,

N
oM~

Open Networking Foundation

Realizing Next Generation

Brian O’Cohnor (ONF)
brian@opennetworking.org

ONCon
Jully 22 =20

ONF’s History S

The ONF has a lot of experience building SDN and NFV solutions
SEBA

(Service Provider
Field Trials)

Trellis e
(0“0 (in production K
with a major
operator) ST/=RATUM
l COR)

OMOoOs

Open Network Operating System

C r;Open Flow

2008 2014 2016 2018 2019

Software Defined Networking (SDN) v1 oM~
e Introduction of Programmatic Network Interfaces

o Data Plane programming: OpenFlow
o Configuration and Management: NETCONF and YANG

e Promise: Enable separation of data plane and control plane
o Unlock control and data plane for independent innovation

- @ Network Map

NetWO rk OS =) Abstraction

Forwarding
Packet
Forwarding
Packet
Forwarding

Packet
Forwarding

SDN v1 Problems e
® Programmatic Network Interfaces are Inconsistent

O OpenFlow provided no data plane pipeline specification; every vendor’s pipeline is
different
O Everyvendor provides their own models for configuration or management
O Differences in protocol implementations require custom handling in the control
plane
® Reality: Control planes are written and tested against specific
hardware

O Some control planes have worked around this by building their own abstractions to
handle these differences, but new abstractions are either least common
denominator (e.g. SAl) or underspecified (e.g. FlowObjectives)

O Other control planes have exploited specific APIs are essentially “locked in” to
specific vendors

Network Function Virtualization (NFV) v1 =

e Migrate specialized networking hardware (e.g. firewall, load

balancer) to commodity servers
e Virtualized network functions (VNFs) are packaged and
distributed as VMs or containers, which are easier to deploy

_ =
o B

Load
Balancer
Switch
Flrewall

NFV v1 Problems Ormr
e CPUs are not the right hardware for many network functions
o Latency and jitter are higher than alternative targets
o Higher cost per packet and increased power consumption
e NFV data plane topologies are inefficient
o Additional switching hops required to implement sequences of VNFs
(service chains), especially when placement algorithms are not
optimized

Combining SDN and NFV o=
e SDN (fabric) and NFV (overlay) are managed separately

o Increased operational complexity / opex

o Difficult to optimize across different stacks

o Lack of visibility for troubleshooting and end-to-end optimization

o Separate resource pools

generation architectures
are not without their costs.

Overall, the benefits of m
SDN/NFV using 1°

Can we get the benefits of SDN
and NFV without paying these
costs?

Enabling the Next Generation of SDN OMF

e Development of New Technologies

o Hardware: Programmable ASICs, FPGAs, Smart NICs
o Software: P4

e Adopt “cloud mindset” for deployment and management
o Zero touch operations
o Containerization

e |everage Open Source Components
o Data planes, control planes, networks functions, and apps

#1
Development of New Technologies

Packet Forwarding Pipelines

Pipeline of match-action tables

Packets

ASIC, FPGA, NPU, or CPU

How is this pipeline specified?

P4 Language

e Domain-specific language to formally specify a forwarding pipeline
o Describe protocol headers, lookup tables, actions, counters, etc.
o Can describe fast pipelines (e.g ASIC, FPGA) as well as a slower ones (e.g. SW switch)

e Good for programmable switches, as well as fixed-function ones
o Programmable: optimize chip resources to application needs, support new protocols
o Fixed-function: defines “contract” with the control plane for runtime control

Table { mypipeline.p4
match

EEleR Compiler (provided by switch vendor)
Configure programmable ASIC/FPGA
or maps to fixed-function ASIC tables

Programmable or fixed-function
pipeline 12

}

PISA: Protocol-Independent Switch Architecture

Abstract machine model of a high-speed programmable switch architecture

Programmer defines
the tables and the Programmer declares

how the output packet

Programmer declares
which headers should exact processing

algorithm will look on the wire

be extracted and in
which order

Programmable Match-Action Pipeline

Programmable A Programmable
Parser (\ Deparser
— B fo) > (| (D =
= En- Em- Eme e | =D
SO e - - . = =
=3 HEE> B> > . —3
JR—N 3
= e e e e (T
Match+Action
Stage (Unit)

