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High Level Architecture
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Subhead Information

High availability model
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High Availability Model

* Device handlers are arranged in active/active
pairs.
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High Availability Model

* Device handlers are arranged in active/active
pairs.

« Each pair is considered a virtual device
handler.

« Affinity is assigned to the virtual device
handler / device handler pair.

* Round-robin is also handled at the virtual
device handler / device hander pair.

* The loss of any one device handler or an entire
server will not result in any noticeable outage.

« The entire system will continue to function in
a high-risk configuration

* Once the server (or pod) is restored, it/they are
re-paired with the singletons to re-establish a
low-risk configuration.
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High Availability Model: Affinity Router Structure

< A server may reference multiple routers

* Routers are keyed by proto package &
service

» Only one router per package/service can
be defined per server

Server: name, addr, port, routers

Cluster: name
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High Availability Model

« Round robin selection occurs at the Backend
Cluster
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High Availability Model

« Round robin selection occurs at the Backend
Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision).

 CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.
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High Availability Model

B0 | beckendclusier
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Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision). | Bacend BackendCluster}

* CreateDevice binds northbound because the LcR
deviceld isn’t known until after command e
execution.

- Backend selection of bound devices is made
based on the protobuf package, service, and [ Cu ] [ c. ] Backend Streams
deviceld within the protobuf. il
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High Availability Model
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Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision).

 CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made
based on the protobuf package, service, and
deviceld within the protobuf

 Requests are sent out both streams to both
device handlers with identical serial numbers.
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High Availability Model
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* Round robin selection occurs at the Backend
XZX187160 CPz

Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision).

 CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made
based on the protobuf package, service, and
deviceld within the protobuf

 Requests are sent out both streams to both
device handlers with identical serial numbers.

« Device handlers race to lock a key using the
serial number in the KV store.
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High Availability Model T

voltha VolthaService e DDD129827 CPx

* Round robin selection occurs at the Backend GOeERser | OR

Cluster

 Device to backend affinity binding occurs
southbound for all requests except CreateDevice BackendCluster|
(AKA pre-provision). ah il g

» CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made : ‘
based on the protobuf package, service, and { Backend Streams
deviceld within the protobuf

 Requests are sent out both streams to both
device handlers with identical serial numbers.

* Device handlers race to lock a key using the
serial number in the KV store.

 The winner locks out the loser and responds to
the request.

XZX187160 CPz
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High Availability Model T

voltha VolthaService e DDD129827 CPx

« Round robin selection occurs at the Backend CCC839032  CPy
Cluster XZX187160 CPz

» Device to backend affinity binding occurs
southbound for all requests except CreateDevice
(AKA pre-provision).

» CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made
based on the protobuf package, service, and P %
deviceld within the protobuf [ c. | Backend Streams
 Requests are sent out both streams to both T b
device handlers with identical serial numbers.

* Device handlers race to lock a key using the
serial number in the KV store.

 The winner locks out the loser and responds to
the request.

 The loser waits and should the winner not
respond it takes over and provides a response.

BackendCluster}
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Subhead Information

Kafka Adapter Messaging Model
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Kafka Adapter Message Model

« A topic is created for every device

» A device handler will listen and post on the
topics for devices it’s handling.

« An adapter will listen and post on topics for
devices it’s managing.
« A broadcast topic is used primarily for discovery.

» If an adapter can’t find a topic for a device it will
broadcast it's message on the broadcast topic.

. . . Device A Topic
« One of the device managers will pick up that Device B Topic
broadcast. Device D Topic

« The device manager does the same southbound.
« If a topic doesn’t exist it will create it.
» |t will broadcast the message on the broadcast
topic
* The corresponding adapter will respond on the
newly created topic.
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Subhead Information

Per uService Architecture
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Adapter Shims
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Subhead Information

Transaction Flows Through The
System

[ ]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.




Modify Request A

\4
- Device Handler
Envoy
ry GRTPC Transaction Handler
+ Request from NB either REST or ore ! =
GRPC from NB apps. Affinity Router -

etcd

+ Affinity routing does one of 2 things
(in addition to assigning a serial
number for the request)

* For pre-provision AKA
CreateDevice, request is round-
robined to the next core pair. Affinity
is established northbound

« For all other requests existing
affinity is used. If no affinity, round-
robin to next core pair and establish
affinity.

* The selected core pair does the |
following:

» The first to receive the request locks
the serial number in etcd locking out
the other pair member.

» Should the first request not
complete the second member of the Ir = 2

pair will process the request. Tothe other
: peckend
__ T

Server

ONU Adapter

Request Processing

Backend Cluster
OLT Adapter

Proxy Handler

Backend
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REST

Read Request -
Envoy

*
GR+PC l
 Request from NB either REST or GRPC from Affinity Router
NB appS. Server

« Simplest of all requests.

A round-robin selection is made to one of the
R/O cores.

 The request is made to that core.

 The core reads the requested information from
the etcd KV store.

* The core uses a caching algorithm to discard Backend Cluster
older un-used cache entries.

Router

Stream
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Control Plane Packet Flow Init

« The OFAgent initiates a
connection through GRPC.

* The affinity router uses
round-round robin to
secure the next backend
cluster.

* One of the pair is chosen at
random to which the
communication is bound.

« A stream is created that
persists until

« Someone closes it.

* The chosen pair member
disconnects.

* In the case of a disconnect
(not EOF). The stream is
immediately switched to the
alternate pair member.

OFAgent

GRPC
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Affinity Router
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Server
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Backend Cluster

Backend

To the other
passive
backend
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Subhead Information

Kubernetes Integration
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K8s Integration

« Each pService is run in its own pod with one exception Voltha Namespace

» The affinity routing proxy pod hosts 3 pServices GRPC
« The primary service is the arouter service
« Two sidecar services (envoy & arouterd)
* envoy is used to map GRPC <—-> REST

« arouterd configures the arouter and device handlers
depending on the context.

« At afrouter pod startup the following happens
» arouterd queries k8s for all pods
» Each device handler is queried for devices Read Only Device Handler ~ Device Handler

pService pService pService

* An intersection algorithm is used to pair the handlers and
the config is pushed to the arouter. - 1 ’ ‘ I
* During normal operations

« arouterd queries k8s for all pods and maintains last state.

« If pod state changes arouter config is pushed to reflect
current status.
« Ifa lgevice handler pod is lost its backend is removed from the
config

« If a device handler pod returns then it's provided a list of ID’s it
should have and its backend is added back to the config.

Kafka Message Bus

|

OLT ONU
. Adapter Adapter

2101S AM P21 BYjOA

PonSim
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