clena

Experience. Outcomes.

VOLTHA Architecture
V2.0

Sergio Slobodrian

Wednesday December 5, 2018

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Contents

High Level Architecture
High Availability Model
Kafka Adapter Messaging Model

Per uService Architectures

Call flows through the system

Kubernetes Integration

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Subhead Information

High Level Architecture

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Level Architecture

Kubernetes
Northbpund OFagent RESTagent
endpoints
GRPC
Affinity routing afrouter afrouterd
reverse proxy . i
KV Store

Voltha core

Device Device Device
Handler Handler ‘ Profiles

Read ‘ Device Device Device
Only Handler Handler Handler

voltha
etcd

4
Read
Only

Message Bus

Adapters

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Subhead Information

High availability model

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

* Device handlers are arranged in active/active
pairs.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

* Device handlers are arranged in active/active
pairs.

« Each pair is considered a virtual device
handler.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

* Device handlers are arranged in active/active
pairs.

« Each pair is considered a virtual device
handler.

« Affinity is assigned to the virtual device
handler / device handler pair.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

* Device handlers are arranged in active/active
pairs.

« Each pair is considered a virtual device
handler.

« Affinity is assigned to the virtual device
handler / device handler pair.

* Round-robin is also handled at the virtual
device handler / device hander pair.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

* Device handlers are arranged in active/active
pairs.

« Each pair is considered a virtual device
handler.

« Affinity is assigned to the virtual device
handler / device handler pair.

* Round-robin is also handled at the virtual
device handler / device hander pair.

* The loss of any one device handler or an entire
server will not result in any noticeable outage.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

* Device handlers are arranged in active/active
pairs.

« Each pair is considered a virtual device
handler.

« Affinity is assigned to the virtual device
handler / device handler pair.

* Round-robin is also handled at the virtual
device handler / device hander pair.

* The loss of any one device handler or an entire
server will not result in any noticeable outage.

« The entire system will continue to function in
a high risk configuration

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

* Device handlers are arranged in active/active
pairs.

« Each pair is considered a virtual device
handler.

« Affinity is assigned to the virtual device
handler / device handler pair.

* Round-robin is also handled at the virtual
device handler / device hander pair.

* The loss of any one device handler or an entire
server will not result in any noticeable outage.

« The entire system will continue to function in
a high-risk configuration

* Once the server (or pod) is restored, it/they are
re-paired with the singletons to re-establish a
low-risk configuration.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model: Affinity Router Structure

< A server may reference multiple routers

* Routers are keyed by proto package &
service

» Only one router per package/service can
be defined per server

Server: name, addr, port, routers

Cluster: name

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

« Round robin selection occurs at the Backend
Cluster

Backend

CPx

Backend Streams

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

« Round robin selection occurs at the Backend
Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision).

 CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

voltha

VolthaService

—> BackendCluster

DDD129827 CPx
CCC839032 CPy
XZX187160 CPz

Backend

CPx

BackendCluster

Backend Streams

High Availability Model

B0 | beckendclusier
« Round robin selection occurs at the Backend voltha VolthaService =~ —— DLDIZSEZT | El

CCC839032 CPy
XZX187160 CPz

Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision). | Bacend BackendCluster}

* CreateDevice binds northbound because the LcR
deviceld isn’t known until after command e
execution.

- Backend selection of bound devices is made
based on the protobuf package, service, and [Cu] [c.] Backend Streams
deviceld within the protobuf. il

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

voltha VolthaService — DDD129827 CPx

CCC839032 CPy

* Round robin selection occurs at the Backend
XZX187160 CPz

Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision).

 CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made
based on the protobuf package, service, and
deviceld within the protobuf

 Requests are sent out both streams to both
device handlers with identical serial numbers.

BackendCluster}

Backend Streams

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model

voltha VolthaService — DDD129827 CPx

CCC839032 CPy

* Round robin selection occurs at the Backend
XZX187160 CPz

Cluster

* Device to backend affinity binding occurs
southbound for all requests except
CreateDevice (AKA pre-provision).

 CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made
based on the protobuf package, service, and
deviceld within the protobuf

 Requests are sent out both streams to both
device handlers with identical serial numbers.

« Device handlers race to lock a key using the
serial number in the KV store.

BackendCluster}

Backend Streams

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model T

voltha VolthaService e DDD129827 CPx

* Round robin selection occurs at the Backend GOeERser | OR

Cluster

 Device to backend affinity binding occurs
southbound for all requests except CreateDevice BackendCluster|
(AKA pre-provision). ah il g

» CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made : ‘
based on the protobuf package, service, and { Backend Streams
deviceld within the protobuf

 Requests are sent out both streams to both
device handlers with identical serial numbers.

* Device handlers race to lock a key using the
serial number in the KV store.

 The winner locks out the loser and responds to
the request.

XZX187160 CPz

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

High Availability Model T

voltha VolthaService e DDD129827 CPx

« Round robin selection occurs at the Backend CCC839032 CPy
Cluster XZX187160 CPz

» Device to backend affinity binding occurs
southbound for all requests except CreateDevice
(AKA pre-provision).

» CreateDevice binds northbound because the
deviceld isn’t known until after command
execution.

 Backend selection of bound devices is made
based on the protobuf package, service, and P %
deviceld within the protobuf [c. | Backend Streams
 Requests are sent out both streams to both T b
device handlers with identical serial numbers.

* Device handlers race to lock a key using the
serial number in the KV store.

 The winner locks out the loser and responds to
the request.

 The loser waits and should the winner not
respond it takes over and provides a response.

BackendCluster}

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Subhead Information

Kafka Adapter Messaging Model

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Kafka Adapter Message Model

« A topic is created for every device

» A device handler will listen and post on the
topics for devices it’s handling.

« An adapter will listen and post on topics for
devices it’s managing.
« A broadcast topic is used primarily for discovery.

» If an adapter can’t find a topic for a device it will
broadcast it's message on the broadcast topic.

. . . Device A Topic
« One of the device managers will pick up that Device B Topic
broadcast. Device D Topic

« The device manager does the same southbound.
« If a topic doesn’t exist it will create it.
» |t will broadcast the message on the broadcast
topic
* The corresponding adapter will respond on the
newly created topic.

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Subhead Information

Per uService Architecture

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Affinity Router uService

GRPC Config Server —> GRPC Server(s) I Server Handler(s)
$ 1
Config Handler

7T\

/T\

A I Backend Cluster(s) \—»I Backend Cluster
Handler(s)

A

I\ J Backend(s) \—"I Backend Handler(s)

; A

I Backend
Connection(s) Stream Handler(s)

N_—
Config &
Proto descriptor,

:I <
GRPC Client(s) p

Config Data Control Data & Control

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Affinity Router Daemon pService

Polling Handler

Affinity Handler < Backend Allocator

sl |dY Seleulagny)

v
Device Handler uService Client s o Afrouter pService Config Client

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Device Handler yService

» Transaction Handler

:
r?

APl Handler 41
Device Manager ¥

Logical Device Manager

\4
Device State Machine Logical Device Agent
= 3
< > :
<> 2 > = Device Agent Flow Decomposer
=1 3
o

voltha etcd

Adapter Proxy Adapter Request Handler

Inter Container Kafka Messaging Proxy

Kafka Adapter Message Bus

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Read Only yService

!

