~

N
oM

Next-Gen SDN Tutorial

September 10, 2019

These slides:
http://bit.ly/ngsdn-tutorial-slides

Exercises and VM:
http://bit.ly/ngsdn-tutorial-1lab

Copyright © 2019 - Open Networking Foundation

NG-SDN Tutorial - Before we start...

e Get USB keys with VM from instructors
o Or download: http://bit.ly/ngsdn-tutorial-lab
o Option to use Docker instead of VM

e Copy and import VM into VirtualBox
o User: sdn - Password: rocks

e If VirtualBox complains about a missing network adapter, remove that in the VM
configuration (adapter 2)

e Update deps inside VM (requires Internet access)
o c¢d ~/ngsdn-tutorial
o git pull origin master
o make pull-deps

These slides:
http://bit.ly/ngsdn-tutorial-slides

Copyright © 2019 - Open Networking Foundation

http://bit.ly/ngsdn-tutorial-lab

N

Mininet topology for hands-on exercises

__

leaf1
MAC: 00:aa:00:00:00:00:01
gRPC port: 50001

h1a

MAC: 00:00:00:00:00:1a
IP: 2001:1:1::a/64

/

h1b
MAC: ...:00:1b
IP: 2001:1:1::b/64

h1c
MAC: ...:00:1c
IP: 2001:1:1::c/64

E S ¢

Same IPv6 subnet

spine1
MAC: 00:bb:00:00:00:00:01
gRPC port: 50003

MAC: 00:bb:00:00:00:00:02
gRPC port: 50004

h2
MAC: ...:00:20
IP: 2001:1:2::1/64

spine2

leaf2
MAC: 00:aa:00:00:00:00:02
gRPC port: 50002

h3 h4
MAC: ...:00:30 MAC: ...:00:40
IP: 2001:2:3::1/64 IP: 2001:2:4::1/64

Each host is configured with IPv6 gateway address on the
same subnet as the host, but ending with ...::ff.
E.g., for h1a, the gateway address is 2001:1:1::ff

Copyright © 2019 - Open Networking Foundation

Instructors

Brian O’Connor Carmelo Cascone
ONF ONF

Copyright © 2019 - Open Networking Foundation

Schedule

8.00am-9.00am registration / breakfast / technical set up for hands-on lab

9.00am-9:20am - NG-SDN overview

9.20am-10.45 - P4 and P4Runtime basics (with hands-on lab)
10.45am-11.15am - break

11.15am-12.30pm - YANG, gNMI and OpenConfig basics (with hands-on lab)
12.30pm-1.30pm- lunch

1.30pm-3.00pm - Using ONOS as the control plane (with hands-on lab)
3.00pm-3.30pm - break

3.30pm-5.00pm - Use cases (with hands-on lab)

Copyright © 2019 - Open Networking Foundation

NG-SDN Overview

Copyright © 2019 - Open Networking Foundation

Software Defined Networking (SDN) v1

® Introduction of Programmatic Network Interfaces

o Data Plane programming: OpenFlow
o Configuration and Management: NETCONF and YANG

® Promise: Enable separation of data plane and control plane
o Unlock control and data plane for independent innovation

EE I3
Q @ Network Map

NetWO rk OS @ Abstraction

Forwarding
Packet
Forwarding
Forwarding
©2019 - Open Networking Foundation

Packet
Forwarding

SDN v1 Problems

e Programmatic Network Interfaces are Inconsistent

O OpenFlow provided no data plane pipeline specification;

every vendor’s pipeline is different
O Every vendor provides their own models for configuration or management
O Differences in protocol implementations require custom handling in the control
plane
e Reality: Control planes are written and tested against

specific hardware

O Some control planes have worked around this by building their own
abstractions to handle these differences, but new abstractions are either least
common denominator (e.g. SAl) or underspecified (e.g. FlowObjectives)

O Other control planes have exploited specific APls are essentially locked in to
specific vendors

Copyright © 2019 - Open Networking Foundation

Network Function Virtualization (NFV) v1

e Migrate specialized networking hardware (e.g. firewall, load
balancer) to commodity servers

e Virtualized network functions (VNFs) are packaged and
distributed as VMs or containers, which are easier to deploy

