
Copyright © 2019 - Open Networking Foundation

ONF Connect 2019

Next-Gen SDN Tutorial
September 10, 2019

These slides:
http://bit.ly/ngsdn-tutorial-slides

Exercises and VM:
http://bit.ly/ngsdn-tutorial-lab

Copyright © 2019 - Open Networking Foundation

NG-SDN Tutorial - Before we start...

● Get USB keys with VM from instructors
○ Or download: http://bit.ly/ngsdn-tutorial-lab
○ Option to use Docker instead of VM

● Copy and import VM into VirtualBox
○ User: sdn - Password: rocks

● If VirtualBox complains about a missing network adapter, remove that in the VM
configuration (adapter 2)

● Update deps inside VM (requires Internet access)
○ cd ~/ngsdn-tutorial
○ git pull origin master
○ make pull-deps

These slides:
http://bit.ly/ngsdn-tutorial-slides

http://bit.ly/ngsdn-tutorial-lab

Copyright © 2019 - Open Networking Foundation

Mininet topology for hands-on exercises

h1a
MAC: 00:00:00:00:00:1a

IP: 2001:1:1::a/64

spine1
MAC: 00:bb:00:00:00:00:01

gRPC port: 50003

spine2
MAC: 00:bb:00:00:00:00:02

gRPC port: 50004

leaf1
MAC: 00:aa:00:00:00:00:01

gRPC port: 50001

leaf2
MAC: 00:aa:00:00:00:00:02

gRPC port: 50002

h1b
MAC: ...:00:1b

IP: 2001:1:1::b/64

h1c
MAC: ...:00:1c

IP: 2001:1:1::c/64

h2
MAC: ...:00:20

IP: 2001:1:2::1/64

h3
MAC: ...:00:30

IP: 2001:2:3::1/64

h4
MAC: ...:00:40

IP: 2001:2:4::1/64

Each host is configured with IPv6 gateway address on the
same subnet as the host, but ending with ...::ff.

E.g., for h1a, the gateway address is 2001:1:1::ff

Same IPv6 subnet

3 4 5 6

1
2

1 2

1

1 2

2

3 4

Copyright © 2019 - Open Networking Foundation

Instructors

Brian O’Connor
ONF

Carmelo Cascone
ONF

Copyright © 2019 - Open Networking Foundation

Schedule

8.00am-9.00am registration / breakfast / technical set up for hands-on lab

9.00am-9:20am - NG-SDN overview

9.20am-10.45 - P4 and P4Runtime basics (with hands-on lab)

10.45am-11.15am - break

11.15am-12.30pm - YANG, gNMI and OpenConfig basics (with hands-on lab)

12.30pm-1.30pm- lunch

1.30pm-3.00pm - Using ONOS as the control plane (with hands-on lab)

3.00pm-3.30pm - break

3.30pm-5.00pm - Use cases (with hands-on lab)

Copyright © 2019 - Open Networking Foundation

NG-SDN Overview

Copyright © 2019 - Open Networking Foundation

Software Defined Networking (SDN) v1
● Introduction of Programmatic Network Interfaces

○ Data Plane programming: OpenFlow
○ Configuration and Management: NETCONF and YANG

● Promise: Enable separation of data plane and control plane
○ Unlock control and data plane for independent innovation

TODO picture of SDN

Copyright © 2019 - Open Networking Foundation

SDN v1 Problems
● Programmatic Network Interfaces are Inconsistent

○ OpenFlow provided no data plane pipeline specification;
every vendor’s pipeline is different

○ Every vendor provides their own models for configuration or management

○ Differences in protocol implementations require custom handling in the control
plane

● Reality: Control planes are written and tested against
specific hardware
○ Some control planes have worked around this by building their own

abstractions to handle these differences, but new abstractions are either least
common denominator (e.g. SAI) or underspecified (e.g. FlowObjectives)

○ Other control planes have exploited specific APIs are essentially locked in to
specific vendors

