
SDN
Phase 3: Getting the

humans out of the way

Nick McKeown
Stanford University

“Making SDNs Work” ONS 2012

With: Peyman Kazemian, George Varghese, James Zeng, David Erickson, Brandon Heller, Nikhil Handigol

With SDN we will:
1. Formally verify that our networks are

behaving correctly.
2. Identify bugs, then systematically track

down their root cause.

2020 20302010

“closed and proprietary”
“proliferation of standards”
“barrier to entry”
“stranglehold by vendors”
“ossification”
“clean slate”
“4D, Ethane, etc”

Compute
mainframes

Network
mainframes

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1969 1979 1989 1999 2009

Number of IETF RFCs

2030

“closed and proprietary”
“proliferation of standards”
“barrier to entry”
“stranglehold by vendors”
“ossification”
“clean slate”
“4D, Ethane, etc”

SDN NFV
OpenFlow

Disaggregation
Network

Virtualization

Open-source
Programmable

forwarding
Telemetry2010 2020

2030

“closed and proprietary”
“proliferation of standards”
“barrier to entry”
“stranglehold by vendors”
“ossification”
“clean slate”
“4D, Ethane, etc”

SDN NFV
OpenFlow

Disaggregation
Network

Virtualization
Ethane

Programmable
forwarding
Telemetry

Phase 1
Network owners take control of their software2010 2020

Now we take it for granted!

ONF has played a big role in this transformation:
ONOS, CORD, Trellis, SEBA, Stratum …

2030SDN NFV
OpenFlow

Disaggregation
Network

Virtualization
Ethane

Programmable
forwarding
Telemetry

Phase 1
Network owners take control of their software

Phase 2
Network owners take control of packet processing too

2010 2020

7

Fixed Parser
Fixed Header Processing Pipeline

Switch with fixed function pipeline

L2
 Ta

bl
e

IP
v4

 Ta
bl

e

IP
v6

 Ta
bl

e

AC
L T

ab
le

L2
 H

dr
Ac

tio
ns

v4
 H

dr
Ac

tio
ns

v6
 H

dr
Ac

tio
ns

AC
L A

ct
io

ns

OSPF BGP etc.

Switch OS
Driver

New

Network systems were built “bottom-up”

Switch OS

Fixed-function switch

Driver

“This is how I process packets …”

ASIC

Network systems starting to be built “top-down”

Programmable Switch

Driver

Switch OS“This is precisely how you must
process packets”

PISA: Protocol Independent Switch Architecture

Match+Action
Stage

Memory ALU

Programmable
Parser Programmable Match-Action Pipeline

Generalization of RMT [Sigcomm’13]

PISA: Protocol Independent Switch Architecture

Example P4 Program

Memory ALU

Programmable
Parser Programmable Match-Action Pipeline

header_type ethernet_t { … }
header_type l2_metadata_t { … }

header ethernet_t ethernet;
header vlan_tag_t
vlan_tag[2];
metadata l2_metadata_t l2_meta;

Header and Data DeclarationsParser Program
parser parse_ethernet {

extract(ethernet);
return switch(ethernet.ethertype) {

0x8100 : parse_vlan_tag;
0x0800 : parse_ipv4;
0x8847 : parse_mpls;
default: ingress;

}

Tables and Control Flow
table port_table { … }

control ingress {
apply(port_table);
if (l2_meta.vlan_tags == 0) {

process_assign_vlan();
}

}

P4 [CCR ‘14]

Why I devoted
5 years to

programmable
forwarding…

Programmable switch chips can have
the same power, performance and cost
as fixed function switches.

Beautiful new ideas are now owned by the
programmer, not the chip designer.

Which means more innovation.

How do we know if a
programmable switch chip has
the same power, performance
and cost as a fixed function
switch chip?

Comparison
P4 Programmable “Tofino” Fixed Function

L2/L3 Throughput 6.4Tb/s 6.4Tb/s

Number of 100G Ports 64 64

Availability Yes Yes

Max Forwarding Rate 5.1B packets per sec 4.2B packets per sec

Max 25G/10G Ports 256/258 128/130

Programmability Yes (P4) No

Typical System Power draw 4.2W per port 5.3W per port

Large Scale NAT Yes (100k) No

Large scale stateful ACL Yes (100k) No

Large Scale Tunnels Yes (192k) No

Packet Buffer Unified Segmented

Segment Rtg/Bare Metal Yes/Yes No/No

LAG/ECMP Hash Algorithm Full entropy, programmable Hash seed, reduced entropy

ECMP 256 way 128 way

Telemetry and Analytics Line-rate per flow stats Sflow (Sampled)

Latency Under 400 ns 450 ns

Otherwise, both systems
are identical:
• # of Ports
• CPU
• Power Supplies

SDN, Part 2: Programmable Forwarding

How it gets used

1. Reducing complexity

2. Adding new features to the network

3. Telemetry

P4.org

• Now part of ONF

• Lots of activities and workshops: get involved!

• P4-16 stable. Device independent: Switches, NICs, FPGAs, vSwitches

• P4Runtime part of Stratum, launched this week

A cast of many, led by: Nate Foster (Cornell), Amin Vahdat (Google),

Jennifer Rexford (Princeton), Chang Kim (Barefoot)

2030
Phase 1

Network owners take control of their software

Phase 2
Network owners take control of packet processing too

2010 2020

The network (switch, router, NIC, firewall, 5G…) is now a programmable platform.
Top down, including the control plane and the forwarding plane.

