow Logical Switch

The OpenFlow Logical Switch represents an instance of a logical switch that is available or can be made
available on an OpenFlow Capable Switch. An OpenFlow Logical switch is a logical context which
behaves as the datapath as described in the OpenFlow specification. The OpenFlow Logical Switch is
connected to one or more OpenFlow Controllers via the OpenFlow protocol. It uses resources of the
OpenFlow Capable Switch for realizing the capabilities offered via the OpenFlow protocol. The
OpenFlow Logical Switch has relationships to

* OpenFlow Controllers that control the OpenFlow Capable Switch

* OpenFlow Resources that are available from the OpenFlow Capable Switch

21

Open Networking Foundation

8.5.1 UML Diagram

—

OpenFlow Logical Switch

id:OFconfigIlD

datapath-id: OFConfigID

enabled: boolean
check-controller-certificate: boolean
lost-connection-behavior: {

failSecureMode,
failStandaloneMode

}

I

* * *
OpenFlow . OpenFlow
Controllers Capabilities Resources

Figure 7: Data Model Diagram for an OpenFlow Logical Switch

8.5.2 XML Example

OF-CONFIG 1.2

<logical-switch>
<id>LogicalSwitch5</id>
<capabilities>

<capabilities>

<datapath-id>datapath-id0</datapath-id>

<enabled>true</enabled>

<check-controller-certificate>false</check-controller-certificate>
<lost-connection-behavior>failSecureMode</lost-connection-behavior>

<controllers>

</controllers>

<resources>
<port>port2</port>
<port>port3</port>
<queue>queuel</queue>
<queue>queuel</queue>

<certificate>ownedCertificated4</certificate>
<flow-table>1</flow-table>
<flow-table>2</flow-table>

22

Open Networking Foundation

OF-CONFIG 1.2

<flow-table>255</flow-table>

</resources>
</logical-switch>

8.6 Logical Switch Capabilities

8.6.1 UML Diagram

Logical Switch Capabilities

Reserved Port Type

Group Type

Group Capabilities

max-buffered-packets: xs:integer
max-tables: xs:integer

max-ports: xs:integer

flow-statistics: xs:boolean
table-statistics: xs:boolean
port-statistics: xs:boolean
group-statistics: xs:boolean
queue-statistics: xs:boolean
reassemble-ip-fragments: xs:boolean

block-looping-ports: xs:boolean

Action Type

Instruction Type

Figure 7: Data Model Diagram for an OpenFlow Logical Switch Capabilities

8.6.2 XML Example

<capabilities>

<max-buffered-packets>512</max-buffered-packets>

<max-tables>1024</max-tables>
<max-ports>2048</max-ports>

<flow-statistics>true</flow-statistics>
<table-statistics>false</table-statistics>
<port-statistics>true</port-statistics>
<group-statistics>false</group-statistics>
<queue-statistics>true</queue-statistics>

23

Open Networking Foundation OF-CONFIG 1.2

<reassemble-ip-fragments>false</reassemble-ip-fragments>
<block-looping-ports>false</block-looping-ports>
<reserved-port-types>
<type>all</type>
</reserved-port-types>
<group-types>
<type>all</type>
</group-types>
<group-capabilities>
<capability>select-weight</capability>
</group-capabilities>
<action-types>
<type>output</type>
</action-types>
<instruction-types>
<type>apply-actions</type>
<type>write-actions</type>
</instruction-types>
</capabilities>

8.7 OpenFlow Controller

The OpenFlow Controller class represents an entity that acts as OpenFlow Controller of an OpenFlow
Logical Switch. Attributes of the class indicate the role of the controller and parameters of the OpenFlow
connection to the controller. The port attribute should have a default value of 6653, the IANA-assigned
port for OpenFlow. Note that normally, the OpenFlow switch initiates a connection to the controller
and the local port attribute indicates the local ephemeral port that should be used at the switch. In the
optional case where the controller initiates the connection, the local port attribute indicates the
listening port on the switch (which should also be the IANA assigned port).