Copyright © 2019 - Open Networking Foundation

Network Function Virtualization (NFV) v1
● Migrate specialized networking hardware (e.g. firewall, load

balancer) to commodity servers
● Virtualized network functions (VNFs) are packaged and

distributed as VMs or containers, which are easier to deploy

Firewall

L. B.

Copyright © 2019 - Open Networking Foundation

NFV v1 Problems

● CPUs are not the right hardware for many network functions
○ Latency and jitter are higher than alternatives
○ Higher cost per packet and increased power consumption

● NFV data plane topologies are inefficient
○ Additional switching hops required to implement sequences of VNFs

(service chains), especially when placement algorithms are not optimized

Copyright © 2019 - Open Networking Foundation

Combining SDN and NFV
● SDN (fabric) and NFV (overlay) are managed separately

○ Increased operational complexity / opex
○ Difficult to optimize across different stacks
○ Lack of visibility for troubleshoot and end-to-end optimization
○ Separate resource pools

OpenStack / K8S

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
App

Ctrl
AppVNF

OCP
Hardware

Network OS
Overall, the benefits of

SDN/NFV using 1st
generation architectures

are not without their costs.

Copyright © 2019 - Open Networking Foundation

Questions

● Can we get the benefits of SDN and NFV without paying these
costs?

● Can we incorporate lessons learned from production
deployments of SDN v1 and NFV v1?

● Can we take advantage of new networking hardware
efficiently and rapidly?

Copyright © 2019 - Open Networking Foundation

Next-Gen Software Stack Components

●
○
○

○

●
○
○
○

●
○
○
○

Copyright © 2019 - Open Networking Foundation

NG-SDN Big Picture

Evolutionary Roadmap

● Next-Gen SDN Interfaces are defined
○ P4, P4Runtime, OpenConfig, gNMI, gNOI

● Stratum now released to Open Source
● ONOS 2.2 supports NG APIs

○ µONOS will provide new configuration
subsystem that will be compatible

● Cloud native tool chains established
○ Kubernetes

● Ready to embark on Verification

Revolutionary New Capabilities

Copyright © 2019 - Open Networking Foundation

What is Stratum?

Open source, production targeted, thin switch OS that implements
NG-SDN interfaces and models

P4 Program

St
ra

tu
m

 a
ge

ntSwitch (Broker) Interface

Table Mgr Node Chassis Mgr

Chip Abstraction Managers Platform Mgr

gNMI gNOI

P4
Compiler

Switch SDK Platform API

Switch Chip(s) Peripheral(s)

P4Runtime

TestVectors
Runner

TestVectors

Copyright © 2019 - Open Networking Foundation

Stratum = implementation of 3 APIs
● Control – P4Runtime with P4-defined pipelines

○ Manage match-action table entries and other forwarding pipeline state

● Configuration – gNMI with OpenConfig models
○ Configure everything else that is not the forwarding pipeline.

e.g. set port speed, read port counters, manage fans, etc.

● Operations – gNOI
○ Execute operational commands on device.

e.g, reboot, push SSL certificates, etc.

All of Stratum’s APIs are defined gRPC / Protobuf

Copyright © 2019 - Open Networking Foundation

Aside: gRPC (gRPC Remote Procedure Call)

● Use Protocol Buffers to define service API and messages
● Automatically generate client/server stubs in:

○ C / C++
○ C#
○ Dart
○ Go
○ Java
○ Node.js
○ PHP
○ Python
○ Ruby

● Transport over HTTP/2.0 and TLS
○ Efficient single TCP connection implementation that supports

bidirectional streaming

Copyright © 2019 - Open Networking FoundationSlide from Vijay Pai

Copyright © 2019 - Open Networking Foundation

gRPC Service Example

More details here: https://grpc.io/docs/guides/

https://grpc.io/docs/guides/

Copyright © 2019 - Open Networking Foundation

Achieving ASIC Independence

P4 compiler

My Station
(Routing Classifier)

L3 Routing
(IPv6 w/ ECMP)

