
Realizing Next Generation
SDN/NFV

Brian O’Connor (ONF)
brian@opennetworking.org

ONCon
July 22, 2019

ONF’s History
The ONF has a lot of experience building SDN and NFV solutions

2008 2014 2016

Trellis
(in production
with a major

operator)

SEBA
(Service Provider

Field Trials)

2018 2019

Software Defined Networking (SDN) v1
● Introduction of Programmatic Network Interfaces

○ Data Plane programming: OpenFlow
○ Configuration and Management: NETCONF and YANG

● Promise: Enable separation of data plane and control plane
○ Unlock control and data plane for independent innovation

TODO picture of SDN

SDN v1 Problems
● Programmatic Network Interfaces are Inconsistent

○ OpenFlow provided no data plane pipeline specification; every vendor’s pipeline is
different

○ Every vendor provides their own models for configuration or management

○ Differences in protocol implementations require custom handling in the control
plane

● Reality: Control planes are written and tested against specific
hardware
○ Some control planes have worked around this by building their own abstractions to

handle these differences, but new abstractions are either least common
denominator (e.g. SAI) or underspecified (e.g. FlowObjectives)

○ Other control planes have exploited specific APIs are essentially “locked in” to
specific vendors

Network Function Virtualization (NFV) v1
● Migrate specialized networking hardware (e.g. firewall, load

balancer) to commodity servers
● Virtualized network functions (VNFs) are packaged and

distributed as VMs or containers, which are easier to deploy

Firewall

L. B.

NFV v1 Problems
● CPUs are not the right hardware for many network functions

○ Latency and jitter are higher than alternative targets
○ Higher cost per packet and increased power consumption

● NFV data plane topologies are inefficient
○ Additional switching hops required to implement sequences of VNFs

(service chains), especially when placement algorithms are not
optimized

Combining SDN and NFV
● SDN (fabric) and NFV (overlay) are managed separately

○ Increased operational complexity / opex
○ Difficult to optimize across different stacks
○ Lack of visibility for troubleshooting and end-to-end optimization
○ Separate resource pools

OpenStack / K8S

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
AppVNF

OCP
Hardware

Network OS
Overall, the benefits of

SDN/NFV using 1st
generation architectures

are not without their costs.

Can we get the benefits of SDN
and NFV without paying these

costs?

Enabling the Next Generation of SDN
● Development of New Technologies

○ Hardware: Programmable ASICs, FPGAs, Smart NICs
○ Software: P4

● Adopt “cloud mindset” for deployment and management
○ Zero touch operations
○ Containerization

● Leverage Open Source Components
○ Data planes, control planes, networks functions, and apps

#1
Development of New Technologies

ASIC, FPGA, NPU, or CPU

Pipeline of match-action tables

How is this pipeline specified?

● Domain-specific language to formally specify a forwarding pipeline
○ Describe protocol headers, lookup tables, actions, counters, etc.
○ Can describe fast pipelines (e.g ASIC, FPGA) as well as a slower ones (e.g. SW switch)

● Good for programmable switches, as well as fixed-function ones
○ Programmable: optimize chip resources to application needs, support new protocols
○ Fixed-function: defines “contract” with the control plane for runtime control

12

Table {
 match
 actions
}

Programmable or fixed-function
pipeline

Compiler (provided by switch vendor)
Configure programmable ASIC/FPGA
or maps to fixed-function ASIC tables

mypipeline.p4

13

Abstract machine model of a high-speed programmable switch architecture

14

P4 compiler
Allocate resources to
realize the pipeline

Large

Small

● P4 program tailored to apps / role - does not describe the hardware
● Switch maps program to fixed-function ASIC
● Enables portability

ASIC 1 ASIC 2

Logical

Physical

Control

Slide from Google

1. Explicit packet and pipeline definition enable deployment to
heterogeneous targets
○ Same program can be used for fixed-function and programmable targets from

different manufacturers
2. Clear language semantics enable automated verification

○ Generate test inputs and results by analyzing the P4 program

Slides
Video

For insight into automated verification:

Leveraging P4 for Fixed Function Switches
Speakers: Konstantin Weitz & Stefan Heule (Google)

Links: Slides, Video, or scan the QR codes

https://p4.org/assets/P4WS_2019/Speaker_Slides/2_920am_Stefan_Konstantin.pdf
https://youtu.be/SJrFeoW-dig

Control Interface: P4Runtime

P4Runtime

Program

Entries for
Tables, Action Profiles, Meters, Counters, Packet Replication,
Parser Values, Registers, Digests, Externs

