

Security and Performance Comparison of
ONOS and ODL controllers

Stefano Secci 1, Alessio Diamanti 1,2, José Manuel Vilchez Sanchez 2, Mamadou
Tahirou Bah 6, Petra Vizarreta 3, Carmen Mas Machuca 3, Sandra Scott-Hayward 4,

Dylan Smith 5

1 Cnam, France. 2 Orange, France. 3 TUM, Germany. 4QUB, UK. 5CIT, Ireland. 6LIP6, France

Corresponding author: Stefano Secci (stefano.secci@cnam.fr)

Date: Sept. 10, 2019

© 2019 ONF. All Rights Reserved. Informational Report

mailto:stefano.secci@lip6.fr

TABLE OF CONTENTS

Introduction 2

1. Performance Analysis 4

1.1. Path restoration behavior 4

1.2. Reliability growth performance 11

2. Security Analysis 16

2.1. Comparison of ODL and ONOS Security 17

2.2. Configuration Issues and Vulnerabilities 18

Summary 21

References 22

About ONOS 23

© 2019 ONF. All Rights Reserved. Informational Report

Introduction
This report is the result of an effort of the ONF security and performance analysis
brigade to compare the two most widely used SDN controllers, ONOS (Open Network
Operating System) and ODL (OpenDayLight).

It is worth remarking that the comparison is not meant to be extensive nor exhaustive.
The reported comparison methodology and results focus on some specific aspects of
the controller system, while not covering the many other aspects that may be interesting
to analyze. This report may be updated in the coming years, to compare novel versions
as well as other controllers that may be developed. If you are willing to perform
additional performance and security analysis tests for inclusion in future reports, please
contact us.

Editorial note: the report is not self-contained as is a scientific publication, i.e., a prior
technical knowledge of the various technologies are required to fully understand the
content of the report.

Citation: S. Secci, A. Diamanti, JM. Sanchez, MT. Bah, P. Vizarreta, C. Mas Machuca,
S. Scott-Hayward, D. Smith, “Security and Performance Comparison of ONOS and
ODL Controllers”, Informational Report, Open Networking Foundation, Sept. 2019.

© 2019 ONF. All Rights Reserved. Informational Report

1. Performance Analysis
The performance analysis focuses on path restoration performance and software
reliability.

1.1. Path restoration behavior
Contributors: Alessio Diamanti (Orange/Cnam), José Manuel Sanchez VIlchez
(Orange), Mamadou Tahirou Bah (LIP6)

In the following, we report on control-plane reactivity to topology changes and discovery
events, comparing ONOS and ODL behaviors.

Topology update reactivity
SDN controllers are expected to maintain an updated view of the network in a semi-real
time fashion in order to let applications work with a consistent view. Generally speaking,
the topology update is implemented following an event driven pattern logic. When some
specific packets sent by SDN switches are received or some expected packets are not
received by the controller, an event is raised in the controller’s core. This event is
received and held by subscribed listeners, which will in turn solicit topological
representation changes in a database, eventually distributed. We focus in particular on
what happens in ONOS and ODL controllers when a OFPT_PORT_STATUS packet is
received from a switch to notify a change in a port’s status after a link disruption event
or after a link is established/re-established.

Supposing that a path computation application is activated in the controller, the
controller has to react to this change in the topology, eventually installing new flows to
circumvent the disruption and finally ensure communications.

In this section, we evaluate how fast and promptly ONOS and ODL controllers perform
these update actions when reacting to a topological change. To perform this
comparison, we analyze a very basic test case (as in Figure 1): two hosts, H1 and H2,
connected by a single path composed of 6 links and 5 SDN switches (OVS switches),
and exchanging UDP packets through an Iperf [16] session. We use Quali version for
ONOS and Oxygen version for ODL.

Figure 1: Test case network topology

© 2019 ONF. All Rights Reserved. Informational Report

During tests, the configuration shown in Figure 1 was deployed through a developed
python module that simulates complex network topologies with redundant links and
alternative paths among hosts. The simulator also provides a fault injection module that
is capable of injecting faults and degradations on each of the simulated network
elements. To ensure connectivity between the hosts, “org.onosproject.fwd” and
“org.onosproject.openflow” apps were activated in ONOS and “odl-l2switch-all” was
activated in ODL. In order to gather sufficient data, we iterate the test case 1400 times,
cleaning both topology and controller state between iterations.

