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Enabling OMEC Network Functions

OMEC
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Enabling OMEC Network Functions

Hugepages

5



Enabling OMEC Network Functions

CPU Isolation/Affinity
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Enabling OMEC Network Functions

Multiple Network Interfaces

Multus: Intel, RedHat driven effort

Allows Pod to have multiple 
interfaces

Calls other CNIs but reports back to 
k8s/CRI result of primary CNI
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Enabling OMEC Network Functions

Multiple Network Interfaces

Bypasses k8s, so BYO service 
discovery, load-balancing, network 
policy

Alternatives

● nokia/danm
● networkservicemesh (cisco)
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https://github.com/nokia/danm
https://github.com/networkservicemesh/networkservicemesh


Enabling OMEC Network Functions

High-speed Network IO

Currently SR-IOV the only choice: Linux/DPDK

Device plugin helps with scheduling

Need Multus or enlightened CNI, to connect device 
plugin allocated with netdev to move into netns

Used only as secondary interface to the pod, so 
same limitations - bypasses k8s, BYO ...
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Enabling OMEC Network Functions

High-speed Network IO

Device plugin helps with 
scheduling

Need Multus or enlightened 
CNI, to move device plugin 
allocated netdev into netns
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Enabling OMEC Network Functions

High-speed Network IO

Implemented vfioveth CNI for DPDK mode

Create representor veth pair inside netns

Set MAC, IP & routes on one end

DPDK app uses the other end to send/receive 
control plane packets to/from the kernel

11



Enabling OMEC Network Functions

High-speed Network IO

Implemented vfioveth CNI for DPDK mode

Create representor veth pair inside netns

Set MAC, IP & routes on one end

DPDK app uses the other end to send/receive 
control plane packets to/from the kernel

12

Host netns App netns

Network 
Function

NIC

User

Kernel

VFIO
AF
PACKET

PF VFnethn ethn
peer



Enabling OMEC Network Functions

Manual/bare-metal vs Automated/k8s

NUMA impact untested. Expected to land in k8s 1.16
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https://github.com/kubernetes/kubernetes/issues/72828
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Current status

Dockerfiles

● SPGW-C, SPGW-U, HSS, HSS-DB, OpenMME

k8s YAMLs

● SPGW-C, SPGW-U in tree      omec-project/ngic-rtc/deploy/k8s
● HSS and HSS-DB are in PR   omec-project/c3po/pull/21
● OpenMME not present

COMAC-in-a-box
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https://github.com/omec-project/ngic-rtc/tree/master/deploy/k8s
https://github.com/omec-project/c3po/pull/21


Agenda

Enabling OMEC Network Functions

Current status

Operator

16



Operator

Custom Resource Definition + Controller 
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Operator

Custom Resource Definition + Controller 
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Operator

Custom Resource Definition + Controller 

● Currently internal
● Instantiate EPC as k8s custom resource, 

controller will bring up individual 
components

● Scale SPGW-C and SPGW-U 1:1 based 
on active session Prometheus metrics

● Implemented S11 TEID load-balancer to 
pick backend SPGW-C instance
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Custom Resource Definition + Controller 

Operator
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