s O M—

2NN ECT

Query Your Network Like a Database

Andreas Voellmy, PhD
Forward Networks
Andreasvoellmy@forwardnetworks.com
@AndreasVoellmy

mailto:Andreasvoellmy@forwardnetworks.com

Once Upon a Time, a Service Provider Came To Us ...

Propagate to rest of

. network and Internet
@ U

Commoni MR T I BGP advertisements

Parent Org Downstream Network

BGP Import Policy Filters

Import policy:
N’ U + filter if community X present
V R + filter if AS path matches some pattern

v v + routes introduced by other protocols
Upstream

Policy change
+ starts using community X
2 + starts prepending and triggers pattern
A\ + starts announcing new route

Downstream

Upstream

Downstream

Policy Problem May Be Latent

Primary

Problem only becomes apparent when

r\, / failover occurs
u2
: SLAs mean this is an expensive outage
2
= D2
Backup

Plan: Proactively Detect The Problem

i IPv4 FIB

—

[Advertised routes not installed]

Upstream

at U

Advertised BGP routes —/
O
@)

Downstream

Simple, Important, but Hard to Answer

Hard to answer these questions on a large (10K+ devices), heterogeneous
(100s of vendor/OS combinations) network.

NetConf and other APIs are not widely supported on today’s networks.

The only workable solution for network operators today:

+ SSH and grab text
+ Parse poorly-documented, unstructured outputs

+ Organize the data set ...

Example: Get interface status on two devices

Cisco NX-0OS: two commands needed

interface Ethernetl/3

shutdown

switchport
switchport
speed 1000
switchport

mode private-vlan host
access vlan 50

private-vlan host-association 50 2000

interface Ethernetl/4
switchport mode private-vlan trunk secondary
speed 1000
no shutdown

switchport private-vlan trunk native wvlan 2000

switchport private-vlan trunk allowed wvlan 1000,2000
switchport private-vlan association trunk 50 1000

Ethernet
Interface

Ethl/1
Ethl/2
Ethl/3
Ethl/4

Type Mode

access
access
access
access

Staths

Reason

none
Administratively down
Administratively down

1000(D)
1000 (D)
auto (D)
auto (D)

A10: one command

Ethernet 10 is up,
Hardware is 10Gig,

Flow Control is disabled, IP MTU is 9216 bytes

line protocol is up

Address is 001f.a011l.8dde
Member of L2 Vlan 601, Port is Tagged

Member of trunk group 1

Trunk ID

Trunk Name
Trunk Status
Trunk Type
Admin Key
Members

Cfg Status

Oper Status
Ports-Threshold
Working Lead

Trunk ID

Trunk Name
Trunk Status
Trunk Type
Admin Key
Members

Cfg Status

Oper Status
Ports-Threshold
Working Lead

Different commands to run and formats to parse,

even for the most basic data.

: 1 Member Count: 2
: None

: Up

: Dynamic (LACP)

: 1001

: 9 10

: Enb Enb

: Up Up

: None

: 9

: 16 Member Count:
: None

: Up

: Dynamic (LACP)

: 1016

: 1 2

: Enb Enb

: Up Up

: None

: 2

2

Simple, Important, but Hard to Answer

+ “interface status, BGP session, ... we could deploy a person for 6 months to
do this.... 80% of the effort is collecting and parsing...”

+ The work would be duplicative

+ ... butin fact mostly does not get done: operators are mostly not
programmers and are otherwise busy fixing stuff.

Let’s Rethink This

What if we had a database of network infor
we could just query it?

SP Network Query

“Are there any BGP routes advertised by
downstream BGP routers that are not install

upstream router’s FIB?”

Many Other Examples

+ Ad-hoc questions:

+ Where have we defined VLAN 100?
+ Desired invariants:

+ Do all my connected interfaces use the same MTU?
+ Bad states:

+ Are any of my expected BGP sessions in a bad state?

Forward Network Query Engine (NQE)

Forward provides access to structured, normalized data
about the network, so that users can query their network like a
database.

NQE: Query Your Network Like a Database!