Supposing the i-th iteration starts at time when the Iperf session is started, at time t0

a failure in the link between switches S2 and S3 is introduced and finallyt0 + τ = T start
after seconds the link is restored. To monitor the traffic flowing along the path, at TΔ t0
a tshark [17] capture is started on the link between S3 and S4. In particular, from this
capture, it is possible to extract the time at which the first UDP packet appears on link
S3-S4, defined as . Knowing that the link is restored at time , the T f irst Tt0 + τ + Δ = T stop
controller’s reaction time can be computed as . Let us note that T react = T f irst − T stop
Iperf is configured in UDP mode in order to remove all synchronization overhead
specific to TCP that would have biased the reaction time. Furthermore, in the topology,
no alternative path from H1 to H2 was created so that the controller will not perform
actions other than those described.

Figure 2 reports the empirical probability distribution function (PDF) of the reaction time
() for the 1400 tests and for both ONOS and ODL.T react

Figure 2: Distribution of reaction time () for ONOS and ODL controllers. T react

© 2019 ONF. All Rights Reserved. Informational Report

As depicted in Figure 2, for a number of tests both controllers react in a similar way.
However, ODL shows two different modes: in 30.1% of the tests, the reaction times fall
into the interval [0, 0.04], while in the remaining 69.9% of cases values are in [3, 10].
Thus, in Figure 3, we represent the dynamics of the reaction times in two split PDF plots
for the two modes. Equivalent results for ONOS are in Figure 4, in a single plot, for the
sake of clarity.

(a) [0,0.04] seconds (b) [3,10] seconds

Figure 3: Distribution of the reaction times for ODL at two distinct intervals.

Figure 4: Distribution of the reaction times for ONOS

ONOS appears to be significantly more stable than ODL. Note that ONOS also shows
two separate modes, similar to ODL, yet they are much closer than with ODL; while the

© 2019 ONF. All Rights Reserved. Informational Report

distance between the modes is approximately 6 seconds for ODL, it is approximately 20
ms for ONOS with no occurrences gap.

ONOS is also much faster in reacting to topology event updates, with a median reaction
time of 36 ms; that is two orders of magnitude less than ODL that has a median of 5.45
seconds, as shown in the boxplot statistics in Figure 5.

Figure 5: Boxplot statistics of the reaction times. A boxplot shows the minimum, first quartile, median in

red, third quartile and maximum values.

To better understand the reasons for the detected unstable ODL behavior, we tried to
capture the variability across tests characterizing how frequently the reaction time
switches from the first mode (Figure 3a) to the second one (Figure 3b) in subsequent
tests. To do so, we use a metric that is incremented by one each time a switch from the
first mode to the second one is detected, when considering i-th and i+1-th tests. The
result is shown in Figure 6. A controller whose reaction times in subsequent tests would
flip among the modes, i.e., fall in the other mode each time, would have produced the
first quadrant bisector line in such a plot. However, it is quite close to the bisector, which
means that ODL is very unstable as it is reacting in very different ways across
subsequent tests. In order to search for possible correlations, we also computed the
empirical probability that at the i-th test the reaction time is in the first [second] mode
while in the subsequent i+1-th test the reaction time falls in the second [first] mode. We
found no difference, with an empirical probability to switch from the first to the second of
0.2075, while the reverse is 0.2083 (very close to the former). Summing these
probabilities, we obtain a probability of 0.4158 to switch from one class to another,
which confirms the unpredictability of the ODL controller.

© 2019 ONF. All Rights Reserved. Informational Report

Figure 6: Number of mode switches as a function of the number of tests -- ODL

An aspect that remains unclear from the test is the origin of the large gap between the
two working modes in ODL. Further work might inspect openflow messages exchanged
between the controller and the switches to identify the ODL core mechanism triggered
by those messages.

