A

N
oM~

Open Networking Foundation

On-boarding Services: Developing Synchronizers

Sapan Bhatia,
Scott Baker,

CORD Build Nov. 7-9, 2017

An Operator Led Consortium

< odGo K1Y . .
&= atat gﬂgggmm§m comcast  IFr+  Google (O)NTTGroup  TurkTelekom ¥ verizon’
g


mailto:sapan@opennetworking.org
mailto:scottb@opennetworking.org

Goals of this Talk

“Having modeled my service, how do | make it functional?”
“What is a Synchronizer? How do | develop one?”

“How do | follow best practices to produce a robust CORD
service?”

“What are some interesting and important problems in this
space?”



Goals of this Talk

“Having modeled my service, how do | make it functional?”
“What is a Synchronizer? How do | develop one?”

“How do | follow best practices to produce a robust CORD
service?”

“What are some interesting and important problems in this
space?”



Want to take on a challenging problem?

Apply to participate in a brigade
Leading is a great way to apply your expertise to a real problem
Enlisting is a great way of building expertise in an area
Find me for a chat: sapan-cord-build.youcanbook.me
Or anyone on the platform team: Andy Bavier, Scott Baker,
Matteo Scandolo, Larry Peterson, Luca Prete, Gopi Taget, Zack
Williams



The Big Picture

XOS Data Modeling Abstractions ! XOS APls
| GrRPC || TOSCA |
ici DJANGO
[ References ] [ Follece ] ! [ ]

Docker Docker
Containers Containers

[ OpenStack VM ]

VNF mechanisms



The Big Picture

XOS Data Modeling Abstractions ! XOS APls
(Technology-agnostic) (Partially agnostic to
! technology)
!\ [ GrPC || TOSCA |
[ References ] [ Policies ] [ DIATIEO ]

Docker Docker
Containers Containers
[ OpenStack VM

VNF mechanisms
(Technology-specifi

c)
O M=




The Big Picture

XOS Abstractions Generative XOS APls
(Technology-agnostic) T il hai (Partially agnostic to
OOEC ain technology)
,\m ||| : > | GrRPC || TOSCA |
ici xproto DJAN
[ References ] [ Policies ( Pf : [ JATeO ]
compiler)

Docker Docker
Containers Containers
[ OpenStack VM

VNF mechanisms
(Technology-specific

)
o M=




The Big Picture

XOS Abstractions Generative XOS APls
(Technology-agnostic) T il hai (Partially agnostic to
OOEC ain technology)
,\m ||| : > | GrRPC || TOSCA |
i DJANGO
[ References ] [ Policies ] : [ — ]

Synchronizers

Docker Docker
Containers Containers
[ OpenStack VM ] [ ONOS ]

VNF mechanisms
(Technology-specific

)
oN—




Key features of Synchronizers

Goal-driven rather than message-driven
Synchronizers are robust to errors
Dependencies mirror data model

Designed to help maximize scale up



Goal-driven Synchronization

10




Goal-driven Synchronization

11




Goal-driven Synchronization

~ (st




How would message-driven synchronization work?

13 o M=



How would message-driven synchronization work?

Message-oriented

— —

Y oMn—



How would message-driven synchronization work?

Message-oriented

—@—

15 o M=



How would message-driven synchronization work?

Message-oriented

—@—

16 o M=



Goal-driven Synchronization

Goal oriented:
Authoritative State

Idempotent

< >

17




Goal-driven Synchronization

Goal oriented:
Authoritative State

18




Goal-driven Synchronization

Goal oriented:
Authoritative State

Retry

>

19




Goal-driven Synchronization

Goal oriented:
Authoritative State

Retry

>

20




Goal-driven Synchronization

Goal oriented:
Authoritative State

Retry

>

21




Synchronizer dependencies mirror data model

Objects are guaranteed to be synchronized in dependency
order
Synchronizers are agnostic to the type of dependencies
Static dependencies between models
Dynamic dependencies between service instances
Dependencies are fine-grained
Between objects, not models
Dependencies are conservative
If you cannot evaluate a dependency, one is assumed



