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XOS Architecture
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XOS Architecture
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XOS in SEBA

An example operation, OLT provisioning.
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XOS in SEBA
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XOS: The Synchronizer Framework

The synchronizer framework allows XOS to be extended in service- 
specific ways.

• Service-specific models
• Service-specific business logic
• Abstractions and logic that span multiple services

XOS supports diverse heterogeneous services. Different kinds 
services naturally need different models and logic.



Synchronizers specify models, 
and implement policies and steps
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Types of Steps

- XOS -> External Component
- Sync Step
- Delete Step

- External Component -> XOS
- Pull Step
- Event Step

- XOS -> XOS
- Model Policy



Synchronizers: moving to a library

The synchronizer framework was refactored as a python library.

- Developer benefits
- Compliant with python best-practices
- Developer friendly (IDEs)

- Community benefits
- Ease of re-use promotes adoption

- Operational benefits
- De-layering of containers -> Smaller containers



Migrations: principles

Anytime a model evolves actions needs to be take, mainly:

- Bring the database schema up to date
- Make sure data are kept in a consistent state

Best practices:

- Migrations are treated as code
- Migrations can be executed both ways



Migrations: example

Model v1:

  string firstName

  string lastName

Model v1.1:

  string firstName

  string lastName

  string fullName

Model v2.0:

  string fullName

A field is added (autogenerated)

Data are changed (custom logic)



Migrations: XOS

xos-migrate: https://guide.opencord.org/xos/dev/xosmigrate.html

- Generate standard migrations base on xProto changes
- Allow developers to extend migrations with custom logic

https://guide.opencord.org/xos/dev/xosmigrate.html


Migrations: XOS
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