
Test Vector Framework
for Stratum Enabled Switches

Abhilash Endurthi, You Wang
Open Networking Foundation

● Introduction
● Test Vector Details
● Test Vector Runner Details
● Next Steps

2

Outline

● What are we trying to achieve?
○ Develop set of vendor agnostic tests to certify a switch as Stratum compliant
○ Develop a framework (runner) to execute the tests

● How?
○ Using black box methodology
○ Data driven tests

● What is our device under test?
○ Switches running Stratum
○ Switches that comply with Stratum open APIs (gNMI, gNOI, P4Runtime)

3

Introduction

Source: Black Box Testing of Stratum Enabled Switches, ONF Connect 2018

● Separate test definitions from test infra
○ Vendors use different infra/frameworks/programming

languages for testing
○ A way to define tests so that they could be easily

supported by various test infra
● A compact way of defining test input/output

○ TV = {TCi } where TCi = (Actionsi , Expectationsi)
○ Actions and Expectations: Open APIs accesses and

external stimuli (port events, dataplane packet IO, etc.)

Test Vectors Overview

Test Vectors

Test Framework

Switch Under Test

Source: Black Box Testing of Stratum Enabled Switches, ONF Connect 2018

Black Box Testing with Test Vectors

Test Vectors Runner
Traffic

generator

Switch Under Test

Test Vectors
Generators

Humans

Vendors

TV repo

P4RT gNMI gNOI ports

Source: Black Box Testing of Stratum Enabled Switches, ONF Connect 2018

Test Vector

Test CaseTest CaseTest Case

Action 1
Action 2
...

Expectation 1
Expectation 2
...

P4 specs & P4Info

SDN Controller Trace

Topology Info

● Introduction
● Test Vector Details
● Test Vector Runner Details
● Next Steps

6

Outline

• Coded using protobufs
• TV protobuf definition is open sourced with Stratum
• gNMI, gNOI and P4Runtime also use protobufs
• Language specific source code can be generated for classes

using protoc compiler

Test Vector

8

Test Vector Definition
Test Vector

Target Test Case

test_case_id Action Group Expectation

action_group_id

Parallel Action Group

Sequential Action Group

Randomized Action Group

Optional attribute

Oneof attribute

Repeated attribute

Action

Action Definition

Requirement
Config

Operation
Control Plane

Operation
Management

Operation
Data Plane

Stimulus
Port Stimulus Alarm Stimulus

gnmi.SetRequest

gnmi.SetResponse

Write Operation

Packet Out
Operation

Pipeline Config
Operation

Security
Operation

Diag Operation

System
Operation

File Operation

Traffic Stimulus gnmi.Path

State

gnmi.Path

Optional attribute

Oneof attribute

Repeated attribute

Expectation Definition
Expectation

expectation_id
Control Plane
Expectation

Telemetry
Expectation

Data Plane
Expectation

gnmi.GetRequest

gnmi.GetResponse

Read
Expectation

Packet In
Expectation

Pipeline Config
Expectation

Requirement

gnmi.SubscribeRequest

Action Group

gnmi.SubscribeResponse

Traffic
Expectation

Optional attribute

Oneof attribute

Repeated attribute

Test Vector Example
sequential_action_group: <

>

test_cases: <

 test_case_id: “tc2”
>

test_cases: <

 test_case_id: “tc1”
>

action_groups: <

 action_group_id: “ag1”
>

action_groups: <

 action_group_id: “ag2”
>

expectations: <

 expectation_id: “e1”
>

expectations: <

 expectation_id: “e2”
>

...

...

...

...

actions: <
 control_plane_operation: <
 write_operation: <
 p4_write_request: <

 >
 >
 >
>

actions: <
 data_plane_operation:<
 traffic_stimulus:<
 packets: <
 payload: “”
 >
 ports: 2
 >
 >
>

...

control_plane_expectaion: <
 read_expectation: <
 p4_read_request: <

 >
 p4_read_response: <

 >
 >
>

data_plane_expectation: <
 traffic_expectation: <
 packets: <
 payload:””
 >
 ports:2
 >
>

...

...

test_cases: <
 action_groups: <
 …

 action_group_id: “ag1”
 >
 action_groups: <
 …

 action_group_id: “ag2”
 >
 expectations: <
 …

 expectation_id: “e1”
 >
 expectations: <
 …

 expectation_id: “e2”
 >
 test_case_id: “tc1”
>
test_cases: <
 …

 test_case_id: “tc2”
>

sequential_action_group: <
 actions: <
 control_plane_operation: <
 write_operation: <
 p4_write_request: <

 ...

 >
 >
 >
 >
 actions: <
 data_plane_operation:<
 traffic_stimulus:<
 ...

