

Driving
FTTx Network Economics
through
programmable FTTx

A **Perspective** from Sterlite Technologies Ltd.

Presented By: Saurabh Chattopadhyay

Sharing Economy – The New Economic Thinking

Shared Economy

Shared Cost

Reduced Barrier

Green Technology

Criticism

O&M Overhead

Security

Experience / SLAs

FTTx: Changing Perspective

62% FTTx Uptake required for pay back for traditional FTTx investments

Source: Delta Partners Analysis

STL's Approach: Modelling FTTx for Shared Economy

ILLUSTRATIVE EXAMPLE: Urban area with 20,000 population per sq. km.

576 Fibre strands (incl. 20% extra for maintenance) & 1960 Gbps Peak Capacity per Sq. km.

Households / SMB	
No. of SMBs	150
No. of Households	5000
Households / SMBs that can afford	75 %
Projected Market Share	50 %

1 Gbps (Peak)

1000 Gbps (Peak) 240 Strands

2000 Subscribers (SMB + Households)

Avg 8 connections / XGS PON Termination

5G Base Stations	
5G Macro, 4x4 MIMO 3 Sectors	10
Projected Market Share	50 %

Scalable Bandwidth & High SLA Ultra Low Latency

P2P

360 Gbps (Peak) 60 Strands

5 Macro Base Stations * 6 Pair of Fiber/Site

Small Cells	
Small cell coverage Length (km)	12
Distance between Poles (km)	0.2
Projected Market Share	50%

Differentiated Services For Mobility & Smart City

Small cell

600 Gbps (Peak) 180 Strands

30 Poles * 3 Pairs of Fiber / Pole Small cell antenna: 4 x 4 MIMO or 16 x 16 MIMO, 1 Sector

STL's Approach: pFTTx to make shared FTTx Realizable

STL's Shared FTTx Network: Transformation Path

STL's Programmable FTTx Solution: Overview

7

Observation: pFTTx Performance Benchmarking

From

SEBA Exemplar

Standard Deployment Approach

То

SEBA Exemplar

pFTTx Curated Deployment

Measurement Areas

Speed

- Control Plane Provisioning / Re-provisioning Speed
- Control Plane Asynchronous Message Processing Speed

Accuracy

- ➤ Control Plane Provisioning / Re-provisioning Loss
- Control Plane Provisioning / Re-provisioning Latency

Reliability

> Aggregated Provisioning / Re-provisioning Reliability

Achievement

Achieved 8
Times (8 x)
Performance
Gain

Observation: TL9000 Metrics for ongoing pFTTx Trial

System Outage (SSO)	0%
Customer Complain Report Ratio (CCRR)	0.31
Mean Time to Restore Service (MTRS)	2.15 Hrs
Fixed Response Time - Priority 1 & 2 (FRT2)	100%
Fixed Response Time - Priority 3 (FRT3)	75%

Launching pFTTx PODS...

SDN, NFV & ARTIFICIAL INTELLIGENCE

FTTx, 5G FRONTHAUL, MEC, Access Agnostic Controller & Edge Orchestrator