Topology discovery
We analyze the amount of control traffic required for ONOS and ODL to discover and
update the topology over time. Both controllers use Link Layer Discovery Protocol
(LLDP) to infer links connecting switches. Basically, the controller sends a
PACKET_OUT message to each switch containing as many LLDP frames as active
ports in the corresponding switch. Each switch then sends out LLDP frames in
designated ports, forwarding to the controller, through a PACKET_IN message, each
LLDP frame it receives. Consequently, the controller can infer links binding the port
where the packet was sent (inside LLDP frame) and the port where the packet was
received (a field in the PACKET_IN packet). This procedure is repeated periodically in
order to maintain an up-to-date topology; every 3 seconds in ONOS and every 5
seconds in ODL, by default.

To test the implementation of LLDP in ONOS and ODL, we simply record for a given
period all PACKET_IN and PACKET_OUT messages exchanged since the first
topology discovery using a topology such as that in Figure 1. In order to fairly estimate
the amount of traffic, we manually set the LLDP cycle in both controllers to 5 seconds.

© 2019 ONF. All Rights Reserved. Informational Report

Figure 7: Topology discovery volume for both PACKET_IN and PACKET_OUT messages

Figure 7 shows the obtained results. ONOS produces a larger amount of control traffic
in terms of PACKET_OUT and thus PACKET_IN with respect to ODL, as each
PACKET_OUT will result in a PACKET_IN if there is an active link on the related port.
We attribute this difference in the amount of exchanged packets to an optimized
implementation of LLDP in ODL, e.g. OFDPV2 [17].

© 2019 ONF. All Rights Reserved. Informational Report

1.2. Reliability growth performance
Contributors: Petra Vizarreta and Carmen Mas Machuca (TUM)

There is strong empirical evidence that network control plane elements contribute to a
significant share of outages that impact on customers. An example from Google B4
SDN-based network shows that software bugs caused more than 30% of customer
impacting incidents [1]. SDN controllers are complex, as they not only take over the
control plane functions of forwarding devices, but also implement many deployment
related functions, e.g., security, virtualization interfaces. Defects in such complex
software systems are inevitable.

Software reliability growth models allow an estimation of the risk of critical failures. Their
application within a quantitative framework allows network operators and controller
software developers to determine when a controller release is ready to be deployed in
an operational environment. The outline of the framework is presented in Figure 8:

● First, data is collected from software repositories that contain useful data on code
change dynamics, as well as the reported issues and patches (Git, Gerrit, Jira).
The trends are then analyzed to assess whether the reliability growth is present
and which model would be the most suitable.

● A second step is to find the best reliability model to describe stochastic behaviour
of bug manifestation and bug removal processes. After the best model is found
and parameterized, it can be used to estimate the software reliability Key
Performance Indicators (KPIs), such as expected residual bug content, expected
failure rate and interval reliability (i.e., probability of outages in the support
period).

Finally, these KPIs can be used to guide the management decisions, such as
postponing an official software release or adoption rate. Next, we compare the reliability
growth of the latest stable releases of ONOS and ODL.

Figure 8: Workflow for evaluation of reliability growth and software maturity (adapted from [3])

Data collection from software repositories
Software repositories contain valuable data on code changes and issues that have been
documented during the development and deployment phases of the project. The data
considered in this study has been retrieved on 03.09.2018 from ONOS code version
control system and ODL issue tracker, which are publicly available. The high level

© 2019 ONF. All Rights Reserved. Informational Report

summary of the repositories and static software reliability metric that can be derived
from such data are presented in Table 1.

Table 1: Summary of code version control (Git and Gerrit) and bug (Jira issue tracker) repositories

Project Bugs Commits LOC Density [bugs/kLOC]

ONOS 2.072 13.254 852.570 2,43

ODL 9.060 98.084 3.920.556 2,31

Comparing the failure dynamics over time, as presented in Figures 9 and 10, short term
and long term trends can be observed. Both controllers show peaks in the number of
reported bugs shortly before the formal release dates, which are indicated with dashed
lines in the figures. Note that the Service Releases (SR) are not shown in the figures.