20302020

Extrapolating
to 2030

1. NICs, Switches, vSwitches, stacks will have
been programmable for 10 years.

2. We will think of a network as a
programmable platform.
Behavior described at the top.
Then partitioned, compiled and run across
elements.

3. Every large network will work slightly
differently, programmed and tailored locally.

Extrapolating
to 2030

4. We will no longer think in terms of protocols.
Instead, we will think in terms of software. All
functions and “protocols” will have migrated
up and out of hardware into software.

5. Networking students will learn how to
program a network top-down, as a
distributed computing platform. Protocols
will be described in quaint historical terms.

6. “Routing” and “Congestion control” will be
programs, partitioned across the end-to-end
system by a compiler.

If we want to get the
humans out of the way,
what else do we need?

Three pieces

1. The ability to observe packets,
network state and code, in real-time.

2. The ability to generate new control and
forwarding behaviors, on the fly, to
correct errors.

3. The ability to verify newly generated
code and deploy it quickly.

Observing
packets

Per-packet telemetry is already
starting to happen

Today, basic information is hard to find

“Which path did my packet take?”1
“I visited Switch 1 @780ns,

Switch 9 @1.3µs, Switch 12 @2.4µs”

“Which rules did my packet follow?”2

“In Switch 1, I followed rules 75 and 250.
In Switch 9, I followed rules 3 and 80. ”

Rule

1

2

3

…

75 192.168.0/24

…

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

“How long did my packet queue at each switch?”3 “Delay: 100ns, 200ns, 19740ns”

Time

Queue

“Who did my packet share the queue with?”4

Aggressor flow!

Today, basic information is hard to find

“Which path did my packet take?”
“Which rules did my packet follow?”
“How long did it queue at each switch?”
“Who did it share the queues with?”

1
2
3
4

With P4 + INT we can answer all four questions for the first time.
At full line rate. Without generating additional packets.

INT: In-band Network Telemetry

SwitchID, Arrival Time,
Queue Delay, Matched Rules, …

Original Packet

Log, Analyze
Replay and Visualize

+ SONATA [Sigcomm ‘18], Sketches [Sigcomm ‘12] …

Viewing Microbursts (to the nanosecond)

Three pieces

1. The ability to observe packets,
network state and code, in real-time.

2. The ability to generate new control and
forwarding behaviors, on the fly, to
correct errors.

3. The ability to verify newly generated
code and deploy it quickly.

Header Space Analysis

1

2
3

4

T1(h, p)

T2(h, p)

T3(h, p)

T4(h, p)

HSA [NSDI ‘12]

Example: Can A talk to B?

1

2
3

4

T1(h, p)

T2(h, p)

T3(h, p)

T4(h, p)

T1(X,Pin)

T1(X,Pin)

T2(T1(X,Pin))

T4(T1(X,Pin))

T3(T2(T1(X,Pin)))
[
T3(T4(T1(X,Pin)))

Three pieces

1. The ability to observe packets,
network state and code, in real-time.

2. The ability to generate new control and
forwarding behaviors, on the fly, to
correct errors.

3. The ability to verify newly generated
code and deploy it quickly.

?

Software Defined Network (SDN)

Global Network View

Network Virtualization

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Abstract Network View

Control
Programs

Control
Programs

Control
Programs

Packet
Forwarding

Network OS

Packet
Forwarding

Software Defined Network (SDN)

Global Network View

Network Virtualization

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Abstract Network View

Control
Programs

Control
Programs

Control
Programs

Packet
Forwarding

Network OS

Packet
Forwarding Observe

Measure and Validate
Packets

Control: Generate and Verify control code

INT

INT
INT
INT

INT

Partition, Generate, Verify, Download

Observe
Measure and Validate

State

State

Observe
Measure and Validate

Control code

Code

Getting humans out of the way
SDN with Verifiable Closed-Loop Control

Network owners and operators will use
fine-grain measurement and formal verification

to automate network control at scale.

Joint work with: Nate Foster (Cornell), Guru Parulkar (ONF),
Larry Peterson (ONF), Jennifer Rexford (Princeton)

Trellis

NIC NIC

ONOS Control Plane

Stratum OS Stratum OS Stratum OS

P4 switch P4 switch P4 switchP4 NIC P4 NIC

P4-OVS P4-OVS

P4Runtime Contract

Control
App

Control
App

Control
App

Control
App

ONF Open-source Software Today

Trellis

NIC NIC

Stratum OS Stratum OS Stratum OS

P4 switch P4 switch P4 switchP4 NIC P4 NIC

P4-OVS P4-OVS

ONOS Control Plane

Control
App

Control
App

Control
App

Control
App

Fine-grained Per-packet Measurement

Control code

Contract

Dataplane code

Verifiable Closed-Loop Control

First production &
research tools exist

(INT/DeepInsight, SONATA)

Early research tools (p4v)

P4Runtime Contract

Generation &
Verification

Phase 1
Network owners take control of their software2010

Phase 3
Networks managed by verifiable closed loop control2020 2030

Phase 2
Network owners take control of packet processing too

“Making SDNs Work” ONS 2012 ONF Connect 2019

With SDN we will:
1. Formally verify that our networks are

behaving correctly.

2. Identify bugs, then systematically track
down their root cause.

3. Measure and validate correctness, then
generate and verify code fix.
Download to correct the bug.

4. Goto beach….?

