

ONF’s History
The ONF has a lot of experience building SDN and NFV solutions

2008 2014 2016

Trellis
(in production
with a major

operator)

SEBA
(Service Provider

Field Trials)

2018

Google’s History

Jupiter
SDN Data Center

1.3 Pbps
100,000+ servers/site

B4
SDN WAN

 Inter-datacenter traffic
Growing faster than Internet traffic

Espresso
SDN Peering Edge / Metro
70 metro sites
25% of all Internet traffic

Cisco Global Internet Forecast:
 ~150 EB/month in 2018 (+ 24% from 2017)

Google runs SDN networks at scale

https://www.blog.google/topics/google-cloud/making-google-cloud-faster-more-available-and-cost-effective-extending-sdn-public-internet-espresso/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf

https://www.blog.google/topics/google-cloud/making-google-cloud-faster-more-available-and-cost-effective-extending-sdn-public-internet-espresso/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf

SDN Provides Many Benefits
● Fine-grained control enables support for more complex QoS

and load balancing policies
● Control plane optimizations difficult to achieve using

traditional networking
● Enhanced network visibility for troubleshooting,

monitoring, and auditing
● New features can be added by operators at software time

scales
● … and the list goes on

So, what’s the catch?

Challenges with Existing SDN
● Programmatic Network Interfaces are Inconsistent and Incomplete

○ OpenFlow provided no data plane pipeline specification; every vendor’s
pipeline is different

○ Every vendor provides their own proprietary models for configuration or
management

○ Differences in protocol implementations require custom handling in the control
plane

● Control planes are written and tested against specific hardware
○ Some control planes have worked around this by building their own

abstractions to handle these differences, but new abstractions are either least
common denominator (e.g. SAI) or underspecified (e.g. FlowObjectives)

○ Other control planes have exploited specific APIs are essentially locked in to
specific vendors, which slows innovation cycles

Aside: Future of OpenFlow
● OpenFlow 1.x is not going away (yet)

○ Many vendors have built OpenFlow implementations for their
hardware and software switches

○ Plan to continue to support OpenFlow in ONOS
○ Core abstractions work for both OpenFlow and P4 Runtime

● It will take some time before Stratum is generally available
○ Hopefully, there will be hardware and software support by 2019

● This work builds on and improves OpenFlow
○ Provides similar interaction model which should make transitioning

to Stratum-based solutions easy (ONOS is a proof-point for this)

Challenge: Programmable Devices
● Programmable forwarding chips are here

○ Control protocols are mostly fixed function
○ Extensibility is difficult or takes too long
○ Even “fixed-function” forwarding chips have some degree of programmability and may

add new features

● Need to define mutable contract between the hardware vendor and
network operator

○ Different operators can have different contracts
○ Operators need to work with vendors to determine limitations
○ Contract must be designed for programmability; APIs must be contract-independent
○ May be useful to have community consensus on reference contracts

● Operators can dynamically define pipeline and dataplane features to
enable new use cases and device behaviors/roles in the network

○ Experimentation should require minimal effort and rollout should be seamless

Challenge: Bringing SDN to production at scale
● Operators have hit limitations with existing protocols when

introducing them into their networks at scale
○ e.g. OpenFlow, NETCONF
○ Interfaces and services must evolve to meet operational needs

● SDN at scale brings new requirements
○ Frequent updates to all layers of the stack (software AND state)
○ Monitoring, visibility and automation for rollout and operations
○ Design time validation and testing to minimize risk to production

Challenge: Handling Migration
● Widespread, greenfield adoption of new technology is not feasible

○ Ops teams need to build experience and confidence
○ Business teams won’t allow infrastructure forklift from capex perspective

● Types of Migration
○ Fixed-function to programmable switching chips
○ Traditional networking to SDN
○ Introduction of new vendor equipment

● Need interfaces, models and operations to be consistent to allow
incremental adoption along these axes
○ Ideally, services and hardware can be introduced or migrated independently

Wanted
● New control interface with:

○ Abstraction for different types of switching chips
○ Well defined interfaces and behavior
○ Extensibility

● Common models for configuration and monitoring
● Common interfaces for operations