Figure 9: Number of reported issues over time (ONOS)

Figure 10: Number of reported issues over time (ODL)

© 2019 ONF. All Rights Reserved. Informational Report

Model selection: Selecting best Software Reliability Growth Model (SRGM)
Software reliability growth models (SRGM) can model the trend of changes in bug
manifestation rate depending on the proximity to the official release date.

The bug manifestation rate of individual bugs follows an arbitrary distribution, depending
on the reliability model. The overall bug manifestation rate depends on the total bug
content in the code. During the testing and early deployment phase of a release, bugs
are removed from the code, and hence, the bug manifestation rate eventually
decreases, leading to a reliability growth [2]. The most suitable models for SDN
controllers are presented in [3,4]. Focusing on the expected cumulative number of the
bugs over time, three SRGMs are commonly considered: (i) Generalized Goel Okumoto
(GGO), (ii) Gompertz Model (GOMP), and (iii) the Ohba’s Inflection S-Shape (ISS)
model. Avoiding mathematical details, the three models have different fitting shapes.
Their behavior is observable when applying them against the two latest releases of
ONOS and ODL is presented in Figures 11-14 (the Mean Square Error, MSE, is given
within parenthesis). The relative time is calculated w.r.t. the start of integration testing,
i.e., time when the only changes in the code are due to bug fixes. We estimate this time
as an offset time based on the release cycles.

Note that we use “affected release” field to separate the bugs per release, which is not
reported for all issues. Hence, the numbers provided in this report are for illustration
purposes only. An alternative would be to use time based separation, but this would not
be entirely accurate since for some bugs there is a time overlap between releases and
some bugs are only related to the new features.

Two latest stable releases of ONOS: Magpie and Nightingale

© 2019 ONF. All Rights Reserved. Informational Report

Figure 11: Model selection for Magpie (ONOS

v1.12)

Figure 12: Model selection for Nightingale

(ONOS v1.13)

Two latest stable releases of OpenDaylight: Nitrogen and Oxygen

Figure 13: Model selection for Nitrogen release

Figure 14: Model selection for Oxygen release

It can be observed in Figures 11-14 that all three models show good fit for the two latest
stable ONOS releases, with Generalized Goel Okumoto (GGO) showing slightly lower
MSE than the other two. The best fitting model for the last two ODL releases is ISS. It is
interesting to observe that all of these latest releases of ONOS and ODL have very
similar shape parameters (related to the time dependence, not shown in the figures).

© 2019 ONF. All Rights Reserved. Informational Report

Predicting the controller software reliability with SRGM
Once the best model is found and parameterized, it can be used to quantify and
forecast different software reliability KPIs. Some KPIs such as residual bug content,
software failure rate and interval reliability (probability of failures in a given time period)
can be estimated directly from the model [3].

As an example for ONOS, in Figure 15 we show the expected residual bug content and
the expected software failure rate, for the GGO model for Magpie and Nightingale
releases. We observe that the number of the remaining bugs in the code on the day of
the official release (indicated with the vertical line in the figure) was high: for Magpie
and for Nightingale. The expected failure rates are similar for both releases, which is
approximately days between the two successive bug manifestations.

Expected residual bug content Expected failure rate [bugs/h]

Magpie

 Nightingale

 Magpie

 Nightingale

Figure 15: Predicting software reliability KPIs for ONOS Magpie and Nottingale ONOS releases.

The presented reliability growth models and forecasting of reliability growth can be used
to guide management decisions, such as postponing an official software release or
adoption rate. It has to be noted, however, that the results presented rely on the data
reported in software repositories, mainly Jira issue tracker. The accuracy and
completeness of the repository is not guaranteed, hence, the presented numbers might
under- or over-estimate the risk of software failures.

© 2019 ONF. All Rights Reserved. Informational Report

2. Security Analysis
2.1. Comparison of ODL and ONOS Security
Contributor: Sandra Scott-Hayward (QUB)

In this section, we present a summary of the security design, development and support
provided by ODL and ONOS. A full comparative analysis considering the evolution of
secure SDN Controller design has been presented in [5].

2.1.1. Security Support
Both ONOS and ODL provide information on their web pages regarding their security
support.

In the case of ONOS, this information can be accessed by searching the wiki for
“security” or by navigating through the page tree. Details are provided regarding the
Security response team, the procedure to report a security issue, and a link to the
security advisories page. These pages are updated infrequently.