24

Open Networking Foundation

8.7.1 UML Diagram

OpenFlow Controller

id: OF configID
roe:
{master, OpenFlow Controller OpenFlow

slave, State

equal}

connection-state:
ip-address: inet:ip-prefix {up,down}
port: inet:port-number current-version: {1.3,1.2,1.1,1.0}
local-ip-address: inet:ip-address 1
>

local-port: inet:port-number
protocol:
{tcp, tIs}

*

OpenFlow Supported Versions

version: {1.3, 1.2, 1.1, 1.0}

Figure 8: Data Model Diagram for an OpenFlow Controller

8.7.2 XML Example

OF-CONFIG 1.2

<controller>
<id>Controller3</id>
<role>master</role>
<ip-address>192.168.2.1/26</ip-address>
<port>6633</port>
<local-ip-address>192.168.2.129</local-ip-address>
<local-port>32768</local-port>
<protocol>tcp</protocol>
<state>
<connection-state>up</connection-state>
<current-version>1.2</current-version>
<supported-versions>
<version>1.3</version>
<version>1.0</version>
</supported-versions>
</state>

25

Open Networking Foundation OF-CONFIG 1.2

|</controller> |

8.8 OpenFlow Resource

OpenFlow Resource is a superclass of OpenFlow Port, OpenFlow Queue, Owned Certificate and External
Certificate. The superclass contains the identifier attribute that is inherited by all subclasses in addition
to their individual identifiers.

8.8.1 UML Diagram

OpenFlow Resource

resource-id: OFConfiglD

i

Type
| | | | |
OpenFlow OpenFlow Owned External Flow Tabl
Port Queue Certificate Certificate ow Table

Figure 9: Data Model Diagram for an OpenFlow Resource

8.8.2 XML Example

The superclass is not instantiated.

8.9 OpenFlow Port

The OpenFlow Port is an instance of an OpenFlow resource. It may represent a physical port or a logical
port. A logical port represents a tunnel endpoint as described in the OpenFlow protocol specification.

An OpenFlow Port contains a port configuration object and a port state object. A physical port contains a
list of port feature objects. While there can’t be more than one instance of the Port Configuration and
the Port State, there may be multiple Port Features. In the case where a port represents a tunnel
endpoint, then the port does not contain Port Feature objects, but a OpenFlow Tunnel object.

26

Open Networking Foundation

8.9.1 UML Diagram

OpenFlow
Port

OpenFlow Port

Current Features

number: xs:unsignedint

OF-CONFIG 1.2

OpenFlow Port
Configuration

OpenFlow
Port
Feature

name: xs:string

current-rate: xs:unsignedLong

admin-state: {up, down}

no-receive: boolean
no-forward: boolean
no-packet-in: boolean

OpenFlow

Port
Advertised Features

OpenFlow
Port

max-rate: xs:unsignedLong

Supported Features

OpenFlow
Port

Advertised Peer
Features

1

OpenFlow Tunnel

local-endpoint-address

OpenFlow Port
State

live: boolean

oper-state:{up,down}

blocked: boolean

remote-endpoint-address

Type
Il

|

IP in GRE Tunnel

VXLAN Tunnel

NVGRE Tunnel

checksum-present: boolean
key-present: boolean
key: unsignedint

sequence-number-present:
boolean

vni-valid: boolean
vni: unsignedint

vni-multicast-group:
inet:ip-address

tni: unsignedint
tni-user: unsignedint

tni-multicast-group:
inet:ip-address

udp-source-port: unsignedint
udp-dest-port: unsignedint

udp-checksum: boolean

Figure 10: Data Model Diagram for an OpenFlow Port

8.9.2 XML Examples

<!-- Example for a physical port -->

<port>

<resource-id>Port214748364</resource-id>
<number>214748364</number>
<name>name(0</name>