Desighed for scale up

Two parts to scaling up
Divide work into independently schedulable units
Dispatch units in contexts that run concurrently



Designed for scale-up




1. Extract dependencies

8-g

S




2. Connected components + Topological Sort

8-g

S




Cohort 1

3. Cohorts

8-g

S

Cohort 2

Cohort 3

Cohort 4

Cohort5 Cohort 6

27




3. Sc

nedule. Currently: Threads




Robustness to errors

Goal oriented:
Authoritative State

Idempotent

< >

29




Robustness to errors

Goal oriented:
Authoritative State

30




Robustness to errors




Robustness to errors: Error propagation




Robustness to errors: Error propagation




Robustness to errors: Error propagation

"Waiting on
failed

dependency X"

HRKK




Errors reported in ELK Stack via structured logging




But you only get these benefits if
you follow best practices.



Synchronizer flow: a bird's-eye view

XOS Core

Three objects a, b and ¢ have been
created, of types models A, B and C

Objects consist of two parts:

Declarative state
Feedback state



Synchronizer flow: a bird's-eye view

XOS Core Synchronizer




Synchronizer flow: a bird's-eye view

XOS Core Synchronizer

Translate declarative state



Synchronizer flow: a bird's-eye view

XOS Core Synchronizer

Transfer feedback state



Synchronizer flow: a bird's-eye view

XOS Core Synchronizer



What is a Synchronizer made up of?

Model policies
Configure the data model (add, delete, edit objects)
Can read/write declarative state
Sync steps
Translate XOS state into VNF configuration
Can read declarative state and write feedback state
Ansible playbook
Standard interface over which VNF configuration is propagated
to VNF software
Ansible is not a requirement
Boilerplate - Launch script, config file oM~



Let's write a Synchronizer

N %
i

43

-

&

Back-end VNF API
or Data Model

N

/




ExampleService Servicelnstance Model

message ExampleServiceInstance

(TenantWithContainer) {
option verbose name = "Example Service Instance";
required string tenant message = 1 [help text = "Tenant Message to
Display", max length = 254, null = False, db index = False, blank = False];
optional manytoone
foreground color->Color:serviceinstance foreground colors = 2 [db index
True, null = True, blank = True];
optional manytoone
background color->Color:serviceinstance background colors = 3 [db index =
True, null = True, blank = True];
}

44



Generate a synchronizer stub

Xosgenx
--target synchronizer.xtarget

--output ./
--write-to-file target

exampleservice.xproto



Outcome of generation

Sync steps:

sync_exampleservice.py
sync_exampleserviceinstance.py
sync_color.py

sync_embedded _image.py

Model dependencies:

model-deps.yaml



Outcome of generation

Model policies:

model policy _exampleservice.py

model policy _exampleserviceinstance.py
model_policy _color.py

model policy_embedded image.py



Note: There's no Ansible playbook here



model-deps.yaml

"ExampleService" : [
1,
"Color": [
1,
"ExampleServicelInstance" : [
["Color", "foreground color",
"serviceinstance foreground colors"],
["Color", "background color",
"serviceinstance background colors"]
1,
"EmbeddedImage" : [
["ExampleServicelInstance", "serviceinstance",

"embedded images"]

: . o=



model-deps.yam|

Exampﬁsed to compute

"Color"

m@ dymamlc

"Color" foreground color"

"serv1ce1nstance “background colors"
1,
"EmbeddedImage" : [
["ExampleServicelInstance", "serviceinstance",

"embedded images"]

]



model-deps.yaml

e‘?‘ou can edit this

"COlor" .

