
An Operator Led Consortium

NEM: Overview and ISSU plans

Overview

VOLTHA

ONOS

NNI

OLT

ONU
UNI

Compute

AGG

Network Edge Mediator (NEM)AbstractOLT

BNG

KAFKA

XOS
LOGGING
(elk stack)

MONITORING
(prometheus)

XOS Architecture

Northbound Interface

Core

Southbound Interface

Backend

synchronizerssynchronizerssynchronizers

xos-ws

xos-corexos-db

xos-gui

chameleon

kafka

xos-tosca

ONOS VOLTHA VNFs

XOS Architecture

CORE

Models Models Models

ONOS VOLTHA VNFs

NB Interface

ONOS
Synchronizer

vOLT
Synchronizer

VNF
Synchronizer

XOS in SEBA

An example operation, OLT provisioning.

Models
(OLTDevice) VOLTHA

NB Interface

vOLT
Synchronizer

pre-provision

activate

wait for
activation

XOS in SEBA

CORE

Subscriber vOLT Crossconnect

VOLTHA ONOS

KAFKA

vOLT
Synchronizer

Fabric-xconnect
Synchronizer

An example operation, Subscriber authentication.

Workflow

Workflow
Synchronizer

ONOS

XOS: The Synchronizer Framework

The synchronizer framework allows XOS to be extended in service-
specific ways.

• Service-specific models
• Service-specific business logic
• Abstractions and logic that span multiple services

XOS supports diverse heterogeneous services. Different kinds
services naturally need different models and logic.

Synchronizers specify models,
and implement policies and steps

8

Policy

XOS Core

Foo Synchronizer

"Foo C
hanged" "U

pd
at

e
Ba

r"

Foo Bar

Step

External
Component

"Bar Changed"

REST
Foo

xproto
Bar

xproto

Types of Steps

- XOS -> External Component
- Sync Step
- Delete Step

- External Component -> XOS
- Pull Step
- Event Step

- XOS -> XOS
- Model Policy

Synchronizers: moving to a library

The synchronizer framework was refactored as a python library.

- Developer benefits
- Compliant with python best-practices
- Developer friendly (IDEs)

- Community benefits
- Ease of re-use promotes adoption

- Operational benefits
- De-layering of containers -> Smaller containers

Migrations: principles

Anytime a model evolves actions needs to be take, mainly:

- Bring the database schema up to date
- Make sure data are kept in a consistent state

Best practices:

- Migrations are treated as code
- Migrations can be executed both ways

Migrations: example

Model v1:

 string firstName

 string lastName

Model v1.1:

 string firstName

 string lastName

 string fullName

Model v2.0:

 string fullName

A field is added (autogenerated)

Data are changed (custom logic)

Migrations: XOS

xos-migrate: https://guide.opencord.org/xos/dev/xosmigrate.html

- Generate standard migrations base on xProto changes
- Allow developers to extend migrations with custom logic

https://guide.opencord.org/xos/dev/xosmigrate.html

Migrations: XOS

CORE

Synchronizer v1

xProto

Migrations

DB

Synchronizer v2

xProto

Migrations

Models v1 Models v2