<current-rate>10000</current-rate>
<max-rate>10000</max-rate>

<configuration>

<admin-state>up</admin-state>

<no-receive>false</no-receive>
<no-forward>false</no-forward>

27

Open Networking Foundation OF-CONFIG 1.2

<no-packet-in>false</no-packet-in>
</configuration>
<state>
<oper-state>up</oper-state>
<blocked>false</blocked>
<live>false</live>
</state>
<features>
<current>

</current>
<advertised>

</advertised>
<supported>

</supported>
<advertised-peer>

</advertised-peer>
</features>
</port>

<!-- Example for a logical port representing a VxXLAN tunnel -->
<port>
<resource-id>LogicalPortl4</resource-id>
<number>14</number>
<name>logicalPort1l4VxLAN</name>
<max-rate>10000</max-rate>
<configuration>
<admin-state>up</admin-state>
<no-receive>false</no-receive>
<no-forward>false</no-forward>
<no-packet-in>false</no-packet-in>
</configuration>
<state>
<oper-state>up</oper-state>
<blocked>false</blocked>
<live>true</live>
</state>
<vxlan-tunnel>
<local-endpoint-ipv4-address>
192.0.2.9
</local-endpoint-ipv4-address>
<remote-endpoint-ipv4-address>
192.0.2.112
</remote-endpoint-ipv4-address>
<vni-valid>true</vni-valid>
<vni>15581985</vni>
<udp-source-port>3804</udp-source-port>
<udp-dest-port>4789</udp-dest-port>
<udp-checksum>false</udp-checksum>
</vxlan-tunnel>
</port>

<!-- Example for a logical port representing a NVGRE tunnel -->

28

Open Networking Foundation OF-CONFIG 1.2

<port>

<resource-id>LogicalPortl7</resource-id>

<number>17</number>

<name>logicalPortl7NVGRE</name>

<max-rate>1000</max-rate>

<configuration>
<admin-state>up</admin-state>
<no-receive>false</no-receive>
<no-forward>false</no-forward>
<no-packet-in>false</no-packet-in>

</configuration>

<state>
<oper-state>up</oper-state>
<blocked>false</blocked>
<live>true</live>

</state>

<nvgre-tunnel>
<local-endpoint-ipv4-address>

192.0.2.7
</local-endpoint-ipv4-address>
<remote-endpoint-ipv4-address>
192.0.2.97
</remote-endpoint-ipv4-address>
<vsid>15581985</vsid>
<flow-id>335</flow-id>
</nvgre-tunnel>
</port>

8.10 OpenFlow Port Feature

OpenFlow Port Features include Port Rate, Port Medium, Port Pause, and Port Auto-Negotiate.The
normative semantics of these features are described in the OpenFlow protocol specification.

29

Open Networking Foundation OF-CONFIG 1.2

8.10.1 UML Diagram

OpenFlow Port
Feature

/\

OpenFlow Port Rate OpenFlow Port Auto-Negotiate

value: .
{10 Mb value: {enabled, disabled}
100 Mb,
1 Gb,
10 Gb,
‘1180%bt’)b OpenFlow Port Medium
1Tb,

other} value: {copper, fiber}
value-other: xs:integer

OpenFlow Port Duplex OpenFlow Port Pause

value: {half, full} value: {symmetric, asymmetric}

Figure 81: Data Model Diagram for an OpenFlow Port Feature

8.10.2 XML Example

<rate>10Mb-FD</rate>
<auto-negotiate>enabled</auto-negotiate>
<medium>copper</medium>
<pause>symmetric</pause>

8.11 OpenFlow Queue

The OpenFlow Queue is an instance of an OpenFlow resource. It contains list of queue properties. The
OpenFlow Queue is a logical context which represents a queue as described in the OpenFlow protocol
specification.

