
A Workflow Management Engine
in CORD
Illyoung Choi

iychoi@email.arizona.edu
University of Arizona



Is a series of tasks in order to accomplish a repeatable 

business objective with details on when, how and what work is to 

be done.

2

A Workflow?
This differentiates a workflow

from a general program

Task = (When ⇒ How ⇒ What)
= (Event ⇒ Action ⇒ Result)



Current Workflows in CORD

• Implemented as a XOS 
Synchronizer
• Data-models (data)
• Model-policies

(model-event handlers)
• Event-steps

(external-event handlers)
• Event handlers define 

when, how, and what
• A container per workflow

• Scalability & Isolation Execution Flow of AT&T Workflow
- Two execution paths
- inter-workflow calls (dot arrows)



• Development
• Inconsistent technologies & interfaces for event-handling
• Seemingly fragmented codes
• Manual workflow state management
• Possible race conditions & loops

• Management
• Difficult to understand execution flows & relations
• Difficult to monitor workflow state

4

Difficulties & Limitations



5

Execution Flow At First Glance



6

Event-steps vs. Model-policies
Periodic 
check for 
updates 
(5 sec)



7

Possibly...

Race Conditions Loops



• Based on Apache Airflow
• An open-source workflow management platform by Airbnb

• Development
• Simple & consistent event-handler interfaces
• Execution flow is clearly described
• State management
• Can avoid race conditions using Pools (like mutex)
• Can find loops via graphs

• Management
• Visualize state, flows and relations of workflows
• Scalable (using kubernetes/celery)

8

The Pilot Engine

Airflow



9

Design of the Pilot Engine 

Workflow Controller

Probe (producer) Interface

Workflow (subscriber) Interface

Probe
External 
Events

Probe
Model 
Events Airflow

Workflow 
#1

Workflow 
#2

Probes Workflow Controller Airflow Extensions



• Bridge the gap between CORD and Airflow
• OLTP (Online Transactional Processing) 

vs. OLAP (Online Analytical Processing)
• OLTP ⇒ Short transactions (e.g., CRUD)
• OLAP ⇒ Periodical batch processing (e.g., Hadoop analysis)
• Run a transaction as a workflow instance

• Workflow management
• Launch new workflow instances
• Monitor state of workflow instances

• Event routing
• Route events to workflow instances

10

Workflow Controller



11

Code Changes
onu_event_sensor = CORDEventSensor(

task_id='onu_event_sensor',
topic='onu.events',
key_field='serialNumber',
controller_conn_id='local_cord_controller',
poke_interval=5,
dag=dag_att

)

onu_event_handler = CORDModelOperator(
task_id='onu_event_handler',
python_callable=on_onu_event,
data_models=[’ATTServiceInstanceModel’],
cord_event_sensor_task_id='onu_event_sensor',
dag=dag_att

)

onu_event_sensor >> onu_event_handler

When

How

What

Explicit flow definition

When & how What

WhatHowWhen



12

Design Changes
XOS Synchronizer The Pilot Engine



13

Monitoring



• Performance
• Slow polling-based event detection*
• Slow task scheduling*

• Scalability
• Single point of failure
• Unscalable Airflow UI (Web admin)*

• Usability
• Annoying workflow registration
• Annoying restriction in programming

(e.g., a single python file per a workflow)

14

Limitations

Related to Airflow’s target market, “an 
orchestrator for OLAP”

OLAP 
(Online Analytical Processing): 
periodic, long-running batch jobs



• Best assets of the pilot engine
• Simple & consistent event handlers
• Simple state management & flow control
• Task scheduling using Pools to avoid race conditions
• Visualizations for monitoring

• Supplementary features to the pilot engine
• Automated loop detection & race condition
• Fast event detection (event-driven or short polling period)
• Fast task-scheduling
• High availability & Scalability
• A container per workflow (Like XOS Synchronizer)
• Simple workflow registration at runtime
• Workflow code packaging for deployment

15

Future Workflow Management Engine in CORD



16

Best of Both Worlds

• XOS Synchronizer
• Separation of concerns

• The Pilot Engine
• Explicit and connected

concerns



Thank You