API| Handler

I

Data Cache Handler

<+“—>

—
—
—

voltha etcd

[9POIN Eied
A
A4

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Adapter Shims

Device Device
Handler Handler

Device
Handler

Kafka Client Kafka Client

Inter-Container Kafka Messaging Proxy Inter-Container Kafka Messaging Proxy.

v v v ./
Core Request Handler Adapter Proxy Core Request Handler Adapter Proxy
! ! ! !
\4 Core Requests : A4 Core Requests
iAdapter Abstract Class Inter-Adapter Requests iAdapter Abstract Class Inter-Adapter Requests

OLT Adapter Core Features

wiys AM

wiys AM

ONU Adapter Core Features

OLT
Devices

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Subhead Information

Transaction Flows Through The
System

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Modify Request A

\4
- Device Handler
Envoy
ry GRTPC Transaction Handler
+ Request from NB either REST or ore ! =
GRPC from NB apps. Affinity Router -

etcd

+ Affinity routing does one of 2 things
(in addition to assigning a serial
number for the request)

* For pre-provision AKA
CreateDevice, request is round-
robined to the next core pair. Affinity
is established northbound

« For all other requests existing
affinity is used. If no affinity, round-
robin to next core pair and establish
affinity.

* The selected core pair does the |
following:

» The first to receive the request locks
the serial number in etcd locking out
the other pair member.

» Should the first request not
complete the second member of the Ir = 2

pair will process the request. Tothe other
: peckend
__ T

Server

ONU Adapter

Request Processing

Backend Cluster
OLT Adapter

Proxy Handler

Backend

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

REST

Read Request -
Envoy

*
GR+PC l
 Request from NB either REST or GRPC from Affinity Router
NB appS. Server

« Simplest of all requests.

A round-robin selection is made to one of the
R/O cores.

 The request is made to that core.

 The core reads the requested information from
the etcd KV store.

* The core uses a caching algorithm to discard Backend Cluster
older un-used cache entries.

Router

Stream

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

(LU

etcd

Read Only Service

Read Processing

Control Plane Packet Flow Init

« The OFAgent initiates a
connection through GRPC.

* The affinity router uses
round-round robin to
secure the next backend
cluster.

* One of the pair is chosen at
random to which the
communication is bound.

« A stream is created that
persists until

« Someone closes it.

* The chosen pair member
disconnects.

* In the case of a disconnect
(not EOF). The stream is
immediately switched to the
alternate pair member.

OFAgent

GRPC

|

L(((

Affinity Router
etcd

Server

Router

Backend Cluster

Backend

To the other
passive
backend

A
|
|

Device Handler

Transaction Handler

Request Processing

Proxy Handler

ONU Adapter

OLT Adapter

1 \A 4

Subhead Information

Kubernetes Integration

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

K8s Integration

« Each pService is run in its own pod with one exception Voltha Namespace

» The affinity routing proxy pod hosts 3 pServices GRPC
« The primary service is the arouter service
« Two sidecar services (envoy & arouterd)
* envoy is used to map GRPC <—-> REST

« arouterd configures the arouter and device handlers
depending on the context.

« At afrouter pod startup the following happens
» arouterd queries k8s for all pods
» Each device handler is queried for devices Read Only Device Handler ~ Device Handler

pService pService pService

* An intersection algorithm is used to pair the handlers and
the config is pushed to the arouter. - 1 ’ ‘ I
* During normal operations

« arouterd queries k8s for all pods and maintains last state.

« If pod state changes arouter config is pushed to reflect
current status.
« Ifa lgevice handler pod is lost its backend is removed from the
config

« If a device handler pod returns then it's provided a list of ID’s it
should have and its backend is added back to the config.

Kafka Message Bus

|

OLT ONU
. Adapter Adapter

2101S AM P21 BYjOA

PonSim

[]
cwna Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

O
Thank You cwna

Experience. Outcomes.

Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

	VOLTHA Architecture
	Contents
	High Level Architecture
	High Level Architecture
	High availability model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model: Affinity Router Structure
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	High Availability Model
	Kafka Adapter Messaging Model
	Kafka Adapter Message Model
	Per μService Architecture
	Affinity Router μService�
	Affinity Router Daemon μService�
	Device Handler μService�
	Read Only μService�
	Adapter Shims
	Transaction Flows Through The System
	Modify Request
	Read Request
	Control Plane Packet Flow Init
	Kubernetes Integration
	K8s Integration
	Thank You