30

Open Networking Foundation

8.11.1

UML Diagram

OpenFlow Queue

id: OF ConfiglD

port: OF ConfigID

OpenFlow

0—* Queue

Property

OpenFlow Queue
Min-Rate

value: integer
{Percentage 0.0 to 100.0
to 1/10 of a percent}

OpenFlow Queue
Max-Rate

value: integer
{Percentage 0.0 to 100.0
to 1/10 of a percent}

OpenFlow Queue
Experimenter

experimenteriD: integer
data: uint8

Figure 12: Data Model Diagram for an OpenFlow Queue

8.11.2

XML Example

OF-CONFIG 1.2

<gueue>

<resource-id>Queue2</resource-id>

<id>2</id>

<port>4</port>

<properties>
<min-rate>10</min-rate>
<max-rate>500</max-rate>

</properties>

</queue>

8.12 External Certificate

Instances of an External Certificate contain a certificate that can be used by an OpenFlow Logical Switch
for authenticating a controller when a TLS connection is established.

31

Open Networking Foundation OF-CONFIG 1.2

8.12.1 UML Diagram

External Certificate

certificate: X509CertificateType

Figure 93: Data Model Diagram for a Certificate

8.12.2 XML Example

<external-certificate>
<resource-id>ownedCertificate3</resource-id>
<certificate>AEF134F56EDB667DFA4320AEF134F56EDB667DFA4320AEF134F
560EDB667DFA4320AEF134F56EDB667DFA4320AEF134F56EDB667DFA4320

AEF134F56EDB667DFA4320AEF134F56EDB667DFA4320AEF134F56EDB66G7
DFA4320</certificate>
</external-certificate>

8.13 Owned Certificate

Instances of an Owned Certificate contain a certificate and a private key. It can be used by an OpenFlow
Logical Switch for authenticating itself to a controller when a TLS connection is established.

32

Open Networking Foundation OF-CONFIG 1.2

8.13.1 UML Diagram

Owned Certificate

certificate: X509CertificateType

1

KeyValueType
private-key

DSAKeyValue RSAKeyValue

P: base64Binary

Q: base64Binary

J: base64Binary

G: base64Binary

Y: base64Binary

Seed: base64Binary
PgenCounter: base64Binary

Modulus: base64Binary
Exponent: base64Binary

Figure 14: Data Model Diagram for Owned Certificate

8.13.2 XML Example

<owned-certificate>
<resource-id>ownedCertificate3</resource-id>
<certificate>AEF134F56EDB667DFA4320AEF134F56EDB667DFA4320AEF134F
560EDB667DFA4320AEF134F56EDB667DFA4320AEF134F56EDB667DFA4320

AEF134F56EDB667DFA4320AEF134F56EDB667DFA4320AEF134F56EDB667
DFA4320</certificate>
<private-key>
<ds:RSAKeyValue>
<ds:Modulus>CE45BAF6730F28CDB53534bC4323A333AAF555444DEED233232

</ds:Modulus>
<ds:Exponent>DFA4320AEF134F56EDB66786230900DFA3C6F4443234901234. ..
</ds:Exponent>
</private-key>
</owned-certificate>

33

Open Networking Foundation OF-CONFIG 1.2

8.14 OpenFlow Flow Table

The OpenFlow Flow Table is an instance of an OpenFlow resource. It contains list of flow table
properties. The OpenFlow flow table is a logical context which represents a flow table as described in
the OpenFlow protocol specification.

