
P4 on Fixed-Function Switches
with Stratum

Maximilian Pudelko
ONF

• You are interested in what it means to compile P4 programs for

fixed-pipeline switches
• How does it work and where are the limitations?

• You are a vendor and want to know how to port platforms to Stratum
• What steps have to be done and how much effort is it?

• You are an operator and want to know how to use Stratum on

fixed-function switches
• What’s possible with Stratum today?

Why are you here? / Outline

ASIC 1 ASIC 2

Logical

Physical

Control

Slide adapted from Google

• Provide clear pipeline definition using P4 tailored to role
• Useful for fixed-function/traditional ASICs as well as programmable chips
• Enables portability control plane apps

Role of P4

P4 program as an unambiguous contract describing the complete network

behaviour in machine-readable format.

Benefits:

• Simplification of the control plane

• Easier, better and automated switch testing and validation

• Optionality of targets

Benefits of P4 on Fixed-Function Switches

• SAI pipeline semantics are in English
• Prone to errors and interpretation

• Manual test generation

• Fixed API that is tightly coupled to pipeline definition

• Universal APIs become more complicated with more features

• Stratum provides better upgrade path
• Just limited by the underlying SDK

• New features can be mapped easily and are backwards compatible

What about SAI?

Enabling P4 on Broadcom XGS

Bringing P4 to FPM has two sides:

• Map arbitrary P4 code to
fixed-function ASIC

• New compiler needed

Enabling P4 on Broadcom XGS

My Station
L3

L2

ACLParser

my_switch.p4

P4 FPM compiler

my_switch.bin

Switch OS

Switch ASIC

• Handle P4RT requests at runtime
• Layers of resource managers
• Wrapper around SDK

my_switch.p4info
Network OS

p4runtime.proto

Enabling P4 on Broadcom XGS
Compiler

P4C FPM Compiler

● Front and mid end from open source P4 compiler
● Backend takes IR and mapping files
● Creates target-dependent mapping (pipeline configuration)
● Passes through target-independent configuration (p4info)

.p4

p4c

Front End Mid End Back End for
Stratum FPM

IR IR’

P4Info
P4 Runtime

Config

P4Info
(target

independent)

Parser Map

P4 Target
Dependent

Mapping

Table Map

Fixed Function Feature Mapping

SDK
1. What functionality
does the ASIC
provide?

2. How is it exposed
in the SDK?

4. How could we
target the abstraction
in P4 code?

From the View of a Compiler (Writer)

Stratum

3. How do we abstract
this feature?

L3 forwarding as the ASIC/SDKLT understands it

L3_IPV4_UC_ROUTE_VRF

Key Type Mandatory?

IPv4 IPV4_T Yes

IPv4 Mask IPV4_T Yes

VRF ID VRF_T Yes

ECMP ID ECMP_T

NHOP ID NHOP_T

ECMP_NHOP BOOL_T

ECMP

Key Type Mandatory?

ECMP ID ECMP_T Yes

NHOP IDs NHOP_T[1024]

Num Paths UINT16_T

L3_UC_NHOP

Key Type Mandatory?

NHOP ID NHOP_T Yes

MODPORT PORT_T

VLAN ID VLAN_T

MAC DA MAC_T

L3 EIF ID INTF_T

L3_EIF

Key Type Mandatory?

L3 EIF ID INTF_T Yes

MAC SA MAC_T

VLAN ID VLAN_T

● Table based approach

● INSERT/LOOKUP/DELETE

● Each row is an entry

● Be careful to keep them in sync!

Enabling P4 on Broadcom XGS

L3 forwarding as we expose it

L3_IPV4_UC_ROUTE_VRF

Key Type Mandatory?

IPv4 IPV4_T Yes

IPv4 Mask IPV4_T Yes

VRF ID VRF_T Yes

ECMP ID ECMP_T

NHOP ID NHOP_T

ECMP_NHOP BOOL_T

ECMP

Key Type Mandatory?

ECMP ID ECMP_T Yes

NHOP IDs NHOP_T[1024]

Num Paths UINT16_T

L3_UC_NHOP

Key Type Mandatory?

NHOP ID NHOP_T Yes

MODPORT PORT_T

VLAN ID VLAN_T

MAC DA MAC_T

L3 EIF ID INTF_T

L3_EIF

Key Type Mandatory?