In the case of ODL, similar information is provided but it is more directly accessible via a
drop-down menu on the ODL home page. A link to the vulnerability management
process is also provided [6].

Since 2018, management of the security advisories for both ONOS and ODL has
transferred to MITRE for generation of CVEs [7,8]. ODL provides this information in [6].
However, no information regarding this process is provided for ONOS.

The number of CVEs generated to date is shown in Table 2. Further information on the
types of CVEs reported for each controller is provided in Section 2.2.

Table 2: ONOS and ODL CVEs per annum

 ONOS ODL

2014 0 2

2015 1 9

2016 0 2

2017 6 7

2018 5 2

© 2019 ONF. All Rights Reserved. Informational Report

2.1.2. Security-specific Projects/Applications
There have been a number of security-related projects and applications developed by
contributors to ONOS and ODL.

In the case of ONOS, contributions in 2015/2016 include the Security-Mode ONOS
(SM-ONOS) [9] and Access Control based on DHCP [10] projects, and Access Control
Lists (ACL) and AAA applications. As described in [5], these offer some functionality but
are either basic or not part of core ONOS.

There are a number of more recent security-related projects/applications. ARTEMIS is
an Automated System against BGP Prefix Hijacking [11], which leverages ONOS. VPLS
is a virtual private LAN service [12] and Policy Framework for ONOS provides a network
policy framework for ONOS [13]. Of these, the policy framework for ONOS provides a
key contribution to addressing one of the core security concerns of SDN controllers; that
of policy conflict resolution [14]. When multiple applications/modules submit policies to
direct the control of the network, it is critical to ensure that there are no conflicts
between these policies being implemented in the network.

Security-related projects in ODL include Defense4All, Secure Network Bootstrapping
Interface, Authentication, Authorization and Accounting (AAA), Unified Secure Channel,
Controller Shield, and Cardinal - ODL Monitoring as a Service. Similar to ONOS, these
projects vary in maturity with some with limited functionality or no longer maintained
while others such as AAA [11] have become managed projects, emphasising their
importance to the fundamental operation of ODL. Full details of how application
developers can configure and use AAA are provided.

2.1.3. Security-focused design
The original objective of the ONOS controller was to offer high availability. Availability is,
of course, an element in the CIA security triad, along with Confidentiality and Integrity.
To support high availability, ONOS offers a clustered configuration in which multiple
controller instances coordinate to provide a fault-tolerant and resilient, distributed SDN
operating system. In early versions of ONOS, the clustered configuration used the Raft
consensus protocol. This implementation led to various issues linked to memory
consumption and state information management. Specifically, the cluster could not
maintain control of the network when reduced to two instances. Since ONOS v1.14
(Owl), a new cluster configuration architecture has been introduced. This physically
decouples cluster management, service discovery, and persistent data storage from the

© 2019 ONF. All Rights Reserved. Informational Report

ONOS nodes into a separate Atomix cluster [16]. With this new implementation, resilient
high availability is provided; the ONOS cluster can tolerate the failure of all but one
node.

The emphasis on security for design and deployment is clear from ODL. In addition to
the embedding of fundamental security functionality such as AAA and the clear
guidance on vulnerability reporting, there is a further aspect that encourages a
security-focused design by ODL project contributors. This is the requirement for each
project within ODL to report on security considerations linked to functionality or feature
updates for a given release. This highlights, for example, if the project uses external
interfaces and how they will be secured. In general, the developers, identify the
requirements to secure the interface or provide a link to the relevant security
configuration information. This is further supported by the security considerations page
on the ODL website, which describes the security issues that might affect ODL and lists
specific recommendations to mitigate security risks. This page also features a “Report
Issue” button, which links directly to the jira.

2.2. Comparison of ODL and ONOS Vulnerabilities
Contributor: Dylan Smyth (CIT)

Both ODL and ONOS have been subject to vulnerability research, with ODL receiving
its first documented security vulnerability in 2014. Since then, several other
vulnerabilities have been reported in both controllers. This section will provide an
overview of the recorded vulnerabilities for both ODL and ONOS, and assess whether
these vulnerabilities can provide an indication of the overall security level of the
controllers.