Slide courtesy P4.org Dl \(—

Slide courtesy P4.org

Compiling a simple logical pipeline on PISA

—-

Large

> IPv6

A g

7 P4 compiler
Allocate resources to
® realize the pipeline

\ 4

Programmable Match-Action Pipeline

Programmable A

Programmable

Parser 'd

A\

Deparser

cd

ll\'\' VYVVVVYN

Match+Action
Stage (Unit)

IPv6
address
table

HEHE

M

\

P4 Programs as Fixed-Function Chip Abstraction

e P4 program tailored to apps / role - does not describe the hardware
e Switch maps program to fixed-function ASIC

e Enables portability
Control

Physical D@D@D—D—D D—D@D’D‘D

Slide from Google ASIC 1 ASIC 2

Why should we use P4?

1. Explicit packet and pipeline definition enable deployment to

heterogeneous targets

o Same program can be used for fixed-function and programmable targets from
different manufacturers

2. Clear language semantics enable automated verification
o Generate test inputs and results by analyzing the P4 program

For insight into automated verification:

Leveraging P4 for Fixed Function Switches

Speakers: Konstantin Weitz & Stefan Heule (Google)
Links: Slides, Video, or scan the QR codes

https://p4.org/assets/P4WS_2019/Speaker_Slides/2_920am_Stefan_Konstantin.pdf
https://youtu.be/SJrFeoW-dig

Control Interface: P4Runtime oM il

m Entries for

Tables, Action Profiles, Meters, Counters, Packet Replication,

Program))
Parser Values, Registers, Digests, Externs
-— - - e e e e - - - s s e n | e - e e e . . - s s . P4Runtime
Packet Buffer
Parser » Ingress »| Deparser —| Buffer and » Parser » Egress » Deparser +| Queueing
Replication Engine

PSA Switch

Slide adapted from P4.org

API Consistency for Network Functions

e Provide a consistent interface for network function
programming that is independent of hardware or location
e Implement network functions on hardware that meets
performance needs

IP Routing

BGP

OSPF

P4 Runtime

Commodity
Switching
ASIC

FPGA

routing.p4

GTP Encapsulation

S/PGW Control Plane

P4 Runtime

Programmable

2Pt Switching ASIC

PARuntime overview

e API for runtime control of P4-defined switches

@)

Generic RPCs to manage P4-defined table entries and
other forwarding state

e Community-developed (p4.org APl WG)

©)

(@)

e gRP

Initial contribution by Google and Barefoot
RC of version 1.0 available: https://p4.org/p4-spec/

C/protobuf-based API definition

e Enables field-reconfigurability

O Ability to push new P4 program, i.e. re-configure the switch

O

Slide courtesy P4.org

pipeline, without recompiling the switch software stack

E.g. to add new match-action tables, support parsing of
new header formats

P4Runtime client
(Control plane)

p4runtime.proto

’
7/
4
/7
’

(API)

P4Runtime server ||
(Stratum) |
| Target driver | |

O
P4 target

https://p4.org/p4-spec/

P4Runtime TableEntry Example

basic_router.p4

action dipv4_forward(bit<48> dstAddr,
bit<9> port) {
/* Action implementation x/
h
table dpv4_1lpm {
key = {
hdr.ipv4.dstAddr: T1lpm;
+
actions = {
ipv4_forward;
+
}

‘ Logical view of table entry

hdr.ipv4.dstAddr=10.0.1.1/32

Control plane
generates

-> 1dpv4_forward(00:00:00:00:00:10, 7)

Protobuf TableEntry message

table_entry {
table_id: 33581985
match {
field_id: 1
lpm {
value: "\n\000\001\001"
prefix_len: 32