Vendor-specific configuration files
and state information

Physical interface: ge-@/@/0, Enabled, Physical link is Up
Interface ind 139, SNMP ifIndex: 513
Link-level type: Ether MTU: 1514, MRU: 1522,
Pad to minimum frame size: Disabled
Device flags : P nt Running
Interface flags: SNMP-Traps Internal: 9x4000
Link flags : None
CoS gueues 8 supported, 8 maximum usable que
Current address
Last flapped
Input rate : bps (1 pps
Output rate 1 224 bps (@ pp
Active alarms : None
Active def s @ None
Interface transmit statistics: Disabled

Logical interface ge-@.
9x4034000 Encapsulation: ENETZ
Input packe
Output pack
Protocol inet, MTU: 1500
Flags: Sendbca: t N ' y
Addresses, Flags: ed Is-Primar
D ination: 10.100.0.78/31, Local: 19.100.0
MTU: 1

ice, MTU: Unlimited
Flags: Is-Primary

lcal ir :
Interface index: 136, SNMP 1
Speed: 800mbps
Device flags : Present Running
Link flags : None
Last flapped : Never

Input packets [}

Output pack)

, Physical L

0.9 (Index 329) (SNMP 1fIndex 525)

Structured, normalized schema based on
Forward data model

model String
os 0s!

/ osVersion String

name String!
interfaceType IfaceType!
mt Int
loopbackMode Boolean!
description String
adminStatus AdminStatus!
OperStatus!

subintertaces [)

operStatus

ethermet]
routedVian

bridge

aggregation

tunnel

networkinstances teTunnel

bgpRib links

\

Networkinstance

name String!
instanceType NetworkinstanceType!
afts

intertaceNames

Vvians

Possible query of network
schema and results

Sample query (concept):

“Which devices have
interfaces with different
operational and admin
states?”

Formatted results:

Device Adi Oper
Status Status
atl-lb01 13 up DOWN

ath-b01 14 upP DOWN

sjc-ce01 ge-0/0/1 up DOWN

sjc-ce02 ge-0/0/5 upP DOWN

NQE: Single query works on all supported devices

Vendors

V/Symantec - tllllllll H .
amsta AV aws BLUE COAT cisco CITRIX

CUMULUS # ‘ i 1 F:i:ATINET ma?m?m JunipPer PICAE

NQE Walkthrough: SP Use Case

“Are there any BGP routes advertised by my
downstream BGP routers that are not installed in their
upstream router’s FIB?”

U > IPv4 FIB -\
o

Advertised routes
not installed at U

» Advertised BGP routes /
@)

Upstream

Downstream

NQE Walkthrough: Forward Ul

“®

Verify

888
Objects

B8

Inventory

Flows

&

Settings

GraphQL
REST API

AV-SP-NQE-DEMO ~ 2019-09-04 1:31:08 PM v

L. (@ andreasvoellmy (Y

NQE Walkthrough: Query Editor

Forward Networks Network Query Explorer by For X +

C' & app.forwardnetworks.com/network-query-explorer

£ Network Query Explorer (0] 2019-09-04 1:31:08 pm ¢ < Device

m { Q Search Iface...

"data": { o
{ "devices": [No Description
1v

2~ devices { E
3 name
platform {
os

" w. o "
name mxQ1", FIELDS

name: String!

The name of the interface.

interfaceType: IfaceType!

The type of the interface.

mtu: Int

Set the max transmission unit size in octets for the physical
interface.

loopbackMode: Boolean!

When set to true, the interface is logically looped back, such that
packets that are forwarded via the interface are received on the
same interface.

description: String
QUERY VARIABLES

A textual description of the interface.

Editor Results Schema Docs ©

O ©)

NQE Walkthrough: BGP advertised routes

[] Forward Networks Network Query Explorer by For X +

© @ app.forwardnetworks.com

@ Network Query Explorer

< Afisafi AfiSafiNeighbor

Q_ Search AfiSafiNeighbor...

No Description
1v{
2~ devices {
3 name
4 bgpRib {
S5+ afiSafis {
afiSafiName
7~ neighbors {
neighborAddress
adjRibOutPost {
routesPage {
items {
prefix
pathAttributes {
asPath {

FIELDS

neighborAddress: IpAddress!

The address of the neighbor (peer).

adjRibInPost: AfiSafiNeighborAdjRib

This is a per-neighbor table containing the routes received from the
neighbor that are eligible for best-path selection after local input
policy rules have been applied. Only available on JunOs, |0S, 10S-
XE, NX-OS, and I0S-XR. Note that on some platforms, these routes
may not show import policy modifications.

members

adjRibOutPost: AfiSafiNeighborAdjRib

Per-neighbor table containing paths eligble for sending (advertising)
to the neighbor after output policy rules have been applied. Only
available on JunOs, I0S, I0S-XE, NX-0S, and I0S-XR.