 >
 >
 >
>

control_plane_expectation: <
 read_expectation: <
 p4_read_request: <

 …
 >
 p4_read_response: <

 …
 >
 >
>

test_cases: <
 action_groups: <
 …

 action_group_id: “ag1”
 >
 action_groups: <
 …

 action_group_id: “ag2”
 >
 expectations: <
 …

 expectation_id: “e1”
 >
 expectations: <
 …

 expectation_id: “e2”
 >
 test_case_id: “tc1”
>
test_cases: <
 …

 test_case_id: “tc2”
>

data_plane_expectation: <
 traffic_expectation: <
 packets: <
 payload: “”
 >
 ports: 2
 >
>

● p4runtime
○ PktIoOutDirectToDataPlaneTest
○ PktIoOutToIngressPipelineAclPuntToCpuTest
○ PktIoOutToIngressPipelineAclRedirectToPortTest
○ PktIoOutToIngressPipelineL3ForwardingTest
○ PacketIoOutDirectLoopbackPortAclTest
○ PacketIoOutDirectLoopbackL3ForwardingTest
○ RedirectDataplaneToCpuACLTest
○ RedirectDataplaneToCpuNextHopTest
○ RedirectDataplaneToDataplaneTest
○ L3ForwardTest

15

Test Vectors Implemented

● gnmi
○ Subscribe_Health_Indicator
○ Config_expectation_1
○ Config_expectation_2
○ …
○ Config_expectation_36

● e2e
○ SubRedirectDataplaneToDataplane

● Targets supported: bmv2, Barefoot Tofino, Broadcom Tomahawk

● Introduction
● Test Vector Details
● Test Vector Runner Details
● Next Steps

16

Outline

● Reference implementation written in Golang
○ Uses Go testing framework

● Target independent
○ Runs with bmv2/hardware switches
○ By reading different input files: target/port-map/test vectors

● Easy to deploy
○ Provides tools to deploy and run as container/binary

17

Test Vector Runner

gRPC

orchestrator

18

Test Vector Runner Architecture

main

Action
Processor

Switch Under Test

Expectation
Processor

Framework

P4RT gNMI Dataplane

Logger

Packet

Connect

...

Data plane
interfaces

Test Vector

Test CaseTest Case

...

Test Case

Action 1
Action 2
...

Expectation 1
Expectation 2
...

Test Vector

Test Vector

Test Suite testing.main([]testing.InternalTest{

})

Test Vector A

Test Vectors and Go Testing

Action 1: p4_write
Action 2: packet_out
...
Expectation 1: gnmi_get
Expectation 2: packet_exp
...

Test Vector B

Test Case 2

testing.InternalTest{
 Name: “Test_Vector_A”
 F: func(t *testing.T) {

 }
}

testing.InternalTest{
 Name: “Test_Vector_B”
 F: func(t *testing.T) {}
}

t.Run(“Test_Case_1”, func(t *testing.T) {

}

...

...

 ProcessP4WriteRequest(request)
 ProcessPacketOutOperation(request)
 ...
 ProcessGnmiGetRequest(request)
 ProcessTrafficExpectation(packet, port)
 ...

t.Run(“Test_Case_2”, func(t *testing.T) {}

Action

20

TV Runner - Actions

Requirement
Config

Operation
Control Plane

Operation
Management

Operation
Data Plane

Stimulus
Port Stimulus Alarm Stimulus

gnmi.SetRequest

gnmi.SetResponse

Write Operation

Packet Out
Operation

Pipeline Config
Operation

Security
Operation

Diag Operation

System
Operation

File Operation

Traffic Stimulus gnmi.Path

State

gnmi.Path

Optional attribute

Oneof attribute

Repeated attribute

Implemented

Not implemented

21

TV Runner - Expectations
Expectation

expectation_id
Config

Expectation
Control Plane
Expectation

Telemetry
Expectation

Data Plane
Expectation

gnmi.GetRequest

gnmi.GetResponse

Read
Expectation

Packet In
Expectation

Pipeline Config
Expectation

Requirement

gnmi.SubscribeRequest

Action Group

gnmi.SubscribeResponse

Traffic
Expectation

Optional attribute

Oneof attribute

Repeated attribute

Implemented

Not implemented

Test Execution

Test Execution

Container

Data plane
interfaces

gRPC

24

Deployment Scenarios

Hardware Switch

Server

bmv2
Software Switch

TV Runner

TV Repo

TV Runner

vethgRPC

TV Runner Repo

deploy

deploy

Scenario 1 Scenario 2

● Introduction
● Test Vector Details
● Test Vector Runner Details
● Next Steps

25

Outline

● Hand written test vectors
○ Tedious
○ Time consuming
○ Error prone
○ Hard to debug

● Semi automatically generated
○ P4RT write requests from stratum log
○ Pipeline config from P4RT generated

binaries and json files
○ gNMI get operations using list of

paths
26

Test Vector Generation - Current Approach

● Automatic generation of test vectors based on input from
○ Chassis config
○ SDN controller trace
○ ATPG (Automatic Test Packet Generation)

27

Test Vector Generation - Next Steps

Container Hardware Switch

Hardware
Switch

28

More Testing Scenarios

Server

TV Runner

TV RepoTV Runner Repo
deploy

Scenario 1 Scenario 2 Scenario 3

ASIC
gRPC

Port 1 Port 2

PktOut PktIn

Server

TV Runner

Scenario 4

Traffic
Generator

gRPC

deploy

● Test Vectors
○ Adding more test vectors to the repo
○ Adding test vector generators, utility functions for automated

test vector generation
● Test Vector Runner

○ Support missing operations
○ Support more deployment scenarios

29

Call for Community Help

Thank You

Follow Up Links:
https://stratumproject.slack.com/

abhilash@opennetworking.org you@opennetworking.org