}
3
action {
action_1id: 16786453
params {
param_id: 1
value: "\000\000\000\000\000\n"
+
params {
param_id: 2
value: "\000\007"
+
}
¥ 20

oM

#2
Next Step: Adopting a Cloud Mindset

Zero Touch Operations

oM

Humans don’t log into individual boxes to configure them

Configuration is generated automatically and sent to devices
o Changes are defined by high-level, network-centric intent

Management plane listens to telemetry events and

applications drive network state towards policy objections
o Rollback happens automatically in network invariants are violated

Vision: Zero Touch Networking

“70% of network failures happen during management
operations, due to the high level of complexity of such
operations across a wide variety of network types, devices,
and services” - Google

[=]

Evolve or Die: High-Availability Design
Principles Drawn from Google's Network

Infrastructure
Authors: Ramesh Govindan, Ina Minei, et al. (Google)
Links: Paper, Video, or scan the QR codes

O
"

rl

https://ai.google/research/pubs/pub45623
https://youtu.be/5N7QS5vP68o

Zero Touch Operations

o Velocity
Availability Daily updates
Reliability | 4

3,40r5%9s”

N

I V=

Zero Touch Operations: Control and Config/Management

To achieve a zero touch network a seamless interplay of control and
config/management needs to happen. High level network centric policies always
need a combination of both elements to be achieved with no impact.

Zero Touch Operations

\
(\

platform

Simplify and Centralize Configuration

Leverage vendor-neutral models as much as practical
Centralize configuration and management to reduce

deployment complexity
This applies to both data plane
and control plane components

Slide adapted from Google

y

{GPENCONFIG [gNMI | [gNOI

Platform Software

ASIC || Hardware

OAM Interfaces: gNMI and gNOI A
e gNMl for: Fan Speed
o Configuration
o Monitoring
o Telemetry

Power supplies

Monitor Sensors
e.g. temperature

e gNOI for Operations

Software Deployment and

. . . . Upgrade
Switch Chip Configuration

QoS Queues and Scheduling
Serialization / Deserialization
Port Channelization

Port State and Mapping
LED Control

Management Network —» ... and the list goes on.

Enhanced Configuration

Configuration and Management
Declarative configuration
Streaming telemetry

Model-driven management and operations

o gNMI - network management interface
o gNOI - network operations interface

Vendor-neutral data models

Slide adapted from Google

y

{GPENCONFIG

gNMI

gNOI

Platform Software

ASIC

I

Hardware

OpenConfig Model - An Example

module:

openconfig-interfaces

+--rw interfaces
+-—-rw interfacex [name]

{OPENCONFIG

+--rw config
+--rw name?
+--rw type
+—=rw mtu?
+--rw loopback-mode?
+--rw description?
+--rw enabled?

string
identityref
uintlé
boolean
string
boolean

augment "/oc-if:interfaces/oc-if:interface/oc-if:config" {
leaf forwarding-viable {
type boolean;
default true;

|

|

|

|

|

+--ro state
| +--ro name?

| +--ro type

| +--ro mtu?

| +--ro loopback-mode?
| +--ro description?
| +--ro enabled?

| +--ro ifindex?

| +--ro admin-status
| +--ro oper-status

| +--ro last-change?
| +--ro logical?

| +--ro counters

| +--ro in-octets?
| +--ro in-pkts?

|

string
identityref
uintle
boolean
string
boolean
uint32
enumeration
enumeration

oc—types:timeticks64

boolean

oc-yang:counter64
oc-yang:counter64

+--rw forwarding-viable? boo'lean

Models are easy to augment,
use, and test.

Compile and re-generate
topology.

Closed Loop Control Relies on Telemetry

(Device
Control
Telemetry Application
L Collector PP

(INT
Control and Mangement Plane Collector

g
. OpenConfig

) |

j)/ { Switch J m { Switch J

INT

#3
Leverage Open Source Components

Providing an Implementation

Open Interfaces and Models are necessary, but not sufficient, for
multi-vender interoperability.

Interfaces are defined by running code, so providing an open
source implementation helps solidify the interfaces and models.
This is not a standards exercise.