8.14.1 UML Diagram

Next Flow *
Tables
Next Flow
Tables Miss
Flow Table | *
I]
Flow Tabie nstruction
Instruction
Miss Flow Table | *
Match
Flow Table Flow Table
Write Action i i
Miss Flow Table * max-entries: xs:integer
Write Action metadata-match: xs:hexBinary
Flow Table metadata-write: xs:hexBinary
Apply Action @ length: unit8
Miss Flow Table * table_id: unit8
Apply Action config: uint8
Flow Table name: string
Write
Setfields Miss FlowTable | %
Write
Flow Table Setfields
Apply
Setfields Miss Flow Table | %
Apply
Setfields
Flow Table
Expenrnl.menter Flow Table *
s Wildcards
Flow Table

Experimenter

Figure 15: Data Model Diagram for Flow Table

8.14.2 XML Example

<flow-table>

<resource-id>flowtablel</resource-id>

<max-entries>255</max-entries>

<next-tables>
<table-id>100</table-id>
<table-id>101</table-id>

</next-tables>

<instructions>
<type>apply-actions</type>
<type>clear-actions</type>

</instructions>

<matches>
<type>input-port</type>

34

Open Networking Foundation OF-CONFIG 1.2

<type>ethernet-dest</type>
</matches>
<write-actions>
<type>output</type>
<type>pop-mpls</type>
</write-actions>
<apply-actions>
<type>output</type>
<type>set-queue</type>
</apply-actions>
<write-setfields>
<type>ethernet-dest</type>
</write-setfields>
<apply-setfields>
<type>ethernet-dest</type>
</apply-setfields>
<wildcards>
<type> udp-dest</type>
</wildcards>
<metadata-match>30</metadata-match>
</flow-table>

8.15 NDM

A Negotiable Datapath Model (NDM) is an abstract switch model that describes specific switch
forwarding behaviors controllable via the OpenFlow-Switch protocol. When using the NDM framework
(an optional enhancement to OpenFlow), an OFCP and a capable switch agree on an NDM to be
associated with a logical switch prior to sending control messages, such as flowmods, to the logical
switch. Note that Flow Table features described in Section 8.14 are generally not used with NDMs.
Implementations are expected to extend the base XML schema with a set of NDM-specific data
definitions (e.g. L2+L3). The details of the specific NDMs are outside the scope of this document. Refer
to Appendix B in [5] for details.

35

Open Networking Foundation OF-CONFIG 1.2

8.15.1 UML Diagram

available-ndm

name: xs:string
type: enum {ttp, fpmod}
version: xs:string

Parametrized-ndm

name: xs:string

8.15.2 XML Example

This XML Example comes from a specific NDM supporting L2+L3 features as described in [XXX: reference
to FAWG document.

<capable-switch xmlns="urn:onf:oflll:config:yang"
xmlns:ndm="urn:opennetworking.org:yang:ndm"
xmlns:1213="urn:opennetworking.org:yang:ndm:1213">
<logical-switches>
<switch>
<id>LogicalSwitch5</id>
<resources>
<ndm:ndm-implementation>
<1213:1213>
<1213:ingress-vlan-table-size>128</1213:ingress-vlan-table-

size>
<1213:router-mac-table-size>128</1213:router-mac-table-size>
<1213:13-table-size>128</1213:13-table-size>
<1213:12-table-size>128</1213:12-table-size>
<1213:egress-vlian-table-size>128</1213:egress-vlian-table-size>
</1213:1213>
</ndm:ndm-implementation>
</resources>
</switch>

</logical-switches>
</capable-switch>

36

Open Networking Foundation OF-CONFIG 1.2

9 Binding to NETCONF

Below we specify the requirements and give examples of how the schema specified in section 8 and
2013 is bound to the NETCONF transport protocol.

9.1 Requirements

When implementing the XML schema defined in Section 8 and 2013 the following schemas are required
in addition:

* jetf-yang-types.xsd found at http://www.yang-central.org/modules/xsd/ietf-yang-types.xsd
* jetf-inet-types.xsd found at http://www.cablelabs.com/specifications/XSD/ietf-inet-types.xsd

Those XML schemas define some basic datatypes that are used in the XML schema defined in this
document.