○ Testing, Debugging, Certificate Management, Software upgrade

● Common platform abstraction (e.g. OCP’s ONLP)
● Open source switch stack

Slide adapted from Google

Requirements for SDN
● Highly scalable
● Highly automated
● High performance interfaces
● Ability to directly drive design at all levels of the software

stack

Slide adapted from Google

Control Interface: P4Runtime

P4Runtime

Program

Entries for
Tables, Action Profiles, Meters, Counters, Packet Replication,
Parser Values, Registers, Digests, Externs

PSA Switch
Slide adapted from P4.org

Role of P4
● Provide clear pipeline definition using P4 tailored to role
● Useful for fixed-function/traditional ASICs as well as

programmable chips
● Enables portability

ASIC 1 ASIC 2

Logical

Physical

Control

Slide adapted from Google

P4 and P4Runtime are great, but ...

 Switch Chip Configuration
QoS Queues and Scheduling

Serialization / Deserialization
Port Channelization

Power supplies

Fan Speed

Port State and Mapping
LED Control

Monitor Sensors
e.g. temperature

Still Missing:
● Configuration
● Monitoring
● Operations

Software Deployment and
Upgrade

… and the list goes on.Management Network

OpenConfig, gNMI,
and gNOI are here to

help!

Enhanced Configuration
● Configuration and Management
● Declarative configuration
● Streaming telemetry
● Model-driven management and operations

○ gNMI - network management interface
○ gNOI - network operations interface

● Vendor-neutral data models

Platform Software

Management

gNMI gNOI

HardwareASIC

Slide adapted from Google

Next Generation SDN Interfaces

Lightweight and Production-ready Implementation

Vision
● Stratum supports multiple silicon products

● Stratum runs on many platforms

● Widely deployed in production SDN fabrics

● Enables P4Runtime and OpenConfig in the industry

● Proprietary (‘blackbox’) support desired

● Share the technology

Slide adapted from Google

Standard, well defined interfaces allow devices to drop into existing networks
(e.g. ONF’s Trellis fabric or Google production SDN fabrics)

Switch Software

P4Runtime OpenConfig

Control, Config, Management, Monitoring

Switching Chip (e.g. ASIC)

Target

Slide adapted from Google

Stratum can support traditional Switch OSes
● Benefit: Clear pipeline definition and support for programmable chips

● For example, SoNIC using SAI or SAI Flex and P4Runtime/OpenConfig
adapters

Stratum Enables Value-Add Hybrid Model

Facilitate Migration of Existing Services

The Next Generation SDN picture

Stratum Stratum

Stratum Stratum Stratum

SDN Control
Services

P4Runtime

spine.p4spine.p4

leaf.p4 leaf.p4 leaf.p4

Configuration
Services

gNOI

Monitoring &
Telemetry
Services

OpenConfig
 & gNMI

Admin &
Orchestration

Services

ONOS + Stratum
Pipeline-agnostic

app

Translation services
From FlowObjectives to FlowRules

Uses pipeconf’s pipeline drivers

Protocol

Core

P4Runtime

Pipeline-aware
app

Pipeconf
Store

Pipeconf
(.oar)

ONOS

gNMI

Stratum

P4RuntimeService ConfigMonitoringService

TopologyFlow Objective /
Flow Rule

Dynamic Config

gNOI

AdminService

Behaviors

FRR + Stratum
FRR provides the IPv4 and IPv6
routing / control plane stack

Stratum provides the dataplane
agent

Community is currently working on
netlink to Stratum mapper

BGPd RIPd OSPFd

zebra

...

Kernel routing table

Zebra protocol

netlink FRR

Stratum

P4 Runtime

netlink / Stratum
Mapper

gNMI

Forwarding Chip SDK

netlink

In progress

SONiC + Stratum
SONiC could use Stratum as
implementation of SAI

SAI.p4, OpenConfig and maybe
additional SAI models used as
dataplane contract

RedisOrchestration Agent

SAI DB

App DB

syncdSONiC

Stratum
P4 Runtime

SAI implementation to
Stratum Agent

gNMI SAI Models

OpenConfig

SAI

Need to build

Control Plane Applications

Config Interface

SAI.p4
Compiler
generate
files

P4
compiler

SAI Flex
Customer-specific extensions can be expressed using P4 and exposed
directly using P4 Runtime interface

For more details on SAI Flex:
https://github.com/opencomputeproject/SAI/tree/master/flexsai/p4