QUERY VARIABLES

NQE Walkthrough: Get IPv4 Routes

[Forward Networks Network Query Explorer by For X +

€ & app.forwardnetworks.com/n
SR GO SN ST Av-sP-NQE-DEMO + [l (61 2019-09-04 1:31:08 pm ¢ < Networkinstance

Q Search Afts...

The abstract forwarding tables (AFTs) that are associated with the
network instance. An AFT is instantiated per-protocol running within
the network-instance - such that one exists for IPv4 Unicast, IPv6
Unicast, MPLS, L2 forwarding entries, etc. A forwarding entry within
the FIB has a set of next-hops, which may be a reference to an entry
within another table - e.g., where a Layer 3 next-hop has an
associated Layer 2 forwarding entry.

2~ devices {
3 name
4~ networkInstances {
name
instanceType
afts {
ipv4Unicast {
ipEntriesPage {
items {
prefix
nextHops {
ipAddress
originProtocol

FIELDS

ipv4Unicast: IpUnicast

The abstract forwarding table for IPv4 unicast. Entries within this
table are uniquely keyed on the IPv4 unicast destination prefix
which is matched by ingress packets. The data set represented by
the IPv4 Unicast AFT is the set of entries from the IPv4 unicast RIB
that have been selected for installation into the FIB of the device.

ipv6Unicast: IpUnicast

The abstract forwarding table for IPv6 unicast. Entries within this
table are uniquely keyed on the IPv6 unicast destination prefix
which is matched by ingress packets. The data set represented by
the IPv6 Unicast AFT is the set of entries from the IPv6 unicast RIB
that have been selected for installation into the FIB of the device.

QUERY VARIABLES

+ Simple, small script:
Runs both queries, compares routes, prints violations.

+

Found the following violations:

Prefix AS Path

192.121.121.0/24 [1, 1, 1, 1,
31.168.160.0/20 [6500, 3356,
204.235.115.0/24 [1, 1, 1, 1,
216.206.127.0/24 [1, 1, 1, 1,
37.46.200.0/21 [6500, 3356,
202.46.240.0/22 Ty by by 1y
23.200.16.0/20 [6500, 3356,

| |

| |

| |

| |

| |

| |

| |

| |

| 203.13.35.0/24 | [1, 1,
| 211.118.176.0/24 |

| |

| |

| |

| |

| |

| |

| |

1

1, 1,

1, 1, 1, 1,

192.251.17.0/24 i, 1, 1, 1,

23.252.160.0/21 [6500, 3356,

202.95.212.0/22 , 1, 1, 1,

198.178.192.0/24 | [1, 1, 1, 1,

24.142.176.0/24 [6500, 3356,

216.57.121.0/24 , 1, 1, 1,

198.136.250.0/24 | [1, 1, 1, 1,
6 rows

NQE Walkthrough: Query Script

6500,
8551,
6500,
6500,
393261
6500, 3356,
2914]

6500, 3356,
6500, 3356,
6500, 3356,

4134, 36678,

6500, 3356,
6500, 3356,

42708, 30893]
8551, 8551]

4323, 3456, 3456, 3456, 3456, 3456, 3456]

54114]
2914, 58463, 18059, 3583]

4637, 1221, 38285, 10113]
3491, 9848, 18305, 18305, 18305]
227731
26484]
2516, 10021, 10021]
701, 702]

19009, 53432]

6500, 3356,
6500, 3356,

5738, 26082]
7018, 2386]

DEET IR ES
Filtered
Upstream
Filtered
Filtered
Upstream
Filtered
Upstream
Filtered
Filtered
Filtered
Upstream
Filtered
Filtered
Upstream
Filtered
Filtered

by upstream BGP import policy
selects different route: STATIC
by upstream BGP import policy
by upstream BGP import policy
selects different route: STATIC
by upstream BGP import policy
selects different route: STATIC
by upstream BGP import policy
by upstream BGP import policy
by upstream BGP import policy
selects different route: STATIC
by upstream BGP import policy
by upstream BGP import policy
selects different route: STATIC
by upstream BGP import policy
by upstream BGP import policy

DROP

DROP

DROP

DROP

DROP

How to Implement a Normalized Network Database?

In theory, this is simple

Core parts of FN Platform NQE-specific

SN N N S S N SN S SN N SN SN SN N SN S N S U N R S S N N R S S N R R SN N R R R S R R R S R S S

RD—

How to Implement a Normalized Network Database?