OpenDaylight (ODL)

As detailed in Table 2, ODL has a total of 22 vulnerabilities recorded, 16 of which relate
to core ODL code and applications [8][17]. Six security advisories have also been
issued regarding bugs and vulnerabilities in components used by ODL but maintained
by third parties . 1

Denial of Service (DoS) is a common trend among vulnerabilities reported for ODL. A
number of these are related to excessive resource consumption. CVE-2017-1000359
documents a flaw, which allows an attacker to cause significant resource consumption
due to access to certain ports used by the XSQL service not being restricted.

1 CVE-2015-3414, CVE-2015-3416, CVE-2015-4000, CVE-2015-7501, CVE-2016-2183, and
CVE-2016-4970

© 2019 ONF. All Rights Reserved. Informational Report

CVE-2017-1000361 also results in resource consumption and can be triggered via a
port-status message from an SDN switch. A bug, CVE-2017-1000411, causes expired
flows to remain in the Config Datastore resulting in memory consumption and eventually
controller shutdown. Users can trigger a bug, which prevents flows from being added to
a switch by repeatedly adding the same flow via the REST API, documented as
CVE-2017-1000358. The aforementioned XSQL service contained another vulnerability,
CVE-2017-1000360, where an attacker can cause a Null Pointer Exception by sending
data to that service via unrestricted ports. CVE-2018-1078 causes flows to remain in
switches when they should be removed, due to a bug in node reconciliation, which
could potentially be used in a TCAM Exhaustion attack. A bug in the layer 2 switch
application, CVE-2017-1000357, causes the switch to reject packets from the controller
which prevents correct operation of the network.

Access control and authentication components of ODL have also been subject to
security bugs. One such bug, CVE-2017-1000406, allowed old passwords to be used
after a password change due to the old password being cached. Another similar bug
was found where any username and password combination could be used to access
the controller, documented as CVE-2015-1778. The odl-mdsal-apidocs feature was
found to contain a bug, CVE-2015-1857, which allowed sensitive information to be read
due to lack of proper security restrictions. The Netconf TCP service contained a bug,
which allowed arbitrary files to be read. This was caused by an XML External Entity
(XXE) vulnerability and is documented as CVE-2014-5035.

Vulnerabilities related to the network topology have also been documented, which refer
to known attacks against SDN and affect a large percentage of controllers.
CVE-2015-1612 and CVE-2015-1611 refer to the Link Fabrication Attack (LFA) where a
Link Layer Discovery Protocol (LLDP) message can be crafted or captured and
replayed in order to cause the controller to believe a link exists between two switches
when that link does not physically exist. CVE-2015-1610 refers to the Host Location
Hijacking Attack, where an attacker can send a packet into the network with a spoofed
source address causing the controller to believe that a host has changed location in the
network.

The ODL defense4all application contained a serious vulnerability, CVE-2014-8149,
which allowed data to be written to arbitrary files. The SDN Interface application, now
deprecated, contained an SQL injection vulnerability, documented as
CVE-2017-1000411.

ONOS

As detailed in Table 2, ONOS has a total of 12 public vulnerabilities recorded [7][18].
Similar to ODL, the bugs affect a variety of components.

© 2019 ONF. All Rights Reserved. Informational Report

DoS attacks make up just less than half of the known vulnerabilities. CVE-2017-13763
describes an issue with a clustering component, where forged packets can be sent to a
controller causing an increase in memory usage. The IP forwarding service could be
crashed by sending jumbo Ethernet frames. This bug is recorded as CVE-2015-7516.
Similarly, CVE-2018-1000615 documents a bug where the OVSDB service can be
crashed. The vulnerability recorded as CVE-2017-1000079 causes certain core features
of ONOS to stop working correctly.

ONOS has 2 XXE vulnerabilities associated with it. CVE-2018-1000616 describes an
XXE vulnerability in the XML Configuration Parser, while CVE-2018-1000614 describes
a similar issue in the Netconf Alarm Translator service.