L3 EIF ID INTF_T Yes

MAC SA MAC_T

VLAN ID VLAN_T

@switchstack("pipeline_stage: L3_LPM")
table l3_fwd_table {

key = {
hdr.ipv4_base.dst_addr : lpm;
local_metadata.vrf_id : exact;

}
actions = {

set_nexthop;
drop;

}
const default_action = drop();
implementation = ecmp_action_profile;

}

@max_group_size(“1024”)
action_selector (

HashAlgorithm.crc16, 32w1024, 32w14
) ecmp_action_profile;

demo_table_map.pb.txt

table_addenda_map {
 key: "ingress.l3_fwd.l3_fwd_table"
 value {
 type: P4_TABLE_L3_IP
 }
}

Enabling P4 on Broadcom XGS

L3 forwarding as we expose it

L3_UC_NHOP

Key Type Mandatory?

NHOP ID NHOP_T Yes

MODPORT PORT_T

VLAN ID VLAN_T

MAC DA MAC_T

L3 EIF ID INTF_T

L3_EIF

Key Type Mandatory?

L3 EIF ID INTF_T Yes

MAC SA MAC_T

VLAN ID VLAN_T

action set_nexthop (
PortNum port,
EthernetAddress smac,
EthernetAddress dmac,
bit<12> dst_vlan) {

standard_metadata.egress_spec = port;
local_metadata.dst_vlan = dst_vlan;
hdr.ethernet.src_addr = smac;
hdr.ethernet.dst_addr = dmac;
hdr.ipv4_base.ttl = hdr.ipv4_base.ttl - 1;

}

● Table entries are created automatically

● IDs are maintained by Stratum

● Unnecessary details are hidden

Enabling P4 on Broadcom XGS

Compiler Output

compiler

my_switch.pb.txtmy_switch
.p4

table_map {
 key: "ingress.l3_fwd.l3_fwd_table"
 value {
 table_descriptor {
 type: P4_TABLE_L3_IP
 pipeline_stage: L3_LPM
 }
 }
}

table_map {
 key: "hdr.ipv4_base.dst_addr"
 value {
 field_descriptor {
 type: P4_FIELD_TYPE_IPV4_DST
 valid_conversions {

 match_type: LPM
 conversion: P4_CONVERT_TO_U32_AND_MASK

 }
 bit_offset: 128
 bit_width: 32
 header_type: P4_HEADER_IPV4
 }
 }
}

table_
map.pb.txt

parser_
map.pb.txt

● Table descriptors
● Field descriptors
● Action descriptors
● P4 control blocks

This is not a binary/bitstream passed to the ASIC!

Enabling P4 on Broadcom XGS

Enabling P4 on Broadcom XGS
Runtime

Make appropriate
SDK calls

How do we recognize a
request and handle it
correctly?

Flow request from
control plane

Inside the Statum Runtime

Fixed Function Feature Mapping

Runtime

Stratum

SDK

Enabling P4 on BCM Tomahawk

kernel

hardware

user

Switch Broker Interface

Shared (HW agnostic)
Chip specific
Platform specific
Chip and Platform specific

St
ra

tu
m

 s
w

itc
h

ag
en

t

P4 Runtime gNMI gNOI

Table
Manager

Node/Chip
Manager Chassis

Manager
Chip Abstraction Managers

E.g. ACL, L2, L3, Packet I/O,
Tunnel

Platform
Manager

Remote or Local Controller(s)

Switch SDK Platform API

Switch Chip(s)

Switch Chip Drivers Platform Drivers

Peripheral(s)

programmable

fixed

SDK Wrapper

• NOS pushes compiler output

• Node manager distributes it to feature

managers

• “Is this pipeline mapping acceptable?“

• Feature managers perform necessary

setup, resource allocation

Enabling P4 on BCM Tomahawk
Runtime Mapping

Initialization

Table
Manager

Node/Chip
Manager

my_switch.pb.bin

Network OS

L2 L3 ACL
Packet

IO

1. PushPipelineConfig

2. VerifyPipeline

• NOS wants to insert new L3 flow

• Node translate P4RT request to BCM flow

with mapping from compiler

• Hands over to feature manager

• Feature manager validates flow and maps

parameters

• Realization through SDK wrapper

• Inform Table manager about new flow

Enabling P4 on BCM Tomahawk
Runtime Mapping

Runtime

Table
Manager

Node/Chip
Manager

Network OS

L2 L3 ACL
Packet

IO

P4RT TableEntry

SDK wrapper

INSERT entity {
 table_entry {
 table_id: 33572104
 match { field_id: 1 exact { value: "\000\000" } }
 match { field_id: 2 lpm { value: "\n\002\000\000" prefix_len: 16 } }
 action { action_profile_member_id: 1 }
 }
}