PSA Switch
Slide adapted from P4.org

API Consistency for Network Functions
● Provide a consistent interface for network function

programming that is independent of hardware or location
● Implement network functions on hardware that meets

performance needs

Commodity
Switching

ASIC

P4 Runtime

BGP OSPF

FPGA

IP Routing

routing.p4

CPU

P4 Runtime

S/PGW Control Plane

Programmable
Switching ASIC

GTP Encapsulation

gtp.p4

● API for runtime control of P4-defined switches
○ Generic RPCs to manage P4-defined table entries and

other forwarding state

● Community-developed (p4.org API WG)
○ Initial contribution by Google and Barefoot
○ RC of version 1.0 available: https://p4.org/p4-spec/

● gRPC/protobuf-based API definition

● Enables field-reconfigurability
○ Ability to push new P4 program, i.e. re-configure the switch

pipeline, without recompiling the switch software stack

○ E.g. to add new match-action tables, support parsing of
new header formats

19

p4runtime.proto

P4 target

https://p4.org/p4-spec/

20

table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\n\000\001\001"
 prefix_len: 32
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\000\000\000\000\n"
 }
 params {
 param_id: 2
 value: "\000\007"
 }
 }
}

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 /* Action implementation */
}
table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

hdr.ipv4.dstAddr=10.0.1.1/32
-> ipv4_forward(00:00:00:00:00:10, 7)

basic_router.p4

Logical view of table entry

Protobuf TableEntry message

Control plane
generates

#2
Next Step: Adopting a Cloud Mindset

Zero Touch Operations
● Humans don’t log into individual boxes to configure them

● Configuration is generated automatically and sent to devices
○ Changes are defined by high-level, network-centric intent

● Management plane listens to telemetry events and
applications drive network state towards policy objections
○ Rollback happens automatically in network invariants are violated

“70% of network failures happen during management
operations, due to the high level of complexity of such

operations across a wide variety of network types, devices,
and services” - Google

Paper
Video

Evolve or Die: High-Availability Design
Principles Drawn from Google's Network

Infrastructure
Authors: Ramesh Govindan, Ina Minei, et al. (Google)

Links: Paper, Video, or scan the QR codes

https://ai.google/research/pubs/pub45623
https://youtu.be/5N7QS5vP68o

Zero Touch Operations

Availability
Reliability
3, 4 or 5 “9’s”

Velocity
Daily updates

config/managementcontrol

platform

Simplify and Centralize Configuration
● Leverage vendor-neutral models as much as practical
● Centralize configuration and management to reduce

deployment complexity
● This applies to both data plane

and control plane components

Platform Software

Management

gNMI gNOI

HardwareASIC

Slide adapted from Google

OAM Interfaces: gNMI and gNOI

 Switch Chip Configuration
QoS Queues and Scheduling

Serialization / Deserialization
Port Channelization

Power supplies

Fan Speed

Port State and Mapping
LED Control

Monitor Sensors
e.g. temperature

●
○
○
○

●

Software Deployment and
Upgrade

… and the list goes on.Management Network

Enhanced Configuration
● Configuration and Management
● Declarative configuration
● Streaming telemetry
● Model-driven management and operations

○ gNMI - network management interface
○ gNOI - network operations interface

● Vendor-neutral data models

Platform Software

Management

gNMI gNOI

HardwareASIC

Slide adapted from Google

OpenConfig Model - An Example
module: openconfig-interfaces
 +--rw interfaces
 +--rw interface* [name]
 +--rw config
 | +--rw name? string
 | +--rw type identityref
 | +--rw mtu? uint16
 | +--rw loopback-mode? boolean
 | +--rw description? string
 | +--rw enabled? boolean
 +--ro state
 | +--ro name? string
 | +--ro type identityref
 | +--ro mtu? uint16
 | +--ro loopback-mode? boolean
 | +--ro description? string
 | +--ro enabled? boolean
 | +--ro ifindex? uint32
 | +--ro admin-status enumeration
 | +--ro oper-status enumeration
 | +--ro last-change? oc-types:timeticks64
 | +--ro logical? boolean
 | +--ro counters
 | +--ro in-octets? oc-yang:counter64
 | +--ro in-pkts? oc-yang:counter64
 | ...

 augment "/oc-if:interfaces/oc-if:interface/oc-if:config" {

 leaf forwarding-viable {

 type boolean;

 default true;

 }

 }

+--rw forwarding-viable? boolean

Models are easy to augment,
use, and test.

Compile and re-generate
topology.

Closed Loop Control Relies on Telemetry

Switch

pkt pkt

INT
Collector

Switch

pkt
INT

INT

Control and Mangement Plane

P4Runtime OpenConfig
 & gNMIReport Report

Device
Telemetry
Collector

Control
Application

#3
Leverage Open Source Components

Providing an Implementation
Open Interfaces and Models are necessary, but not sufficient, for
multi-vender interoperability.