If the open source is a fully production ready distribution (ready
to run and deploy these interfaces), we can avoid bugs in
different vendor implementations and improve time to market.

Stratum: Next Generation Data Plane

Northbound
Embedded System

Pipeline (Pipeline \ (Configuration\ [Operations \

Definition Control & Telemetry

P4Runtime OpenConfig gNOlI

P4 Program OVer
gNMI

g L J

e \Vendor Neutral Forwarding Chip

® [Extensible

Stratum High-level Architectural Components e

{ Remote or Local Controller(s) }
| P4Runtime | oo | ool |
. I b
[Switch Broker Interface] q:,
[| o
. e N ©
Table Node/Chip Chassis =
Manager Manager Manager =
~ J
Pl and fpm-based | | \ | 3 -
implementati - - 0 - o
Imptementations Chip Abstraction Managers Platform £
E.g. ACL, L2, L3, Packet I/O, T 3 ONLP
Tunnel N - J o
whd
7p)
user
———————————— [Switch SDK)------{ Platform AP |
| | kernel
Switch Chip Drivers] [Platform Drivers]

[Switch Chip(s)] [Peripheral(s)] hardware

Stratum Implementation Details

Implements P4Runtime, gNMI, and gNOI services
Controlled locally or remotely using gRPC

Written in C++11

Runs as a Linux process in user space

Can be distributed with ONL

Built using Bazel

‘GRPC: - 'a {OPENCONFIG

U
A -4
Open Network Linux

Available to the public end of August 2019!

Comprehensive Test Framework

Is an open-source implementation enough for interop?
How to we prevent implementation discrepancies?

There will be other implementations, and they need to be qualified.
We also need to make sure that vendor-specific pieces are
implemented as expected.

Solution: Provide a vendor-agnostic, “black box” test framework
for any target that complies with Stratum open APIs (P4Runtime, gNMI,
gNOI) along with a repository of tests.

Writing Test Vectors

Test Vector

Stimulus 1 Expectation 1
Stimulus 2 |:> Expectation 2

Test Vectors serve as compliance tests for
Stratum-based devices.

They can be written manually or generated
automatically

- Stratum comes with a Contract Definition
language (cdlang) for generating test vectors

| ~ =
Test Case |

g
Test framework <

—> Switch Under Test

A A 3

L L Switch Ports

» Traffic generators and validators

Black Box Qualification

Operator space

Integration Test Release (or

Functional Test

Vendor Test on standalone in fabric testbeds further SDN
(Vendor) with SDN controller
ERHOEEE controller qual)
T T
|
: v Misc. input
| L TV creation or (trace, etc)
. mod || T
Body of TVs |« |
Product Open
Requirements Source
P4 specs,
: = YANG models,
- Vendor space open APls

Slide courtesy of Google

Project Genesis

~

N

Seed Code

Open Networking Foundation

and Community

!

BAREFCOT BROAII\JC

OM.
NETWORKS winys N\ =

£\ ne1Ta EOODEEREE Inventec

NETWORKS

cSacT @STORDIS“
>Xbig switch m PLVISION

networks Connec tivity of Tomorro! w
NoviFlow

ST/—ATUM

3

IONOS

rationale & tenets for next-gen SDN controller

NG SDN Controller Architecture L,

gNMI/gNOI P4Runtime

gNMI/gNOI P4Runtime

NG SDN Controller Architecture

network

gy / wiay

Configuration Subsystem L

e Work hosted under GitHub in the open
o http://github.com/onosproject/onos-config

e Primarily staffed by ONF at this point

o external contributions are wanted and welcome

e Bi-weekly updates and demos given at ONOS TST

deployment via Helm/Kubernetes

multi-device transactions and rollback

integrated validation of data via ygot

Atomix 4.x with support for gRPC and Go primitives client libraries
currently prepping start work on distributed stores

O O O O O

e Planning ONF Connect demos

http://github.com/onosproject/onos-config

Topology Subsystem L

e Exploring use of Google's Unified Network Model
o initiating discussions with Google about using UNM or a derivative

o UNM was part of Jeff Mogul's presentation at Stanford last year

e Goalis to use UNM-like model as a canonical representation
o allows to capture design intent and supports schema evolution

o ability to project to alternate representations, eg.