INSERT entity {
 table_entry {
 table: ingress.l3_fwd.l3_fwd_table # type: P4_TABLE_L3_IP pipeline_stage: L3_LPM
 match { field_id: 1 exact { value: "\000\000" } }
 match { field_id: 2 lpm { value: "\n\002\000\000" prefix_len: 16 } }
 action { action_profile_member_id: 1 }
 }
}

INSERT entity {
 table_entry {
 table: ingress.l3_fwd.l3_fwd_table # type: P4_TABLE_L3_IP pipeline_stage: L3_LPM
 match { field: local_metadata.vrf_id exact { value: "\000\000" } } # type: P4_FIELD_TYPE_VRF
 match { field: hdr.ipv4_base.dst_addr lpm { value: "\n\002\000\000" prefix_len: 16 } }
 action { action_profile_member_id: 1 } # Reference to setNextHop() action profile member
 }
}

lt L3_IPV4_UC_ROUTE_VRF insert
VRF_ID=0
IPV4=10.2.0.0
IPV4_MASK=255.255.0.0
ECMP_ID=1
ECMP_NHOP=true

Enabling P4 on Broadcom XGS
Conclusion

Key differences to Tofino or bmv2:

• Pipeline defined by switch chip and Stratum’s abstraction of it,

P4 code only describes it

• Tables and action fields are given by the ASIC

• Fixed headers and parser (no custom protocols)

• Some implicit behavior has to be accounted for (e.g. TTL dec.)

• Your annotations help the compiler to map headers and tables

Enabling P4 on Broadcom XGS
Caveats

Statum on SDKLT:

• Complete open source stack today!

• Free to use and modify

• Support limited to Tomahawk chips

• Available features: L2, L3, ECMP, VLAN, ACL, PacketIO,

Port counters, ...

• Missing features: VXLAN, L2 mcast, MPLS

• Future chip support possible

Enabling P4 on Broadcom XGS
Chip SDKs

Getting Started

• Try our demo: https://github.com/opennetworkinglab/stratum-onos-demo

• Compiler available as part of Stratum source tree: stratum/p4c_backends/fpm/

• Docker container: https://hub.docker.com/r/opennetworking/p4c

 p4c-fpm --p4c_fe_options="-I /usr/share/p4c/p4include demo.p4" \
 --p4_info_file=build/fpm/p4info.txt \
 --p4_pipeline_config_text_file=build/fpm/pipeline_config.txt \
 --p4_pipeline_config_binary_file=build/fpm/pipeline_config.bin \
 --p4c_annotation_map_files=demo_table_map.pb.txt,demo_field_map.pb.txt \
 --target_parser_map_file=standard_parser_map.pb.txt \
 --slice_map_file=sliced_field_map.pb.txt

Enabling P4 on Broadcom XGS

https://github.com/opennetworkinglab/stratum-onos-demo
https://hub.docker.com/r/opennetworking/p4c

Stratum Roadmap

• More features to support Trellis (Double VLAN, MPLS)
• More ASICs from Broadcom XGS family
• Performance testing

Community Opportunities

• Porting FPM and Stratum runtime to SAI or other ASICs
• Support for other networking features (VXLAN)

Next Steps

P4 live on FPM: Visit our Demo!

● 5x3 Leaf-Spine topology
● Two chipsets
● 6 Vendors

● 4 Hosts
● Upstream router
● Free WiFi!

Thank You

Contribute to Stratum today:
https://github.com/opennetworkinglab/stratum

Demo source code:
https://github.com/opennetworkinglab/stratum-onos-demo

https://github.com/opennetworkinglab/stratum
https://github.com/opennetworkinglab/stratum-onos-demo

What is is the main message?

Progress update? Developer tutorial for FPM P4? Dev tutorial to develop stratum_bcm?

• P4 is for more than just Tofino

• Control plane op: how do I use this?

• Vendor: How to I support stratum on my chip? How do I add new features (extend bcm_sdk_wrapper)?

• SAI people: We can reuse some of your efforts

One slide of P4 pitch

Benefits of P4 on a fixed function ASIC

• Clear semantic and simplified model for device roles, “just what you need”

• Easier and better testing

• Optionality of targets

“Why is this better than SAI?”