Read-only blocks defined
by SAI

Customizable

https://github.com/opencomputeproject/SAI/tree/master/flexsai/p4

Stratum Use Cases

29

Life of a Whitebox Switch: Day 0 to Day N

1. Design
2. Installation & Bootstrap
3. Switch Configuration
4. Start the Data Plane
5. Monitoring & Telemetry
6. Reboot
7. Upgrade

Network
Design

Installation
and

Bootstrap

Switch
Configuration

Start the
Data Plane

Maintenance
or Upgrade

Monitoring and Troubleshooting

Slide

fro
m NTT

Slide

fro
m NTT

Slide

fro
m NTT

Slide

fro
m NTT

• Centralized control does not mean the entire network must have one controller.

• Rather we opt for a network of controllers, enabled by ONF CORD, Trellis and Stratum.

• Freedom to use different protocols or RPC at outside controllers.

• Facilitates integration with legacy networks.

Transforming Tencent’s Network: One Datacenter at a Time

• Data center fabric as disaggregated modular switch

Fabric
Cards

Line
Cards

Switch
OS →

→

→

Spine/Core
Switches

Leaf/ToR
Switches

Data Center SDN
Controller

ToR ToR ToR
Leaf
ToR

Spine Spine Spine

Leaf Leaf Leaf
ToR
Leaf

SDN Controller

Data Center Fabric

Outside
(Legacy)
Networks

gNxI

BGP

MPLS

ISIS

behaves like one network element

P4

Slide from Tencent

kernel

hardware

user

Common
Chip specific
Platform specific
Chip and Platform specific

St
ra

tu
m

 sw
itc

h
ag

en
t

Switch Agent Architectural Components

P4 Runtime gNMI gNOI

Switch (Broker) Interface

Table
Manager

Node/Chip
Manager

Chassis
Manager

Chip Abstraction
Managers

E.g. ACL, L2, L3,
Packet I/O, Tunnel

Platform
Manager

Remote or Local Controller(s)

Switch SDK Platform API

Switch Chip Drivers Platform Drivers

Switch Chip(s) Peripheral(s)

Switch (Broker) Interface

● This is NOT an
abstraction like SAI

● Transparent broker
interface between
P4Runtime / gNMI /
gNOI to
vendor-specific
managers

P4 Runtime

Switch Broker Interface

Node
instance
for Chip 1

gNMI gNOI

Node
instance
for Chip 2

Chassis
Manager

Flow Write
to Chip 1

Push
pipeline to

Chip 2

Set port
speed on

Chip 1
Restart
chassis

Chassis Switch with two forwarding chips

Stratum Implementation Details
● Implements P4Runtime, gNMI, and gNOI services
● Controlled locally or remotely using gRPC
● Written in C++11
● Runs as a Linux process in user space
● Can be distributed with ONL
● Built using Bazel

Project Genesis

Seed Code and Community

Stratum Community

Welcome

Pioneer Phase
- Initial Reference Platform Support (HW & SW)
- Development Infrastructure (Build, CI, etc.)

Stratum Development Timeline
2018 2019

Open Source Launch
with forwarding chip and

platform support for every
vendor member

Stratum Member Preview
- Expanded platform support
- Feature development
- Hackathons

Field Trials, Production Deployments
on cloud and telco networks

Community
 Development

Project Status
● Currently working toward Stratum Member Preview
● Reference platforms from 2 ASIC vendors and 3 platform

vendors
○ ASIC Vendors: Barefoot, Broadcom
○ Platform Vendors: Delta, Edge-core, Inventec

● Expect support from another 2+ ASIC vendors and 4+ platform
vendors in 2019

● Since April,
○ 6 new member companies
○ 2 code releases to Stratum pioneers (3rd by end of the year)

Code Releases
Release 0.1 (May 2018) Release 0.2 (Oct. 2018) Release 0.3 (Dec. 2018)

P4Runtime Support for pre-release Support for 1.0.0-rc1 Support for 1.0 and minor
fixes

gNMI Basic framework Stable support Stable support and bug
fixes

gNOI - Initial interfaces 4 service implementations
(e.g. system, file)

Switch support Google platforms;
Partial Broadcom support

Barefoot Tofino on 3
vendors;
BMv2 software sw.

