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Next-Gen SDN Tutorial
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These slides:
http://bit.ly/ngsdn-tutorial-slides

Exercises and VM:
http://bit.ly/ngsdn-tutorial-lab     
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NG-SDN Tutorial - Before we start...

● Get USB keys with VM from instructors
○ Or download: http://bit.ly/ngsdn-tutorial-lab
○ Option to use Docker instead of VM

● Copy and import VM into VirtualBox
○ User: sdn - Password: rocks

● If VirtualBox complains about a missing network adapter, remove that in the VM 
configuration (adapter 2)

● Update deps inside VM (requires Internet access)
○ cd ~/ngsdn-tutorial
○ git pull origin master
○ make pull-deps

These slides:
http://bit.ly/ngsdn-tutorial-slides

http://bit.ly/ngsdn-tutorial-lab
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Mininet topology for hands-on exercises

h1a
MAC: 00:00:00:00:00:1a

IP: 2001:1:1::a/64

spine1
MAC: 00:bb:00:00:00:00:01

gRPC port: 50003

spine2
MAC: 00:bb:00:00:00:00:02

gRPC port: 50004

leaf1
MAC: 00:aa:00:00:00:00:01

gRPC port: 50001

leaf2
MAC: 00:aa:00:00:00:00:02

gRPC port: 50002

h1b
MAC: ...:00:1b

IP: 2001:1:1::b/64

h1c
MAC: ...:00:1c

IP: 2001:1:1::c/64

h2
MAC: ...:00:20

IP: 2001:1:2::1/64

h3
MAC: ...:00:30

IP: 2001:2:3::1/64

h4
MAC: ...:00:40

IP: 2001:2:4::1/64

Each host is configured with IPv6 gateway address on the 
same subnet as the host, but ending with ...::ff.

E.g., for h1a, the gateway address is 2001:1:1::ff

Same IPv6 subnet
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Instructors

Brian O’Connor
ONF

Carmelo Cascone
ONF
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Schedule

8.00am-9.00am registration / breakfast / technical set up for hands-on lab

9.00am-9:20am - NG-SDN overview

9.20am-10.45 - P4 and P4Runtime basics (with hands-on lab)

10.45am-11.15am - break

11.15am-12.30pm - YANG, gNMI and OpenConfig basics (with hands-on lab)

12.30pm-1.30pm- lunch

1.30pm-3.00pm - Using ONOS as the control plane (with hands-on lab)

3.00pm-3.30pm - break

3.30pm-5.00pm - Use cases (with hands-on lab)
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NG-SDN Overview
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Software Defined Networking (SDN) v1
● Introduction of Programmatic Network Interfaces

○ Data Plane programming: OpenFlow
○ Configuration and Management: NETCONF and YANG

● Promise: Enable separation of data plane and control plane
○ Unlock control and data plane for independent innovation

TODO picture of SDN
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SDN v1 Problems
● Programmatic Network Interfaces are Inconsistent

○ OpenFlow provided no data plane pipeline specification;
every vendor’s pipeline is different

○ Every vendor provides their own models for configuration or management

○ Differences in protocol implementations require custom handling in the control 
plane

● Reality: Control planes are written and tested against 
specific hardware
○ Some control planes have worked around this by building their own 

abstractions to handle these differences, but new abstractions are either least 
common denominator (e.g. SAI) or underspecified (e.g. FlowObjectives)

○ Other control planes have exploited specific APIs are essentially locked in to 
specific vendors
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Network Function Virtualization (NFV) v1
● Migrate specialized networking hardware (e.g. firewall, load 

balancer) to commodity servers
● Virtualized network functions (VNFs) are packaged and 

distributed as VMs or containers, which are easier to deploy

Firewall

L. B.
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NFV v1 Problems

● CPUs are not the right hardware for many network functions
○ Latency and jitter are higher than alternatives
○ Higher cost per packet and increased power consumption

● NFV data plane topologies are inefficient
○ Additional switching hops required to implement sequences of VNFs 

(service chains), especially when placement algorithms are not optimized
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Combining SDN and NFV
● SDN (fabric) and NFV (overlay) are managed separately

○ Increased operational complexity / opex
○ Difficult to optimize across different stacks
○ Lack of visibility for troubleshoot and end-to-end optimization
○ Separate resource pools

OpenStack / K8S
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Ctrl
AppVNF

OCP
Hardware

Network OS
Overall, the benefits of 

SDN/NFV using 1st 
generation architectures 

are not without their costs.
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Questions

● Can we get the benefits of SDN and NFV without paying these 
costs?

● Can we incorporate lessons learned from production 
deployments of SDN v1 and NFV v1?

● Can we take advantage of new networking hardware 
efficiently and rapidly?
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Next-Gen Software Stack Components 
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NG-SDN Big Picture

Evolutionary  Roadmap

● Next-Gen SDN Interfaces are defined
○ P4, P4Runtime, OpenConfig, gNMI, gNOI

● Stratum now released to Open Source
● ONOS 2.2 supports NG APIs

○ µONOS will provide new configuration 
subsystem that will be compatible

● Cloud native tool chains established
○ Kubernetes

● Ready to embark on Verification

Revolutionary New Capabilities
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What is Stratum?