A similar set is required when using the YANG model of Appendix B. There you need:

* jetf-yang-types.yang found at http://www.yang-central.org/modules/yang/ietf-yang-types.yang
* jetf-inet-types.yang found at http://www.yang-central.org/modules/yang/ietf-inet-types.yang

9.2 How the Data Model is Bound to NETCONF

NETCONF uses the XML encoding format for requests and responses. More specifically, it uses RPC-
based communication model. It uses the <rpc> and <rpc-reply> elements as frames of NETCONF
requests and responses. The content elements inside of <rpc> element must conform to the OpenFlow
Configuraton XML schemas defined in this specification.

All NETCONF base protocol operations can be used to retrieve, configure, copy and delete OpenFlow
Configuration data stores. These operations are defined in RFC6241. The commonly used operations
are:

* edit-config

¢ get-config

* copy-config

¢ delete-config

9.2.1 edit-config

The <edit-config> operation loads all or part of a specified configuration to the specified target
configuration. If the target configuration does not exist, it will be created. The “operation” attribute of
elements in the <config> subtree specifies the type of operations to be performed on the element.

NETCONTF supports “create”, “replace”, “merge” and “delete”. The definition of these operations can be
found RFC6241.

37

Open Networking Foundation OF-CONFIG 1.2

XML Example: Create a Capable-Switch Configuration

This XML example shows an edit-config operation to create a capable-switch configuration.

<?xmlversion="1.0" encoding="UTF-8"?>
<rpc message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<target>
<candidate/>
</target>
<default-operation>merge</default-operation>
<test-option>set</test-option>
<config>
<capable-switch
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
nc:operation="create"
xmlns="urn:onf:o0fl2:config:yang">
<id>capable-switch-0</id>
<logical-switches>
<switch>
<id>logic-switch-1</id>
<datapath-id>11:11:11:11:11:11:11:11</datapath-id>
<enabled>true</enabled>
<controllers>
<controller>
<id>controller-0</id>
<role>master</role>
<ip-address>192.168.2.1</ip-address>
<port>6633</port>
<protocol>tcp</protocol>
</controller>
</controllers>
</switch>
</logical-switches>
</capable-switch>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

XML Example: Replace the ip-address Element of Controller

This XML example shows an edit-config operation to replace the ip-address element of controller.

<?xml version="1.0" encoding="UTF-8"?2>
<rpc message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

38

Open Networking Foundation OF-CONFIG 1.2

<target>
<candidate/>
</target>
<default-operation>merge</default-operation>
<config>
<capable-switch xmlns="urn:onf:ofl2:config:yang">
<logical-switches>
<switch>
<id>logic-switch-1</id>
<controllers>
<controller>
<id>controller-0</id>
<ip-address operation="replace">10.0.0.10</ip-address>
</controller>
</controllers>
</switch>
</logical-switches>
</capable-switch>
</config>
</edit-config>
</rpc>

<rpc-reply message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>

</rpc-reply>

RPC request must contain the key leave(s)(id element in this case) to uniquely identify the element
being operated in the NETCONF datastore scope.

9.2.2 get-config

This operation is used to retrieve all or part of a specified configuration. The filter element identifies the
portions of the OpenFlow configuration to retrieve. If this element is unspecified, the entire
configuration is returned.

When issuing a NETCONF get request all elements in the requested sub-tree must be returned in the
result. Those elements that can be modified by a NETCONF edit-config request or retrieved by a
NETCONTF get-config request are identified in the normative constraints which can be found in the
description of each individual element.

XML Example: get-config

<?xml version="1.0" encoding="UTF-8"?2>
<rpc message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<source>
<running/>
</source>
<filter type="xpath" select="/capable-switch"/>
</get-config>
</rpc>

39

Open Networking Foundation OF-CONFIG 1.2

<rpc-reply message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<capable-switch xmlns="urn:onf:o0fl2:config:yang">
<id>capable-switch-0</id>
<logical-switches>
<switch>
<id>logic-switch-1</id>
<datapath-id>11:11:11:11:11:11:11:11</datapath-id>
<enabled>true</enabled>
<controllers>
<controller>
<id>controller-0</id>
<role>master</role>
<ip-address>192.168.2.1</ip-address>
<port>6633</port>
<protocol>tcp</protocol>
</controller>
</controllers>
</switch>
</logical-switches>
</capable-switch>
</data>
</rpc-reply>

9.2.3 copy-config

This operation creates or replaces an entire configuration datastore with the contents of another
complete configuration datastore. If the target datastore exists, it is overwritten. Otherwise, a new one
is created, if allowed.