Tofino platform integration;
DummySwitch for testing

Platform
abstraction

Basic interfaces Support for platform
mapping and DB

Add support for ONLP

Conformance
Testing

- Test framework definitions Test framework definitions

Roadmap for 2019
1. Open Source Stratum Release

○ Build community and increase chipset/platform list

2. Production Deployments
○ Google
○ ONF’s CORD with major operators

3. Synergy with open source Switch OSes and controller planes
○ e.g. ONOS, SoNIC, DANOS, OpenSwitch, FRR

Stratum
Talks
@ ONF
Connect

Next-gen
SDN track

Come see our booth demonstration!

Getting Involved
Contribute to the Interfaces and reference P4 programs
● P4Runtime, gNMI, gNOI, and the OpenConfig models are already open source
● Fabric.p4, SAI Flex, etc.

Become a Stratum Member
1. Have a contribution plan
2. Sign the required documents
We are still accepting hardware vendors and users (including university students)!
Join the Public Mailing List
We will provide periodic updates on Stratum’s progress.

For more details:
https://wiki.opennetworking.org/display/COM/Stratum+Wiki+Home+Page
https://stratumproject.org/

https://wiki.opennetworking.org/display/COM/Stratum+Wiki+Home+Page
https://stratumproject.org/

Bonus Slides

Which Models and Programs are supported?

P4 program
● Stratum is not tied to specific P4 programs
● Depends on what the target (and compiler) will support
● Examples:

○ Google’s tor.p4 and spine.p4
○ ONOS fabric.p4
○ SAI.p4

YANG models
● Initial support for a subset of OpenConfig

○ interfaces, lacp, platform, qos, vlan, alarm
○ Along with some augmentations

Operations (gNOI) - Initial support for cert, file, diag, system

https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/src/main/resources/fabric.p4
https://github.com/Mellanox/SAI-P4-BM/tree/master/p4-switch/sai-p4-target/p4src
https://github.com/openconfig/public/tree/master/release/models/interfaces
https://github.com/openconfig/public/tree/master/release/models/lacp
https://github.com/openconfig/public/tree/master/release/models/platform
https://github.com/openconfig/public/tree/master/release/models/qos
https://github.com/openconfig/public/tree/master/release/models/vlan
https://github.com/openconfig/public/blob/master/release/models/system/openconfig-alarms.yang
https://github.com/openconfig/hercules
https://github.com/openconfig/gnoi/blob/master/cert/cert.proto
https://github.com/openconfig/gnoi/blob/master/file/file.proto
https://github.com/openconfig/gnoi/blob/master/interface/interface.proto
https://github.com/openconfig/gnoi/blob/master/system/system.proto

OnlPhal
VendorxSwitchInterface

Vendorx SDK

Stratum switch agent

Kernel (ONL)

P4Runtime APIs

Misc HW Switch chip

ConfigMonitoringService AdminService

L3ManagerAclManagerChassisManager

VendorxSdkWrapper

P4Service

SerdesDbManager

TableManager

P4Table
Mapper

gNOI APIsgNMI APIs

VendorxNodeVendorxNodeVendorxNode

Recap: Switch Agent Classes

Fixed Pipeline Mapping in Stratum

my_switch.p4
p4c p4c backend

Stratum Fixed-Function

p4info P4PipelineConfig

P4TableMapper

P4Runtime: SetForwardingPipelineConfig

P4InfoManager

• Library for mapping P4 forwarding entries (e.g TableEntry, ActionProfileGroup/Member, etc) to a
vendor agnostic proto format.

• Used for Broadcom implementation

Programmable Pipelines in Stratum
● Programmable devices that have PI implementations can use

PI’s device manager as the Node abstraction
● Basically just a shim
● Used by bmv2 and Tofino (maybe eventually Mellanox)

○ Tofino may eventually move away from PI and implement something
more directly

● Authentication -- credential management
○ Rely on gRPC support for different ways of doing credential management

i. gRPC allows loading different credential managers using
builder.AddListeningPort w/o changing anything else -- so simple!

○ Vendors/companies can "potentially" have different credential manager classes

● Authorization -- per-service per-RPC authorization policy checking

○ A class called AuthPolicyChecker which handles reading auth policies (in
form of a protobuf) from persistent storage and applies per-service per-RPC auth at
the beginning of each single RPC

○ Auth policy is updated via gNOI (details are still WIP)