Correct authentication has also been a problem for ONOS. CVE-2017-1000080
describes a vulnerability where the websocket used by the web user interface (UI) can
be accessed without any authentication. This then gives an attacker access to the
information normally seen on the ONOS web UI (e.g. topology information). A serious
bug, documented as CVE-2017-1000081, allows the unauthenticated upload of
applications, allowing anyone to execute arbitrary code on the controller. Further issues
have been found in the web interface. CVE-2017-13762 describes a bug whereby an
attacker could exploit an XSS vulnerability in the web UI by passing HTML and
JavaScript from a switch connected to the controller. The same XSS vulnerability can
be exploited via the REST API, as documented in CVE-2017-1000078.

A race condition was found and documented as CVE-2018-12691, which enables ACL
rules to be bypassed. Topology issues such as the Host Location Hijacking attack and
the LFA have also been an issue for ONOS. However, these are not documented with
CVE IDs. Recent versions of ONOS contain protections against the generation and
replay-type LFA.

Discussion
Both ODL and ONOS have a number of vulnerabilities associated with them. In both
cases, the vulnerabilities are diverse and affect a wide variety of components.

A number of ODL vulnerabilities are caused by lack of authentication and restrictions,
and allowing untrusted data to reach controller components. Ensuring that users must
authenticate before controller interaction, and sanitizing and checking all user supplied
data is key to preventing vulnerabilities such as those presented in this Section.

ONOS has had similar issues with lack of restriction and authentication, specifically in
components related to the web UI. ODL has no documented vulnerabilities related to
the web UI. However, the web UI provided by ONOS is more feature-rich and complex,
so that more bugs would be expected.

© 2019 ONF. All Rights Reserved. Informational Report

To summarize this section, considering the identified features of a secure, robust, and
resilient SDN controller [14], there has been an increased focus on security within both
ONOS and ODL controller communities over the past six years. In the case of ONOS,
the improvements in clustering functionality and the introduction of a policy framework
are encouraging developments. However, the consistent consideration of security
across project development in ODL, the provision of core AAA functionality, and the
emphasis on security considerations for deployment and vulnerability management
highlight the commitment of ODL to security. As discussed in Section 2.2, a range of
vulnerabilities have been identified in both ONOS and ODL controllers. There are some
similarities with respect to exposure to DoS and authentication vulnerabilities, which
have now been addressed. Of course, from a software development perspective, as the
deployment of both systems increases, the emergence of further vulnerabilities will be a
strong indicator of the system security.

© 2019 ONF. All Rights Reserved. Informational Report

Summary
In this report, we have compared both quantitatively and qualitatively, though
non-exhaustively, key characteristics of the ONOS and ODL controllers. We focused the
performance analysis in particular on control-plane reactivity to network topology events
and in software reliability growth models that could help towards prudent open source
project management. In terms of security aspects, we provided a qualitative comparison
of the two controllers, and analysed their recorded vulnerabilities to date.

This report is the result of unfunded activities by the involved parties - results were also
presented during the third ONF sec&perf brigade workshop held in Paris, June 17,
2019, at TMA 2019. Companion slides to this report are available at
https://wiki.onosproject.org/pages/viewpage.action?pageId=12422167.

Citation: S. Secci, A. Diamanti, JM. Sanchez, MT. Bah, P. Vizzarreta, C. Mas
Machuca, S. Scott-Hayward, D. Smith, “Security and Performance Comparison of
ONOS and ODL Controllers”, Informational Report, Open Networking Foundation,
Sept. 2019.

