
OMEC in a Kubernetes
Orchestrated Environment

Saikrishna Edupuganti

Disclaimer

This presentation contains the general insights and opinions of Intel Corporation (“Intel”). The
information in this presentation is provided for information only and is not to be relied upon for any
other purpose than educational. Use at your own risk! Intel makes no representations or warranties
regarding the accuracy or completeness of the information in this presentation. Intel accepts no duty
to update this presentation based on more current information. Intel is not liable for any damages,
direct or indirect, consequential or otherwise, that may arise, directly or indirectly, from the use or
misuse of the information in this presentation.
Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted
by this document.
Intel, the Intel logo and Xeon are trademarks of Intel Corporation in the United States and other
countries.
*Other names and brands may be claimed as the property of others.
© 2019 Intel Corporation.

2

Agenda

Enabling OMEC Network Functions

Current status

Operator

3

Enabling OMEC Network Functions

OMEC

4

Enabling OMEC Network Functions

Hugepages

5

Enabling OMEC Network Functions

CPU Isolation/Affinity

6

Enabling OMEC Network Functions

Multiple Network Interfaces

Multus: Intel, RedHat driven effort

Allows Pod to have multiple
interfaces

Calls other CNIs but reports back to
k8s/CRI result of primary CNI

7

Enabling OMEC Network Functions

Multiple Network Interfaces

Bypasses k8s, so BYO service
discovery, load-balancing, network
policy

Alternatives

● nokia/danm
● networkservicemesh (cisco)

8

https://github.com/nokia/danm
https://github.com/networkservicemesh/networkservicemesh

Enabling OMEC Network Functions

High-speed Network IO

Currently SR-IOV the only choice: Linux/DPDK

Device plugin helps with scheduling

Need Multus or enlightened CNI, to connect device
plugin allocated with netdev to move into netns

Used only as secondary interface to the pod, so
same limitations - bypasses k8s, BYO ...

9

Enabling OMEC Network Functions

High-speed Network IO

Device plugin helps with
scheduling

Need Multus or enlightened
CNI, to move device plugin
allocated netdev into netns

10

Enabling OMEC Network Functions

High-speed Network IO

Implemented vfioveth CNI for DPDK mode

Create representor veth pair inside netns

Set MAC, IP & routes on one end

DPDK app uses the other end to send/receive
control plane packets to/from the kernel

11

Enabling OMEC Network Functions

High-speed Network IO

Implemented vfioveth CNI for DPDK mode

Create representor veth pair inside netns

Set MAC, IP & routes on one end

DPDK app uses the other end to send/receive
control plane packets to/from the kernel

12

Host netns App netns

Network
Function

NIC

User

Kernel

VFIO
AF
PACKET

PF VFnethn ethn
peer

Enabling OMEC Network Functions

Manual/bare-metal vs Automated/k8s

NUMA impact untested. Expected to land in k8s 1.16

13

https://github.com/kubernetes/kubernetes/issues/72828

Agenda

Enabling OMEC Network Functions

Current status

Operator

14

Current status

Dockerfiles

● SPGW-C, SPGW-U, HSS, HSS-DB, OpenMME

k8s YAMLs

● SPGW-C, SPGW-U in tree omec-project/ngic-rtc/deploy/k8s
● HSS and HSS-DB are in PR omec-project/c3po/pull/21
● OpenMME not present

COMAC-in-a-box

15

https://github.com/omec-project/ngic-rtc/tree/master/deploy/k8s
https://github.com/omec-project/c3po/pull/21

Agenda

Enabling OMEC Network Functions

Current status

Operator

16

Operator

Custom Resource Definition + Controller

17

Operator

Custom Resource Definition + Controller

18

Operator

Custom Resource Definition + Controller

● Currently internal
● Instantiate EPC as k8s custom resource,

controller will bring up individual
components

● Scale SPGW-C and SPGW-U 1:1 based
on active session Prometheus metrics

● Implemented S11 TEID load-balancer to
pick backend SPGW-C instance

19

Custom Resource Definition + Controller

Operator

20

