
Programmable data planes, P4, and Trellis

Carmelo Cascone
MTS, P4 Brigade Leader

Open Networking Foundation

October 20, 2017

1

Outline

• Introduction to P4 and P4 Runtime
• P4 support in ONOS
• Future plans for Trellis

2

Programmable (or fixed) data plane pipelineFixed-function data plane pipeline

JUST WHAT

I NEED

A COMPLEX PIPELINE

THAT DOES EVERYTHING

...different vendors in their own way

Application Application

OpenFlow
Table management

Table {
 match
 actions
}

P4 program

Packets

P4 Runtime
Table management

Packets

Variations in
data plane
pipelines are
hard to
abstract

P4 enables custom
pipelines to meet
application needs

P4 Runtime allows
custom pipelines to be
loaded and controlled

P4 Runtime
compile

gRPC

3

P4 and P4 Runtime Overview

Programmable Switch Architecture

Programmer declares
the headers that should
be recognized and their

order in the packet

Programmer defines the
tables (match type, actions)

and the processing algorithm

4Slide courtesy: p4.org

Programmable ALUs
with computational

capabilities and stateful
memories

P4 Packet Processing Language

• Domain-specific language to specify packet forwarding behaviours
• Open source consortium: P4.org
• Hardware agnostic, can be compiled to programmable ASICs, FPGAs,

NPUs, etc.
• Value as a description language for fixed-function devices

5

header ethernet_t {

 bit<48> dst_addr;

 bit<48> src_addr;

...

header ipv4_t {

 bit<4> version;

 bit<4> ihl;

 bit<8> diffserv;

…

parser parser_impl(packet_in pkt, out headers_t hdr)

{ /* Parser state machine */ }

action set_next_hop(bit<48> dst_addr) {

 ethernet.dst_addr = dst_addr;

 ipv4.ttl = ipv4.ttl - 1;

}

...

table ip_table {

 key = { ipv4.dst_addr : LPM; }

 actions = { set_next_hop();

 drop(); send_to_ctrl(); }

 size = 4096;

}

Example P4 code

P4 Workflow

6

P4 Program P4 Compiler

Configuration
binary

Control Plane

Data PlaneTables Extern
objectsLoad

P4-enabled switchVendor supplied

User supplied

Add/remove
table entries

CPU port

Packet-in/outExtern
control

R
U

N
TI

M
E

Control plane

P4 Runtime

• Framework for runtime control of P4 targets
• Open-source API + server implementation

• https://github.com/p4lang/PI
• Initial contribution by Google and Barefoot Networks

• Work-in-progress by the p4.org API WG

• Protobuf-based API + gRPC client/server impl.
• Many RPC features for free (e.g. authentication)

• P4 program-independent
• API doesn’t change with the P4 program

• Enables field-reconfigurability
• Ability to push new P4 program once switches have been

deployed
7

Program-independent
server (gRPC)

Target driver

P4 ASIC

P4 pipeline
Table management

https://github.com/p4lang/PI

P4 on ONOS

8

P4 on ONOS Today

• Applications can bring their own P4 pipelines
• Northbound API to control any P4 program

• Ways to map existing protocol-dependent ONOS APIs to P4 pipelines
• New pipeline-agnostic ONOS API to control custom pipelines

• New P4 device drivers
• Barefoot Tofino-based switches
• BMv2 software switch (great for prototyping)

• P4 Runtime southbound interface
• Protocol support for P4 Runtime and gRPC

9

tor.p4

P4 Runtime

h1 h2

Edgecore Wedge100BF-32X Edgecore Wedge100BF-32X

Edgecore Wedge100BF-65X Edgecore Wedge100BF-65X

10

P4 on ONOS Demo
L123 SDN NFV World Congress 2017

Video!
https://youtu.be/BE_y-Sz0WnQ

https://youtu.be/BE_y-Sz0WnQ

Takeaways so far

• P4 offers a formal contract between controller and switch
• Controller’s view of the pipeline (P4 program) is implemented by the switch
• P4 Runtime API allows to control any pipeline → silicon independence!