Collect

Parse

Normalize

—

Query

Query API

Operators are not professional programmers; we wanted a query APl that
was easy to use and required minimal learning.

While other choices may also have worked, GraphQL was a great fit.

|Il

“Query language for your AP

Describe your data Ask for what you want Get predictable results
Project { { {
String project(:) { {
String tagline
[User] } }

} } }

GraphQL: Schemas

+ Network data model is elaborate; users need clear definitions and help
navigating this.

+ GraphQL schema language enables us to describe the model simply and

clearly.
y Ethernet {

MAC Address of the Ethernet interface
MACAddress

The duplex mode that has been negotiated.

DuplexMode
The interface speed that has been negotiated.
PortSpeed

The logical aggregate interface to which this interface belongs.
String

MAC Address of the Ethernet interface

SwitchedVlan

}

+ Great tooling around the schema. O

GraphQL: Easy to Query

+ Queries are simple: they just
follow the data organization

+ Output is JSON and follows the
data organization, with values
filled in.

{
devices {
interfaces {
name
operStatus
adminStatus
}
}
}
{
“data”: {
“devices”: [
{
“name”: “gio/0/0/0”,
“operStatus”: “UP”,
“adminStatus”: “UP”
¥
{
“name”: “gie/e/0/1”,
“operStatus”: “UP”,
“adminStatus”: “DOWN”
Jo o]
}

GraphQL: Easy to Implement

The largest networks present large datasets:
+ 2M+ routes on a single device
+ 600K+ ACLs on a single device

To handle this, Forward implements custom storage formats and data
structures.

GraphQL is agnostic to storage format; allows us to implement queries with
custom logic.

RD—

How to Implement a Normalized Network Database?

Collect

Parse

Normalize

—

Query

Normalization: How to Organize Data?

We are not interested in re-inventing the wheel here.

We based our schemas on

OpenConfig YANG models. COPENCONFIG

Vendor-neutral, model-driven network management designed by users

Operator-driven community, with operator-vetted models, with broad
coverage.

.networ‘k r‘out.ing ting bfd interfaces platform system acl qos
instance policy th
IPv[46] eth lag 1ldp lacp stp EEE) telemetr: openflow i i

routin i B Yy ter‘m:!.nal wavelength uth..c?I MAC PHY

p. s p opti router plif:
tabl protocols
+VRFs poe channel protection

onit switch
is-is ospf_v2 local bgp @)

ib ft rsvp/te

pim igmp aggregate static O O

Marrying OpenConfig with GraphQL

There are some mismatches

+

+

OpenConfig vs GraphQL naming requirements.
Simplified for read-only use case.

Leverage GraphQL's graph database facilities to enable easier linking
between objects.

Expose paging over large collections.

How to implement a normalized network database?

Core parts of FN Platform

@—» Collect P> Parse p=» Normalize > Query

i.aaa
.accounting
4. default
. " . . 4 group
Parsing: Millions of Patterns S
"local §
A authentication
. login
| ascii-authentication $
i.chap
enable $
4-console
- fallback
. leerror
4-group
4. {string} $

Scale: 16 vendors, 23 Oses, 242 OS versions.

none $
i-local §
"-none $

4. default
|- fallback

-group

Example: On just a single device OS (Cisco NX-OS), there are 120k
ways of combining keywords into valid top-level config commands

! invalid-username-log $
. mschap
"--enable $
4..mschapv2
enable $

Critical: streamlined way of ingesting text-based data into the

4-1n
4-{long(1-65535)}

4-ban
| {long(1-65535)} §

model.

config-commands
|..ssh-certificate
ssh-publickey

One of the major focus areas at Forward.

|- group

Collection: Getting the Data in the Real World

All sorts of surprising challenges lurk here.

+ No inventory, no topology
+ Complex infrastructure slows down collection

+ Device failures are common

The Road Ahead

NQE announced in January this year.

We continue to evolve and improve:

+ Continue to expand the data set

+ Explore ways to simplify and make it easier to
query without dropping into scripting.

s O M—

JMMNECT

Thank You

andreasvoellmy@forwardnetworks.com @AndreasVoellmy

We're excited to see what the community does with NQE.

+ Blog post: https://forwardnetworks.com/blog/network-query-engine
+ Github repo: https://github.com/forwardnetworks/network-query-engine-
examples

mailto:andreasvoellmy@forwardnetworks.com
https://forwardnetworks.com/blog/network-query-engine
https://github.com/forwardnetworks/network-query-engine-examples