Interfaces are defined by running code, so providing an open
source implementation helps solidify the interfaces and models.
This is not a standards exercise.

If the open source is a fully production ready distribution (ready
to run and deploy these interfaces), we can avoid bugs in
different vendor implementations and improve time to market.

Stratum: Next Generation Data Plane

● Vendor Neutral
● Extensible

Stratum High-level Architectural Components

kernel

hardware

user
Common (HW agnostic)
Chip specific
Platform specific
Chip and Platform specific

P4 Runtime gNMI gNOI

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chassis
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O,

Tunnel

Platform
Manager

Remote or Local Controller(s)

Switch SDK Platform API

Switch Chip Drivers Platform Drivers

Switch Chip(s) Peripheral(s)

PI and fpm-based
implementations

St
ra

tu
m

 s
w

itc
h

ag
en

t

ONLP

Stratum Implementation Details
● Implements P4Runtime, gNMI, and gNOI services
● Controlled locally or remotely using gRPC
● Written in C++11
● Runs as a Linux process in user space
● Can be distributed with ONL
● Built using Bazel

Available to the public end of August 2019!

Comprehensive Test Framework
Is an open-source implementation enough for interop?
How to we prevent implementation discrepancies?

There will be other implementations, and they need to be qualified.
We also need to make sure that vendor-specific pieces are
implemented as expected.

Solution: Provide a vendor-agnostic, “black box” test framework
for any target that complies with Stratum open APIs (P4Runtime, gNMI,
gNOI) along with a repository of tests.

Writing Test Vectors

Test framework

Switch Under Test

gRPC

Traffic generators and validators

Switch Ports

Test Vector

Test Case

Stimulus 1
Stimulus 2
...

Expectation 1
Expectation 2
...

Test Vectors

Test Vectors serve as compliance tests for
Stratum-based devices.

They can be written manually or generated
automatically

- Stratum comes with a Contract Definition
language (cdlang) for generating test vectors

Black Box Qualification

Product
Requirements

Vendor Test
(Vendor)

Functional Test
on standalone

testbeds

Integration Test
in fabric testbeds

with SDN
controller

Release (or
further SDN

controller
qual)

Vendor

P4 specs,
YANG models,

open APIs

Misc. input
(trace, etc)TV creation or

mod

Body of TVs

Slide courtesy of Google

Vendor space

Operator space

Open
Source

Project Genesis

Seed Code and Community

...

µONOS
rationale & tenets for next-gen SDN controller

NG SDN Controller Architecture

Topology

Protocols & Drivers

SB API

NB API

Apps

Configuration

gNMI/gNOI

gNMI/gNOI

Control

P4Runtime

P4Runtime

RAN

SB API

NB API

NG SDN Controller Architecture

network

k/v

k/v

k/v

cfg
gNMI/gNOI

gNMI/gNOI/+

ctl
P4Runtime

P4Runtime/+

ctl
P4Runtime

P4Runtime/+

control
P4Runtime

P4Runtime/+config
gNMI/gNOI

gNMI/gNOI/+topology
NetModel

NetDisco

discovery

topology
NetModel

NetDisco

discovery

certs
NetCerts

certs
NetCerts helm

 / k8s

app

adapter
gNMI/gNOI/P4Runtime

various protocolsadapter
gNMI/gNOI/P4Runtime

various protocols

ran
gRNI

ran
gRNI

ran
SD-RAN

gRNI

app
app

Configuration Subsystem
● Work hosted under GitHub in the open

○ http://github.com/onosproject/onos-config

● Primarily staffed by ONF at this point
○ external contributions are wanted and welcome

● Bi-weekly updates and demos given at ONOS TST
○ deployment via Helm/Kubernetes
○ multi-device transactions and rollback
○ integrated validation of data via ygot
○ Atomix 4.x with support for gRPC and Go primitives client libraries
○ currently prepping start work on distributed stores

● Planning ONF Connect demos

http://github.com/onosproject/onos-config

Topology Subsystem
● Exploring use of Google’s Unified Network Model

○ initiating discussions with Google about using UNM or a derivative
○ UNM was part of Jeff Mogul’s presentation at Stanford last year

● Goal is to use UNM-like model as a canonical representation
○ allows to capture design intent and supports schema evolution

○ ability to project to alternate representations, eg.
■ RFC 8345 IETF Network Topology model to exchange topology data and changes to

topology state
■ custom graph structures and gRPC streaming for run-time performance

Control & RAN Subsystems
● SB API for the subsystem will be P4Runtime

○ well-defined, low-profile interfaces with support for transactions
○ allows direct use with Stratum-compliant switches
○ adapters can be created for devices that do not support P4Runtime

● NB API will be P4Runtime and admin APIs
○ requires network-wide table mapping, e.g. network-sized chassis
○ design work for amin and diagnostic APIs will start shortly

