
Logging and Monitoring in CORD

Zack Williams - zdw@opennetworking.org

Goals

Answers the operational question: What is the system doing?

• Collects statistics, actionable items, and other monitoring data

• Provides a historical view of the system to aid in diagnostics

and troubleshooting

• Lower the barrier to entry for extending the system, allowing

new and novel uses of data

Logging / Monitoring

• Fault Management

• Config - handled in XOS and via other APIs

• Accounting

• Performance

• Security

FCAPS

The Big Picture

Message bus, used for two purposes:
● Pass actionable messages between components

● Collect messages (logging + monitoring)

Why Kafka?

● Already used in VOLTHA and XOS

● Performs and scales well

● API bindings across multiple languages

Kafka

Topics: Namespaces that contain sets of events

Keys: Summarizable (last item retained on vacuum) per-topic
categories

Producers: Adds messages to a topic

Consumer: Reads messages from a topic

Offset: The location last read by a consumer in a specific topic,
allows multiple consumers of a topic to split load

Kafka Event Concepts

Events happen in XOS, ONOS, and VOLTHA

New ONU devices are turned on in VOLTHA causes ONOS to

creates an event on the onu.events topic.

K8s pod starts, XOS Kubernetes synchronizer creates an event on

the xos.kubernetes.pod-details topic, which the XOS ONOS

synchronizer uses to know if it needs to reload configuration into

ONOS if that pod is restarted.

Kafka use as an event bus in CORD

Logging

Provides answers to the 5 W's:

Who: The component that created the log message

What: Content of the message

Where: Gives the context in the codebase

When: A precise time the log message was created

Why: Determined from message + context

In CORD/SEBA, logs are put on *.log.* topic in Kafka

Logstash consumes from Kafka and adds to Elasticsearch, displayed
via Kibana web UI

Logging Pipeline

Logging Visualization

Logging but with "more data" added on, usually key/value pairs

Framework automatically adds a Who, Where, and When

● Timestamps, instance name, filename and line number of
logging call, etc.

What/Why are enhanced by extra fields, and can help with log
correlation

Structured Logging

Python Code:

self.logger.debug("MODEL_POLICY: updating subscriber",onu_device=subscriber.onu_device,
authentication_state=si.authentication_state, subscriber_status=subscriber.status)

Kafka Message:

{"relativeCreated":1014018.0199146271,"process":1,"@timestamp":"2018-12-06T15:53:58.003470Z","module":"model_
policy_att_workflow_driver_serviceinstance","funcName":"update_subscriber","threadId":140183227852544,"messag
e":"MODEL_POLICY: updating
subscriber","filename":"model_policy_att_workflow_driver_serviceinstance.py","levelno":10,"processName":"Main
Process","lineno":128,"subscriber_status":"enabled","onu_device":"BBSM0000010a","args":[],"authentication_sta
te":"APPROVED","exc_text":null,"name":"model_policy_att_workflow_driver_whitelistentry","threadName":"policy_
engine","msecs":3.4699440002441406,"pathname":"/opt/xos/synchronizers/att-workflow-driver/model_policies/mode
l_policy_att_workflow_driver_serviceinstance.py","exc_info":null,"levelname":"DEBUG"}

Kibana:

Structured Logging Flow

Think like a reader when you write the message

● Be precise and descriptive

● "Don't repeat yourself" also applies to messages

Don't capture security or human generated information

● Incorrect password attempt, security certificates

● Any user input that could be identifiable

● Anonymous metadata/statistics is OK

Guidelines for writing log messages

Too many log messages becomes an overwhelming, "needle in a

haystack" problem - log levels help with this.

ERROR or FATAL == user intervention required

● Exception logging is at ERROR level, so catch these if Exceptions

on transient issues, and log at WARNING

Use INFO or DEBUG (or TRACE, if available) for other messages

In production, usually only INFO level is captured.

Logging Levels

Monitoring Pipeline

Kafka Topic Exporter consumes from Kafka, adds to Prometheus
time-series database, displayed with Grafana

Designed with prometheus in mind - example from onos.kpis:

{"timestamp":"2018-12-06T20:07:28.733Z","ports":[{"portId":"1","pktRx":61,"pktTx":14503,"byte
sRx":4722,"bytesTx":2380335,"pktRxDrp":6,"pktTxDrp":0},{"portId":"2","pktRx":5198,"pktTx":103
74,"bytesRx":519026,"bytesTx":902538,"pktRxDrp":0,"pktTxDrp":0}],"deviceId":"of:0000000000000
001"}

{"timestamp":"2018-12-06T20:07:33.732Z","ports":[{"portId":"1","pktRx":61,"pktTx":14509,"byte
sRx":4722,"bytesTx":2381397,"pktRxDrp":6,"pktTxDrp":0},{"portId":"2","pktRx":5200,"pktTx":103
78,"bytesRx":519226,"bytesTx":902886,"pktRxDrp":0,"pktTxDrp":0}],"deviceId":"of:0000000000000
001"}

Monitoring Format

Monitoring Visualization

If latency or RTT is an issue, interact with Kafka bus within the pod

If data is needed outside the pod, consume from Kafka, format as
needed, and forward externally

● ves-agent is one example, specific to AT&T's and ONAP

If new/different information is needed, contribute publishers to
Kafka, then consume as above.

Extending Logging and Monitoring

Normalize fields in structured log messages across components

Better namespacing of topics by their producing component

● onu.events -> onos.events.onu

Additional publishers/consumers of Kafka bus

Future Work

Questions?