XML Example: copy-config

<?xml version="1.0" encoding="UTF-8"?2>
<rpc message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<running/>
</target>
<source>
<url>https://mydomain.com/of-config/new-config.xml</url>
</source>
</copy-config>
</rpc>

<rpc-reply message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

40

Open Networking Foundation OF-CONFIG 1.2

9.2.4 delete-config

This operation deletes a configuration datastore. The <running>configuration datastore cannot be
deleted.

XML Example: delete-config

<?xml version="1.0" encoding="UTF-8"?2>
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<delete-config>
<target>
<startup/>
</target>
</delete-config>
</rpc>

<rpc-reply message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

9.3 RPC error

OpenFlow Configuration uses NETCONF <rpc-error> element(s) defined in RFC6241 to report
operation failures. The <rpc-error> element(s) are sent in <rpc-reply> messages if an error occurs
during the processing of an <rpc> request. The <rpc-reply> MAY contain multiple <rpc-error>
elements. The <rpc-error>element includes the following information:

* error-type: Defines the conceptual layer of the error occurred.
* error-tag: contains a string to identifying the error condition.
* error-severity: contains a string to identifying the error severity.

* error-app-tag: contains a string to identifying the data-model-specific or implementation-
specific error condition.

* error-path: contains the absolute XPath expression identifying the element path associated to
the specific error being reported.

* error-message: contains error description suitable for human display
* error-info: contains data-model-specific error content

Detailed <rpc-error> definitions can be found in RFC 6241. Specific implementation may define
implementation-specific error information and messages inside of error-info as sub-elements.

An example of <rpc-error> element in <rpc-reply> message:

<?xml version="1.0" encoding="UTF-8"?2>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

41

Open Networking Foundation OF-CONFIG 1.2

<rpc-error>
<error-type>application</error-type>
<error-tag> missing-element</error-tag>
<error-severity>error</error-severity>
<error-message xml:lang="en">
expected key leaf in list
</error-message>
<error-info>
<bad-element>id</bad-element>
<error-number>383</error-number>
</error-info>
</rpc-error>
</rpc-reply>

42

Open Networking Foundation OF-CONFIG 1.2

Appendix A References

1. OpenFlow Specification 1.3. Open Networking Foundation. 2011.

2. OpenFlow: enabling innovation in campus networks. McKeown, Nick, et al., et al. 2008, ACM
SIGCOMM Computer Communication Review, pp. 69-74.

3. Bradner, S. RFC 2119. /ETF. [Online] March 1997. http://www.ietf.org/rfc/rfc2119.txt.
4. Enns, et al., et al. RFC 6241. IETF. [Online] June 2011. http://tools.ietf.org/rfc/rfc6241.txt.

5. OpenFlow Negotiable Datapath Models DRAFT v.0.6, available upon request, Open Networking
Foundation, August 2013.

Appendix B Credits

Deepak Bansal, Stuart Bailey, Thomas Dietz, Carl Moberg, Juergen Quittek, Anantha Ramaiah, Anees
Shaikh

43

	disclaimer.pdf
	Introduction
	Common implementation mistakes
	Default behaviour on table-miss

	Clarification of ambiguous sections
	Port number 0
	No padding of error messages
	Matching packet with no VLAN header
	Ignoring fields in the match
	Generating flow removed messages

	Specification changes
	Source Port for Controller Generated Packet
	Malformed packets
	Controller connection failure behaviour
	Default TCP port