References

© 2019 ONF. All Rights Reserved. Informational Report

https://wiki.onosproject.org/pages/viewpage.action?pageId=12422167

[1] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve or die: High-availability design
principles drawn from Google’s network infrastructure,” in Proceedings of ACM SIGCOMM Conference.
ACM, 2016, pp. 58–72.
[2] M. R. Lyu et al., Handbook of software reliability engineering. IEEE computer society press CA, 1996.
[3] Vizarreta, Petra; Trivedi, Kishor; Helvik, Bjarne; Heegaard, Poul; Blenk, Andreas; Kellerer, Wolfgang;
Mas Machuca, Carmen: Assessing the Software Maturity of SDN Controllers Using Software Reliability
Growth Models. Transactions on Network and Service Management, 2018
[4] Vizarreta, Petra; Ermin Sakic; Kellerer, Wolfgang; Mas Machuca, Carmen: Mining Software
Repositories for Predictive Modelling of Defects in SDN Controller. Submitted to: IFIP/IEEE International
Symposium on Integrated Network Management (IFIP IM), 2019
[5] Scott-Hayward, Sandra. "Trailing the Snail: SDN Controller Security Evolution." arXiv preprint
arXiv:1711.08406 (2017).
[6] OpenDaylight Vulnerability Management Process [Online] Available:
https://wiki.opendaylight.org/view/Security:Vulnerability_Management#Risk_Assessment
[7] ONOS CVE list [Online] Available: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ONOS
[8] ODL CVE list [Online] Available: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OpenDaylight
[9] “Security-Mode ONOS.” [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
[10] “Access Control Based on DHCP.” [Online]. Available:
https://wiki.onosproject.org/display/ONOS/Access+Control+Based+on+DHCP
[11] “ARTEMIS: an Automated System against BGP Prefix Hijacking.” [Online]. Available:
https://wiki.onosproject.org/display/ONOS/ARTEMIS%3A+an+Automated+System+against+BGP+Prefix+
Hijacking
[12] “Virtual Private LAN Service - VPLS” [Online] Available:
https://wiki.onosproject.org/display/ONOS/Virtual+Private+LAN+Service+-+VPLS
[13] “Policy framework for ONOS” [Online] Available:
https://wiki.onosproject.org/display/ONOS/POLICY+FRAMEWORK+FOR+ONOS
[14] Scott-Hayward, Sandra. "Design and deployment of secure, robust, and resilient SDN Controllers." In
Proceedings of the 2015 1st IEEE conference on network Softwarization (NetSoft), pp. 1-5. IEEE, 2015.
[15] “Authentication, Authorization, and Accounting (AAA) Services” [Online] Available:
https://docs.opendaylight.org/projects/aaa/en/latest/dev-guide.html
[16] “Cluster Configuration in Owl (1.14)” [Online] Available:
https://wiki.onosproject.org/pages/viewpage.action?pageId=28836788
[17] “OpenDaylight Security Advisories” [Online] Available:
https://wiki.opendaylight.org/view/Security:Advisories
[18] “ONOS Security Advisories” [Online] Available:
https://wiki.onosproject.org/display/ONOS/Security+advisories
[19] IPERF tool documentation [Online]. Available: https://iperf.fr/iperf-doc.php
[20] TSHARK tool documentation [Online]. Available:
https://www.wireshark.org/docs/man-pages/tshark.html
[21] Pakzad, Farzaneh, et al. ”Efficient topology discovery in software defined networks.” Signal
Processing and Communication Systems (ICSPCS), 2014 8th International Conference on. IEEE, 2014.

© 2019 ONF. All Rights Reserved. Informational Report

https://wiki.opendaylight.org/view/Security:Vulnerability_Management#Risk_Assessment
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=ONOS
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=OpenDaylight
https://wiki.onosproject.org/display/ONOS/Security-Mode+ONOS
https://wiki.onosproject.org/display/ONOS/Access+Control+Based+on+DHCP
https://wiki.onosproject.org/display/ONOS/ARTEMIS%3A+an+Automated+System+against+BGP+Prefix+Hijacking
https://wiki.onosproject.org/display/ONOS/ARTEMIS%3A+an+Automated+System+against+BGP+Prefix+Hijacking
https://wiki.onosproject.org/display/ONOS/Virtual+Private+LAN+Service+-+VPLS
https://wiki.onosproject.org/display/ONOS/POLICY+FRAMEWORK+FOR+ONOS
https://docs.opendaylight.org/projects/aaa/en/latest/dev-guide.html
https://wiki.onosproject.org/pages/viewpage.action?pageId=28836788
https://wiki.opendaylight.org/view/Security:Advisories
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://iperf.fr/iperf-doc.php
https://www.wireshark.org/docs/man-pages/tshark.html