SAI semantics are in english

API Tightly coupled to pipeline definitions

=> No/harder automated test generation

Test cases and targets need to be manually written

Reference to google slides from P4 workshop, atpg

Google talk next day

Comparison to SAI

• SAI like abstraction with SDK wrapper layer

• SAI as a possible SDK wrapper, with SAI backend

• Better upgrade path, stratum is limited by the underlying SDK

• Features can be mapped easily

• Example MPLS: change P4 compiler, runtime, wrapper

Relation SAI - two paths

• Get more vendors/devices

• Get unified control plane interface

Look at Matty’s talk from ONF 18

Porting to other SDK/Vendors

• Stratum makes this easy, no need to care about P4RT, gNMI, ...

• Explain what’s needed to do this

• Init code

• Map P4 code to flow entries (common representation)

• Translate Flow entries at runtime to SDK call

● Short (!) Statum intro

○ End with old state of support: Just tofino

● Intro of FPM

○ Differences to programmable pipelines

○ Compiling P4 for programmable vs fixed model target

● Current State: What does work on which devices

○ p4c-fpm compiler backend

○ SDKLT vs. SDK6

○ Allows interop of “old” BCM HW with “new” Tofinos, reference to demo

● Worked example: from P4 source to ASIC SDK calls

○ Start with simple P4 program, focus on one table (L3 FPM)

■ Explain differences to bmv2/tofino P4 code.

Switch defines pipeline/P4 code, not the other way round

○ Show compiler output, pipeline config with fields, p4info

○ What does the stratum runtime do with it? (pushPipelineConfig)

○ How are flows written? (P4WriteRequest)

○ Translation from P4 -> BcmFlow, L3 fwd involves two logical tables (route and next hop)

Note pad

Stratum + SAI?

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O, Tunnel

Switch SDK

Switch Chip(s)

Switch Chip Drivers

SDK Wrapper

From a vendors perspective:

● How do we get Stratum support?

● How to we leverage the spent effort

creating SAI support?

● Duplicate work necessary?

Stratum + SAI?

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O, Tunnel

Switch SDK

Switch Chip(s)

Switch Chip Drivers

SAI Wrapper

bcm_sai.so

SDK Wrapper

From a vendors perspective:

● How do we get Stratum support?

● How to we leverage the spent effort

creating SAI support?

● Duplicate work necessary?

No!

● SAI like abstraction with SDK wrapper

layer already in place

● SAI wrapper as an alternative to SDK

wrapper, with SAI as backend

sai.h

mlnx_sai.so

To be created

High level steps:

• ASIC/SDK init code

• Map P4 code to flow entries (common
representation)

• Reuse or add compiler annotations

• Translate flow entries at runtime to SDK calls

Porting Stratum to other SDKs/Vendors

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O, Tunnel

Switch SDK

Switch Chip(s)

Switch Chip Drivers

SDK Wrapper

Best case:
● Our L2/L3/... abstractions match your SDK

structure

● Just provide your SDK wrapper code

implementing the interface

● Get P4RT, gNOI, gNMI for free

● ONLPv2 ready
You already have this

Implement
this

Porting Stratum to other SDKs/Vendors

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O, Tunnel

Switch SDK

Switch Chip(s)

Switch Chip Drivers

SDK Wrapper

Slightly worse case:
● SDK is too different from abstractions

● Bring your own abstractions

● Still get P4RT, gNOI, gNMI for free

● ONLPv2 ready

You already have this

Implement
this

High level steps:

• ASIC/SDK init code

• Map P4 code to flow entries (common
representation)

• Reuse or add compiler annotations

• Translate flow entries at runtime to SDK calls

Fixed Function Feature Mapping

SDK Runtime

What functionality
does the ASIC

provide?

How is it exposed
in the SDK?

How could we
express this feature

in P4 code?

How is a request
serialized at runtime?

How do we recognize a
request and handle it
correctly?

???

Compiler writer Runtime

Community Contributions related to stratum_bcm

● Initial seed code and architecture
● BcmNode and SDK wrapper for SDK6
● FPM (fixed pipeline mapping) P4 compiler backend
● Extensive code review and architectural guidance

● SDKLT wrapper co-development and testing
● Code porting to open source libraries, Bazel, P4Runtime v1.0, gNMI latest
● Support for deployment using Docker
● Bug fixes for Stratum, SDKLT, ONLPv2

● ONLPv2 support for their platforms
● Platform configuration files
● Debugging sessions

● SDK wrapper for SDKLT