m RFC 8345 IETF Network Topology model to exchange topology data and changes to
topology state
m custom graph structures and gRPC streaming for run-time performance

Control & RAN Subsystems L

e SB API for the subsystem will be PARuntime
o well-defined, low-profile interfaces with support for transactions

o allows direct use with Stratum-compliant switches
o adapters can be created for devices that do not support P4Runtime

e NB API will be P4ARuntime and admin APIs

o requires network-wide table mapping, e.g. network-sized chassis
o design work for amin and diagnostic APIs will start shortly

e Provide abstractions and controls relevant to the RAN domain
o near real-time requirements, e.g. latency sensitive, predictable

Looking Ahead L

e ONOS 2.x already supports P4ARuntime and gNMI

e With ONOS 2.x being a stable platform for some time to come, now
is the time to consider next generation architecture

e With Stratum starting to materialize as UPAN data plane, now is the
time to consider UPAN control plane

e Goal is to establish the next generation SDN controller architecture
o kicked off collaboration at start of 2019
o completely in the open and with the help of the community at large

e Projectis named pONOS and will become ONOS 3.0 when ready

e (Continue to curate ONOS 1.x & 2.x maintenance and releases
o core team to do LTS bug fixes, code reviews and release engineering

o community to continue new feature and applications development 46

Using Docker to Deploy Applications

g) 4)

[Control Plane / SDN App] [Stratum Agent / Network Fn. }
[Shared libraries / runtime] [Shared libraries / runtime]
container *dOCker container
\ J - J
()
Host OS: Linux [Host OS: Linux
. J

whitebox
switch

/” whitebox
server

JEis

Using Kubernetes to Deploy to Common Infra

& docker
N

~_

Container
Repository

A
HELM

~A

charts

oM

kubernetes

Cl Testing

@ git

Server

Server

Server

Goal is continuous (daily!) deployment

Deploy components on common infrastructure <" '—

m

e Deploy control plane and data
plane functions on a converged
network infrastructure

e Place functions in appropriate
locations using an intelligent
scheduler

e Deploy functions on hardware
that meets performance needs

Network Control Plane
Function Function

IPSEC

IPSEC

Traffic

Engineering

Config
Management

oy}
()
o

Server

Traffic
Engineering

Config
Management

Server

Traffic
Engineering

Config

Management

Server

Next Generation SDN picture
< Inventory > < Global Orchestrator > < 0SS / BSS >

- N Y,

Control and Management Plane ‘,
CORD
SDN Control Configuration M;)er;:r?qré?:g & o A:mtm f‘
Services Services . y 5 es.ra ol
Services Services
g oONMOoOs
. OpenConfig
P4Runtime
spine.p4 spine.p4 .
Strat Strat ':‘:'
- ratum . . ratum - ° o °
ST=ATUM
leaf.p4 leaf.p4

. Stratum . Stratum -

&

Open Network Linux

Enabling the Next Generation of SDN e

e Development of New Technologies

o Hardware: Programmable ASICs, FPGAs, Smart NICs
o Software: P4

e Adopt “cloud mindset” for deployment and management
o Zero touch operations
o Containerization

e |everage Open Source Components

o Data planes, control planes, networks functions, and apps

If this sounds interesting, please get involved!
For questions, email brian@opennetworking.org

Backup Slides

Stratum Use Cases

CORD
Cloud SDN Fabric 5G Mobile & More

CORD

8 Proprietary

3 (e.g. Google

(]

z | Espresso) | ONOS ONOS
55

Embedded System Embedded System Embedded System

53

Thick Switch/Router

Embedded Mgmt
& Control
(e.g BGP)

Embedded System

LGS

In-band Network VNF Offloading
. (Segment routing, multicast, vRouter, etc) Telemetry (INT) Control (S/PGW)
Architecture