Open source, production targeted, thin switch OS that implements 
NG-SDN interfaces and models

P4 Program

St
ra

tu
m

 a
ge

ntSwitch (Broker) Interface

Table Mgr Node Chassis Mgr

Chip Abstraction Managers Platform Mgr

gNMI gNOI

P4 
Compiler

Switch SDK Platform API

Switch Chip(s) Peripheral(s)

P4Runtime

TestVectors
Runner

TestVectors
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Stratum = implementation of 3 APIs
● Control – P4Runtime with P4-defined pipelines

○ Manage match-action table entries and other forwarding pipeline state

● Configuration  – gNMI with OpenConfig models
○ Configure everything else that is not the forwarding pipeline. 

e.g. set port speed, read port counters, manage fans, etc.

● Operations – gNOI
○ Execute operational commands on device.

e.g, reboot, push SSL certificates, etc.

All of Stratum’s APIs are defined gRPC / Protobuf
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Aside: gRPC (gRPC Remote Procedure Call)

● Use Protocol Buffers to define service API and messages
● Automatically generate client/server stubs in:

○ C / C++
○ C#
○ Dart
○ Go
○ Java
○ Node.js
○ PHP
○ Python
○ Ruby

● Transport over HTTP/2.0 and TLS
○ Efficient single TCP connection implementation that supports 

bidirectional streaming
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gRPC Service Example

More details here: https://grpc.io/docs/guides/ 

https://grpc.io/docs/guides/
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Achieving ASIC Independence

P4 compiler

My Station
(Routing Classifier)

L3 Routing
(IPv6 w/ ECMP)

L2 Forwarding

ACL
(Redirect, drop & Pkt in)

fpm backend (Broadcom) Tofino backend (Barefoot)

bcm_demo.bin

demo.p4info

Allocate resources to realize the pipeline, 
and generate runtime mapping

Generate control
plane contract

bf_demo.bin

demo.p4

Stratum

bmv2 backend

bmv2_demo.bin
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Achieving Platform Independence

OpenNetworkLinux
ONL Platform API (ONLPv2)

ONLP Platform impl.
libonlp-<platform>.so

Stratum Platform Manager

gNMI Server

OpenConfig.yang
OpenConfig.yang

openconfig.yang
OpenConfig 

Mapper
Stratum Config 

DB

Stratum
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Tofino
Up to 6.5 Tbps

Stratum Switch Support Today

Z9100
32 x 100 Gbps

AG9064v1
64 x 100 Gbps

Wedge100BF-32X
32 x 100 Gbps

Wedge100BF-65X
65 x 100 Gbps

Tomahawk
Up to 3.2 Tbps

D5054
32 x 100 Gbps +

48 x 25 Gbps

T7032-IX1
32 x 100 Gbps

AS7712
32 x 100 Gbps

D7032
32 x 100 Gbps

BF6064X
64 x 100 Gbps

+ 2 software switches: bmv2 (functional software switch) & dummy switch (used for API testing)

Near-term future platforms:
● Additional platforms for existing targets

○ Existing vendors + Asterfusion, ...
● Mellanox SN2700 (Spectrum)
● Datacom platforms (PowerPC-based)

Switching ASIC

Switch Vendor
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Building and Installing Stratum

ONL 
Builder

Switch Image Repository

ONLPI Drivers

ONL Image
ONL-ONLPv2_AMD64_INSTALLED.installer

Switch SDKs

StratumStep 1:
Build ONL

image offline
(or download a 
pre-built one)

Step 2:
Install ONL

on boot via ONIE

ONL 
Builder

ONL Image with Stratum
ONL-ONLPv2-STRATUM_AMD64_INSTALLED.installer

Traditional Switch 
Image Management

Containerized Stratum Deployment

Container Repository

stratum_bcm

stratum_bf

Switch

Stratum can be 
packaged with the 
switch OS image or 

deployed as a 
container on a bare 

switch OS

Stratum
Dockerfile
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Testing Stratum Devices

TestVectors Runner 
(low-level, can be plugged in to complex 

test frameworks)

Switch Under Test

gRPC

Traffic generators and validators

Switch Ports

Test Vector

Test Case

Stimulus 1
Stimulus 2
...

Expectation 1
Expectation 2
...

Test Vectors

Test Vectors serve as compliance tests for 
Stratum-based devices

They can be written manually or generated 
automatically

- Stratum comes with a Contract Definition language 
(cdlang) for generating test vectors 

Test Scenarios  
in CDLang

Automatic Test 
Vector 

Generators

CDLang 
Compiler

Humans

TestVectors Runner is a data-driven framework 
that enables users to execute TestVectors

- Reference impl. in golang; supports P4RT/gNMI
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Tutorial Goals

● Learn how to work with P4 and YANG code

● Understand P4Runtime and gNMI and use CLI utilities to 
communicate with Stratum devices

● Gain experience running ONOS and Stratum

● Modify a simple Control Plane application that interacts with a 
P4-defined pipeline
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Hands-on overview

Goal: Build IPv6-based leaf-spine fabric with P4, Stratum and 
ONOS

Getting there step-by-step:
● Exercise 1 - P4 and P4Runtime basics
● Exercise 2 - Yang, OpenConfig, and gNMI basics
● Exercise 3 - Using ONOS as the control plane for Stratum
● Exercise 4 - Modify P4 program and ONOS app to enable IP 

routing