"ExampfelSL@c)Instance" 0

["Color", ""foreground color",
"serviceinstance foreground colors"],
["Color", "background color",
"serviceinstance background colors"]
1,
"EmbeddedImage" : [
["ExampleServicelInstance", "serviceinstance"
"embedded images"]

]



sync_example serviceinstance.py (stub)

class SyncExampleServicelInstance (SyncInstanceUsingAnsible):
observes=ExampleServicelnstance
service key name =

"/opt/xos/synchronizers/exampleservice/exampleservice private key"

template name = "sync exampleserviceinstance.yaml"

5 oM



sync_example serviceinstance.py (stub)

def get extra attributes(self, 0):

fields = {
"tenant message": o.tenant message,
"foreground color": o.foreground color,
"background color": o.background color

}
# TODO: Change the above map to map data model fields into

parameters in the Ansible playbook
# Once you have done that, drop the line below

raise Exception ("Not implemented")

return fields

53



sync_example serviceinstance.py (stub)

def get extra attributes(self, 0):

fields = {}
fields['tenant message'] = o.tenant message
exampleservice = self.get exampleservice (o)
fields['service message'] = exampleservice.service message
if o.foreground color:
fields["foreground color"] = o.foreground color.html code
if o.background color:
fields["background color"] = o.background color.html code
images=/[]

for image in o.embedded images.all():

images.append({"name": image.name,
"url": image.url})
fields["images"] = images

return fields

2 oM



Ansible Playbook

- hosts: "{{ instance_name }}"
connection: ssh
user: ubuntu
sudo: yes
gather_facts: no
vars:
- tenant_message: "{{ tenant_message }}"
- service_message: "{{ service_message }}"
- foreground_color: "{{ foreground_color }}"
- background_color: "{{ background_color | default("#FFFFFF") }}"
- images:
{% for image in images %}
- name: {{ image.name }}
url: {{ image.url }}
{% endfor %}

roles:
- install_apache
- create_index

55



Ansible Playbook

- hosts: "{{ instance_name }}"
connection: ssh
user: ubuntu
sudo: yes
gather_facts: no
vars:
- tenant_message: "{{ tenant_message }}"
- service_message: "{{ service_message }}"
- foreground_color: "{{ foreground_color | default("#000000") }}"
- background_color: "{{ background_color | default("#FFFFFF") }}"
- images:
{% for image in images %]}
- name: {{ image.name }}
url: {{ image.url }}
{% endfor %}

roles:
- install_apache
- create_index

56



Error handling

Upon encountering an error, simply raise an exception
The error message propagates to the Ul
The Synchronizer retries, and continues to do so until it

succeeds
Exponential backoff can be configured in production

environments
Exceptions automatically block dependent objects

O M-



Logging

XOS uses a logger called multistructlog

Thin wrapper around Structlog, with Structlog interface

Logs simultaneously to several backends: console, file, ELKStack
Log context bound to the logger: data model object, Sync Step,

Example of log statement:

except NoIPException, e:

log.exception ("Interface does not have IP", ip = 1p address, e = e)
raise e



Notes about best practices

Synchronizer steps must be idempotent

Back-end resources must be identified via feedback state
Essential for cleanups

Break up services into models at logical boundaries
Easier to maintain and observe in Ul
Better parallelism



Opportunity: Synchronizer Performance Brigade

Synchronizer's work divided into independent cohorts
Opportunity to scale up

Synchronizer is not reentrant
High latency
Objects should get processed even while cohorts are being
executed

Opportunity not fully utilized
Context for parallelization is threads (only vertical scale up)
Implement distributed run queue



Opportunity: Extend generative (xproto) toolchain

Code generation simplifies development and leads to reliable
code
Tasks:
ldentify common patterns in real services
Express those patterns in xproto representations
Autogenerate stub services to match those patterns



Opportunity: Static Synchronizers

XOS Abstractions Generative XOS APls
(Technology-agnostic) T il hai (Partially agnostic to
OOEC ain technology)
,\m ||| : > | GrRPC || TOSCA |
ici | DJAN
[ Links ] [ Policies ] i [ JATeO )

N ‘@Sychronizers

Kubernetes LX.C
Containers

[ OpenStack VM ][ ONOS ]

VNF mechanisms
(Technology-specific

)
o M=




Resources

CORD Guide:
o http://guide.opencord.org/



http://guide.opencord.org/