L2 Forwarding

ACL
(Redirect, drop & Pkt in)

fpm backend (Broadcom) Tofino backend (Barefoot)

bcm_demo.bin

demo.p4info

Allocate resources to realize the pipeline,
and generate runtime mapping

Generate control
plane contract

bf_demo.bin

demo.p4

Stratum

bmv2 backend

bmv2_demo.bin

Copyright © 2019 - Open Networking Foundation

Achieving Platform Independence

OpenNetworkLinux
ONL Platform API (ONLPv2)

ONLP Platform impl.
libonlp-<platform>.so

Stratum Platform Manager

gNMI Server

OpenConfig.yang
OpenConfig.yang

openconfig.yang
OpenConfig

Mapper
Stratum Config

DB

Stratum

Copyright © 2019 - Open Networking Foundation

Tofino
Up to 6.5 Tbps

Stratum Switch Support Today

Z9100
32 x 100 Gbps

AG9064v1
64 x 100 Gbps

Wedge100BF-32X
32 x 100 Gbps

Wedge100BF-65X
65 x 100 Gbps

Tomahawk
Up to 3.2 Tbps

D5054
32 x 100 Gbps +

48 x 25 Gbps

T7032-IX1
32 x 100 Gbps

AS7712
32 x 100 Gbps

D7032
32 x 100 Gbps

BF6064X
64 x 100 Gbps

+ 2 software switches: bmv2 (functional software switch) & dummy switch (used for API testing)

Near-term future platforms:
● Additional platforms for existing targets

○ Existing vendors + Asterfusion, ...
● Mellanox SN2700 (Spectrum)
● Datacom platforms (PowerPC-based)

Switching ASIC

Switch Vendor

Copyright © 2019 - Open Networking Foundation

Building and Installing Stratum

ONL
Builder

Switch Image Repository

ONLPI Drivers

ONL Image
ONL-ONLPv2_AMD64_INSTALLED.installer

Switch SDKs

StratumStep 1:
Build ONL

image offline
(or download a
pre-built one)

Step 2:
Install ONL

on boot via ONIE

ONL
Builder

ONL Image with Stratum
ONL-ONLPv2-STRATUM_AMD64_INSTALLED.installer

Traditional Switch
Image Management

Containerized Stratum Deployment

Container Repository

stratum_bcm

stratum_bf

Switch

Stratum can be
packaged with the
switch OS image or

deployed as a
container on a bare

switch OS

Stratum
Dockerfile

Copyright © 2019 - Open Networking Foundation

Testing Stratum Devices

TestVectors Runner
(low-level, can be plugged in to complex

test frameworks)

Switch Under Test

gRPC

Traffic generators and validators

Switch Ports

Test Vector

Test Case

Stimulus 1
Stimulus 2
...

Expectation 1
Expectation 2
...

Test Vectors

Test Vectors serve as compliance tests for
Stratum-based devices

They can be written manually or generated
automatically

- Stratum comes with a Contract Definition language
(cdlang) for generating test vectors

Test Scenarios
in CDLang

Automatic Test
Vector

Generators

CDLang
Compiler

Humans

TestVectors Runner is a data-driven framework
that enables users to execute TestVectors

- Reference impl. in golang; supports P4RT/gNMI

Copyright © 2019 - Open Networking Foundation

Tutorial Goals

● Learn how to work with P4 and YANG code

● Understand P4Runtime and gNMI and use CLI utilities to
communicate with Stratum devices

● Gain experience running ONOS and Stratum

● Modify a simple Control Plane application that interacts with a
P4-defined pipeline

Copyright © 2019 - Open Networking Foundation

Hands-on overview

Goal: Build IPv6-based leaf-spine fabric with P4, Stratum and
ONOS

Getting there step-by-step:
● Exercise 1 - P4 and P4Runtime basics
● Exercise 2 - Yang, OpenConfig, and gNMI basics
● Exercise 3 - Using ONOS as the control plane for Stratum
● Exercise 4 - Modify P4 program and ONOS app to enable IP

routing