• No need to extend the API
• API is pipeline-agnostic by definition

• P4 Runtime offers value for fixed-function devices
• Provided that their behavior can be expressed in P4
• Or, provided a compiler to map the P4 logical pipeline to the physical

one

11

What’s next for CORD:

fabric.p4

12

fabric.p4: P4-based CORD Fabric

● Goal: bring more heterogeneity in the CORD fabric with P4 silicon
○ e.g. Barefoot Tofino, or any other vendor that offers a P4 compiler

● Short-term scope - P4-based underlay (Spring 2018)
○ Design a P4 pipeline (fabric.p4) that is equivalent to the OF-DPA one

○ Use fabric.p4 as a drop-in replacement for the current Trellis underlay

■ Do not change the ONOS application programming the pipeline

● Long-term - offload x86 processing to fabric
○ P4-based overlay, i.e. move VXLAN handling from OVS to the ASIC

○ CORD VNFs offloading (will come to this later)

13

fabric.p4: where we are today

14

• Prototype P4 code and ONOS driver for fabric.p4 (Pipeliner)
• Under onos/pipelines/fabric

In port + VLAN filtering table

Forwarding classifier

Bridging
IPv4 unicast

routing
IPv4 multicast

routingMPLS

Unicast BroadcastHashed
(WCMP)

Next id mapping

IPv6 unicast
routing

IPv6 multicast
routing

ACL

VNF offloading

• Programmable data planes offer great degree
of flexibility beyond plumbing

• Benefits
• Scalability - VNFs executed at wire speed
• Low latency and jitter - avoid non-determinism of x86 processing

15

VNF

Compute (x86)

VNFControl
plane ...

Fabric (programmable ASIC)

Fast plumbing Fast
VNF

Progr. ASIC capabilities VNF building blocks

Arbitrary header
parsing/deparsing

Domain specific encap/decap
(e.g. PPPoE termination, GTP, etc.)

Stateful memories TCP connection tracking
(L4 load balancing, NAT, firewall, etc.)

Computational capabilities Billing

Thanks!

16

Join the P4 Brigade!
http://bit.ly/onos-p4-brigade

http://bit.ly/onos-p4-brigade

17

P4 support in ONOS

18

Default
drivers

Pipeline-agnostic
applications

Device (Tofino, BMv2, etc.)

PD APIs
Flow Rule

Flow Objectives
Intents

PI APIs
Pipeline-specific
entities

PD-to-PI translation serv.
(flow rule, groups, etc.)

Driver

Core

Events
(Packet, Topology, etc.)

Protocol gRPC

Tofino BMv2

P4Runtime gNMI

Pipeline-aware
application Future Work

Other drivers

Other protocols

P4info,
bin, JSON

Target-specific artifacts from the
Pipeline Configuration are used to
initialize the switch pipeline.

Pipeconf
Store

PI models
(table, match, actions,
groups, counters, etc.)

PI Framework

PD = protocol-dependent
PI = protocol-independent

Pipeconf
(.oar)

Loadable Pipeline Configuration containing
● Pipeline model
● Target-specific artifacts compiled

from custom P4 program
(P4Info, BMv2 JSON, Tofino bin, etc.)

● Flow rule interpreter
(Java code for PD-to-PI translation)

P4Runtime API

19

Full protobuf definition:
https://github.com/p4lang/PI/blob/master/proto/p4/p4runtime.proto

message TableEntry {
 uint32 table_id;
 repeated FieldMatch match;
 Action action;
 int32 priority;
 ...
}

message FieldMatch {
 uint32 field_id;
 message Exact {
 bytes value;
 }
 message Ternary {
 bytes value;
 bytes mask;
 }
 ...
 oneof field_match_type {
 Exact exact;
 Ternary ternary;
 ...
 }
}

message Action {
 uint32 action_id;
 message Param {
 uint32 param_id;
 bytes value;
 }
 repeated Param params;
}

p4runtime.proto simplified excerpts:

To add a table entry, the control plane
needs to know:

• IDs of P4 entities
• Tables, field matches, actions,

params, etc.

• Which field matches are defined
in which table

• The match type, bitwidth, etc.

• Which parameters are required
by which actions

• Other P4 program attributes

https://github.com/p4lang/PI/blob/master/proto/p4/p4runtime.proto

