
Query Your Network Like a Database

Andreas Voellmy, PhD
Forward Networks

Andreasvoellmy@forwardnetworks.com
@AndreasVoellmy

mailto:Andreasvoellmy@forwardnetworks.com

Once Upon a Time, a Service Provider Came To Us …

Upstream Network

Downstream Network
Common
Parent Org

BGP advertisements

Propagate to rest of
network and Internet

D

U Simple. What could possibly go wrong?

BGP Import Policy Filters

Upstream

Downstream

D

U

Import policy:
+ filter if community X present
+ filter if AS path matches some pattern
+ routes introduced by other protocols

Policy change
+ starts using community X
+ starts prepending and triggers pattern
+ starts announcing new route

Policy Problem May Be Latent

Upstream

Downstream

D2

U2

Problem only becomes apparent when
failover occurs

SLAs mean this is an expensive outage

D1

U1

Primary Backup

Plan: Proactively Detect The Problem

Upstream

Downstream

D

U

Advertised BGP routes

IPv4 FIB

Advertised routes not installed
at U

+ Hard to answer these questions on a large (10K+ devices), heterogeneous
(100s of vendor/OS combinations) network.

+ NetConf and other APIs are not widely supported on today’s networks.

+ The only workable solution for network operators today:
+ SSH and grab text
+ Parse poorly-documented, unstructured outputs
+ Organize the data set …

Simple, Important, but Hard to Answer

Example: Get interface status on two devices

Cisco NX-OS: two commands needed A10: one command

Different commands to run and formats to parse,
even for the most basic data.

+ “interface status, BGP session, … we could deploy a person for 6 months to
do this…. 80% of the effort is collecting and parsing...”

+ The work would be duplicative

+ … but in fact mostly does not get done: operators are mostly not
programmers and are otherwise busy fixing stuff.

Simple, Important, but Hard to Answer

What if we had a database of network information, and
we could just query it?

Let’s Rethink This

SP Network Query

“Are there any BGP routes advertised by my
downstream BGP routers that are not installed in their

upstream router’s FIB?”

+ Ad-hoc questions:

+ Where have we defined VLAN 100?

+ Desired invariants:

+ Do all my connected interfaces use the same MTU?

+ Bad states:

+ Are any of my expected BGP sessions in a bad state?

Many Other Examples

Forward Network Query Engine (NQE)

Forward provides access to structured, normalized data
about the network, so that users can query their network like a

database.

NQE: Query Your Network Like a Database!

NQE: Single query works on all supported devices

NQE Walkthrough: SP Use Case

Upstream

Downstream

D

U

Advertised BGP routes

IPv4 FIB

Advertised routes
not installed at U

“Are there any BGP routes advertised by my
downstream BGP routers that are not installed in their

upstream router’s FIB?”

NQE Walkthrough: Forward UI

NQE Walkthrough: Query Editor

Editor Results Schema Docs

NQE Walkthrough: BGP advertised routes

NQE Walkthrough: Get IPv4 Routes

NQE Walkthrough: Query Script

+ Simple, small script:
+ Runs both queries, compares routes, prints violations.

Time to implement: 6 months à 1 hour

How to Implement a Normalized Network Database?

In theory, this is simple

In practice: challenges in every step of the process.

Collect Parse Normalize Query

NQE-specificCore parts of FN Platform

How to Implement a Normalized Network Database?

Collect Parse Normalize Query

+ Operators are not professional programmers; we wanted a query API that
was easy to use and required minimal learning.

+ While other choices may also have worked, GraphQL was a great fit.

+ “Query language for your API”

Query API

Describe your data

type Project {
name: String
tagline: String
contributors: [User]

}

Ask for what you want

{
project(name: "GraphQL") {
tagline

}
}

Get predictable results

{
"project": {

"tagline": "A query language for APIs"
}

}

+ Network data model is elaborate; users need clear definitions and help
navigating this.

+ GraphQL schema language enables us to describe the model simply and
clearly.

+ Great tooling around the schema.

GraphQL: Schemas

type Ethernet {
MAC Address of the Ethernet interface
macAddress: MACAddress
The duplex mode that has been negotiated.
negotiatedDuplexMode: DuplexMode
The interface speed that has been negotiated.
negotiatedPortSpeed: PortSpeed
The logical aggregate interface to which this interface belongs.
aggregateId: String
MAC Address of the Ethernet interface
switchedVlan: SwitchedVlan

}

+ Queries are simple: they just
follow the data organization

+ Output is JSON and follows the
data organization, with values
filled in.

GraphQL: Easy to Query

{
devices {
interfaces {
name
operStatus
adminStatus

}
}

}

{
“data”: {
“devices”: [
{

“name”: “gi0/0/0/0”,
“operStatus”: “UP”,
“adminStatus”: “UP”

},
{

“name”: “gi0/0/0/1”,
“operStatus”: “UP”,
“adminStatus”: “DOWN”

}, …]
}

}

+ The largest networks present large datasets:
+ 2M+ routes on a single device
+ 600K+ ACLs on a single device

+ To handle this, Forward implements custom storage formats and data
structures.

+ GraphQL is agnostic to storage format; allows us to implement queries with
custom logic.

GraphQL: Easy to Implement

How to Implement a Normalized Network Database?

Collect Parse Normalize Query

+ We are not interested in re-inventing the wheel here.

Normalization: How to Organize Data?

+ We based our schemas on
OpenConfig YANG models.

+ Operator-driven community, with operator-vetted models, with broad
coverage.

There are some mismatches

+ OpenConfig vs GraphQL naming requirements.

+ Simplified for read-only use case.

+ Leverage GraphQL’s graph database facilities to enable easier linking
between objects.

+ Expose paging over large collections.

Marrying OpenConfig with GraphQL

How to implement a normalized network database?

Collect Parse Normalize Query

Core parts of FN Platform

Parsing: Millions of Patterns

Scale: 16 vendors, 23 Oses, 242 OS versions.

Example: On just a single device OS (Cisco NX-OS), there are 120k
ways of combining keywords into valid top-level config commands.

Critical: streamlined way of ingesting text-based data into the
model.

One of the major focus areas at Forward.

All sorts of surprising challenges lurk here.

+ No inventory, no topology

+ Complex infrastructure slows down collection

+ Device failures are common

Collection: Getting the Data in the Real World

NQE announced in January this year.

We continue to evolve and improve:

+ Continue to expand the data set

+ Explore ways to simplify and make it easier to
query without dropping into scripting.

The Road Ahead

Thank You
andreasvoellmy@forwardnetworks.com @AndreasVoellmy

We’re excited to see what the community does with NQE.

+ Blog post: https://forwardnetworks.com/blog/network-query-engine
+ Github repo: https://github.com/forwardnetworks/network-query-engine-

examples

mailto:andreasvoellmy@forwardnetworks.com
https://forwardnetworks.com/blog/network-query-engine
https://github.com/forwardnetworks/network-query-engine-examples