A 5
_ P4Runtime OpenFlow ‘ P4 program
INT INT .
Stratum Stratum Vv ¢ fabric.p4

Mixed P4/OpenFlow \ ‘ | LSMPLS

multi-vendor - GTP termination
white-box switches

Broadcom, Barefoot,
Edge-Core, Inventec, Delta INT+S/PGW
OF-DPA Field Stratum

office

Stratum

Upstream
BGP routers
6lo o 0l > ‘ —
End hosts '/GTP ' .1
traffic —
Base station >
_ (emulated) INT

Telemetry collector OF-DPA
Barefoot Deeplnsight

Stratum OF-DPA OF-DPA
/ Central office
‘ roports

O |[rmm O
— . collector

Multicast video P4 SmartNIC
source Netcope

Life of a Whitebox Switch: Day0OtoDayN &M= e

1. Design
2. Installation & Bootstrap
3. Switch Configuration
4. Start the Data Plane
5. Monitoring & Telemetry
6. Reboot
/. Upgrade
— §
Network Inst:::?jtion Switch Start the Maintenance
Design Bootstrap Configuration Data Plane or Upgrade
J
Monitoring and Troubleshooting |

Use-case 1 =

5\@“\ Chaining and Scaling Edge Gateway > 4
8 B
{©

* Flexible traffic chaining with BGP FlowSpec
« Auto chaining/scaling
« In-band telemetry between VNFs

Scaling - Scaling

»

= vCPE vCPE vIPS vIPS

\"

In-band telemetry
Using P4

:
Stratum !
fabric

Controller
A

BGP FlowSpec

" Existing WAN
\thlck routers

& | 4
@ NTT 6 R Copyright©2018 NTT corp. All Rights Reserved. 21

Use-case 2
$ DDoS Detection and Steering Function

9% «
*«0‘(\
* Collect flow-statistics from stratum switches

- Steering traffic to mitigation function when collector
detects flow burst

l_]
L Gateway]

vMitigation

Start traffic-steering

Flow
Information

Collector/
Detector

Controller | Detection
lInformation

)

Stra
s
é—-*_/—; Collect flow-statistics
Existing
thick routers

©®) NTT P

WAN

Copyright©2018 NTT corp. All Rights Reserved.

22

Use-case 3
Edge Router on Fixed Networks

There are thousands of NTT buildings that has the
edge-router(s)
« Can edge-routers be replaced by Stratum?

.\
6“2\&‘
£©

VNF
Existing thick +
Edge Router /
Stratum

® N TT Copyright©2018 NTT corp. All Rights Reserved. 23

° Use-case 3 Edge Router on Fixed Networks
A &‘ Today’s Service Edge Router

*«0‘(\

« Edge-router contains service

functions

(BRAS/BGF/Video-Multicast/VPN-GW::-) and

Hierarchal QoS function

Edge-router Configuration on Fixed Network Today

C

Thick ~ ~
coge ok ([BRAS|[BGF M<:| VPN
| FlQoS |

— 1

[e [
NTT

Service Functions

BRAS:
- PPPOE termination
- AAA(Radius)

BGF:

- NAPT

- Flow-based shaping
- Diffserv

MC(Video Multicast):
- PIM/MLD
- IP Multicast

VPN-GW
- Tunnel termination
- Dynamic routing

Copyright©2018 NTT corp. All Rights Reserved.

24

Transforming Tencent’s Network: One Datacenter at a Time

» Data center fabric as disaggregated modular switch

Switch Data Center SDN
SDN Controll
OS - Controller [ontroller]
gNxI
Fabric Spine/Core : ‘ : ==
S o 1
Outside m
(Legacy) .
Line Leaf/ToR B Networks I
Cards - Switches 1
4 m =

Data Center Fabric
behaves like one network element

- Centralized control does not mean the entire network must have one controller.
- Rather we opt for a network of controllers, enabled by ONF CORD, Trellis and Stratum.
- Freedom to use different protocols or RPC at outside controllers.

- Facilitates integration with legacy networks.

Slide from Tencent