● Provide abstractions and controls relevant to the RAN domain
○ near real-time requirements, e.g. latency sensitive, predictable

46

Looking Ahead
● ONOS 2.x already supports P4Runtime and gNMI
● With ONOS 2.x being a stable platform for some time to come, now

is the time to consider next generation architecture

● With Stratum starting to materialize as UPAN data plane, now is the
time to consider UPAN control plane

● Goal is to establish the next generation SDN controller architecture
○ kicked off collaboration at start of 2019
○ completely in the open and with the help of the community at large

● Project is named µONOS and will become ONOS 3.0 when ready

● Continue to curate ONOS 1.x & 2.x maintenance and releases
○ core team to do LTS bug fixes, code reviews and release engineering
○ community to continue new feature and applications development

Using Docker to Deploy Applications

Host OS: Linux

Shared libraries / runtime

Control Plane / SDN App

container

whitebox
server

whitebox
switch

Host OS: Linux

Shared libraries / runtime

Stratum Agent / Network Fn.

container

Using Kubernetes to Deploy to Common Infra

Container
Repository

charts

CI Testing
Goal is continuous (daily!) deployment

Deploy components on common infrastructure
● Deploy control plane and data

plane functions on a converged
network infrastructure

● Place functions in appropriate
locations using an intelligent
scheduler

● Deploy functions on hardware
that meets performance needs

Traffic
Engineering

LB LB

BGP

Smart NIC

LB

IPSEC

Config
Management

Traffic
Engineering

BGP

Smart NIC

IPSEC

Config
Management

Traffic
Engineering

BGP

Smart NIC

IPSEC

Config
ManagementNetwork

Function
Control Plane

Function

Next Generation SDN picture

Stratum Stratum

Stratum Stratum Stratum

SDN Control
Services

P4Runtime
spine.p4spine.p4

leaf.p4 leaf.p4 leaf.p4

Configuration
Services

gNOI

Monitoring &
Telemetry
Services

OpenConfig
gNMI

Admin &
Orchestration

Services

Enabling the Next Generation of SDN
● Development of New Technologies

○ Hardware: Programmable ASICs, FPGAs, Smart NICs
○ Software: P4

● Adopt “cloud mindset” for deployment and management
○ Zero touch operations
○ Containerization

● Leverage Open Source Components
○ Data planes, control planes, networks functions, and apps

If this sounds interesting, please get involved!
For questions, email brian@opennetworking.org

Backup Slides

Stratum Use Cases

53

54

OF-DPA OF-DPA OF-DPA

Stratum OF-DPA

ONOS

Trellis
(Segment routing, multicast, vRouter, etc)

In-band Network
Telemetry (INT)

VNF Offloading
Control (S/PGW)

OF-DPA

Stratum Stratum

Stratum

P4Runtime OpenFlow

Internet

Upstream
BGP routers

Mixed P4/OpenFlow
multi-vendor

white-box switches
Broadcom, Barefoot,

Edge-Core, Inventec, Delta

Multicast video
source

INT
collector

Telemetry collector
Barefoot DeepInsight

End hosts

Central office

Stratum

P4 SmartNIC
Netcope

INT+S/PGW

INT INT

INT

INT

INT

fabric.p4
- L2/L3/MPLS
- INT
- GTP termination

GTP
traffic

INT
reports

Field
office

Base station
(emulated)

Architecture

P4 program

Life of a Whitebox Switch: Day 0 to Day N

1. Design
2. Installation & Bootstrap
3. Switch Configuration
4. Start the Data Plane
5. Monitoring & Telemetry
6. Reboot
7. Upgrade

Network
Design

Installation
and

Bootstrap

Switch
Configuration

Start the
Data Plane

Maintenance
or Upgrade

Monitoring and Troubleshooting

Slide

fro
m NTT

Slide

fro
m NTT

Slide

fro
m NTT

Slide

fro
m NTT

• Centralized control does not mean the entire network must have one controller.

• Rather we opt for a network of controllers, enabled by ONF CORD, Trellis and Stratum.

• Freedom to use different protocols or RPC at outside controllers.

• Facilitates integration with legacy networks.

Transforming Tencent’s Network: One Datacenter at a Time

• Data center fabric as disaggregated modular switch

Fabric
Cards

Line
Cards

Switch
OS →

→

→

Spine/Core
Switches

Leaf/ToR
Switches

Data Center SDN
Controller

ToR ToR ToR
Leaf
ToR

Spine Spine Spine

Leaf Leaf Leaf
ToR
Leaf

SDN Controller

Data Center Fabric

Outside
(Legacy)
Networks

gNxI

BGP

MPLS

ISIS

behaves like one network element

P4

Slide from Tencent