—
Router Switch
Router Firewall

Load
Balancer . . .
Switch Switch Switch

Flrewall

Copyright © 2019 - Open Networking Foundation

NFV v1 Problems

e CPUs are not the right hardware for many network functions

o Latency and jitter are higher than alternatives
o Higher cost per packet and increased power consumption

e NFV data plane topologies are inefficient

o Additional switching hops required to implement sequences of VNFs
(service chains), especially when placement algorithms are not optimized

Copyright © 2019 - Open Networking Foundation

Combining SDN and NFV

e SDN (fabric) and NFV (overlay) are managed separately
Increased operational complexity / opex

Difficult to optimize across different stacks

Lack of visibility for troubleshoot and end-to-end optimization

O O O O

Separate resource pools

Overall, the benefits of
SDN/NFV using 1°
generation architectures
are not without their costs.

Copyright © 2019 - Open Networking Foundation

Questions

e Can we get the benefits of SDN and NFV without paying these
costs?

e Can we incorporate lessons learned from production
deployments of SDN v1 and NFV v1?

e Can we take advantage of new networking hardware
efficiently and rapidly?

Copyright © 2019 - Open Networking Foundation

Next-Gen Software Stack Components

7

APPS APPS

BED

ONOS

X

Next-Gen
SDN Switch

Next-Gen
SDN Switch

Next-Gen
SDN Switch

ONOS

o Supports Next-Gen SDN interfaces (P4Runtime, gNMI, gNOI)
o Cloud-native: microservices, Kubernetes, gRPC, etc.

o Enable apps to take advantage of the new capabilities

Stratum

o Thin switch OS

o Supports Next-Gen SDN interfaces (P4Runtime, gNMI, gNOI)
o Supports OpenConfig YANG models

Forwarding devices

o Supports programmable forwarding (P4)

o Also supported fixed function and partially programmable devices
o Enables smooth migration and diversity of silicon options

Copyright © 2019 - Open Networking Foundation

NG-SDN Big Picture

Revolutionary New Capabilities

Top-Down Hardware
Programmability Independence

Zero-Touch &
Automated
Full-Lifecycle

Operation

Verifiability

Evolutionary Roadmap

Next-Gen SDN Interfaces are defined
o P4, P4Runtime, OpenConfig, gNMI, gNOI
Stratum now released to Open Source

ONOS 2.2 supports NG APIs

o MONOS will provide new configuration
subsystem that will be compatible
Cloud native tool chains established
o Kubernetes

Ready to embark on Verification

Copyright © 2019 - Open Networking Foundation

What is Stratum?

Open source, production targeted, thin switch OS that implements
NG-SDN interfaces and models

- p—
U TestVectors U P4 Program /[P4Runtime H gNMI H gNOI]\
|

[Switch (Broker) Interface] ‘é

v [| T

P4 [Table Mgr]—[Node] [Chassis Mgr] g

. — T T I =

T —— | Compiler [Chip Abstraction Managers] [Platform Mgr] g

Runner >
[Platform API]

N Y W%
(60

Open Network Linux

[Switch Chip(s)] [Peripheral(s)]

Copyright © 2019 - Open Networking Foundation

Stratum = implementation of 3 APIs
e Control — P4Runtime with P4-defined pipelines

o Manage match-action table entries and other forwarding pipeline state

e Configuration — gNMI with OpenConfig models

o Configure everything else that is not the forwarding pipeline.
e.g. set port speed, read port counters, manage fans, efc.

e Operations — gNOI

o Execute operational commands on device.
e.g, reboot, push SSL certificates, efc.

All of Stratum’s APIs are defined gRPC / Protobuf

Copyright © 2019 - Open Networking Foundation

Aside: gRPC (g2RPC Remote Procedure Call)

e Use Protocol Buffers to define service APl and messages
e Automatically generate client/server stubs in:

o o O O O o o O

©)

C / C++ gRPC
C# Stub
Dart
Go
Java
Node.js
P H P C++ Service
Python
Ruby

gRPC Server Ruby Client

/'o’
© Response(s)

Android-Java Client

e Transport over HTTP/2.0 and TLS

©)

Efficient single TCP connection implementation that supports
bidirectional streaming

Copyright © 2019 - Open Networking Foundation

An Aside: Protocol Buffers syntax = “proto3;

message Person {
e Google's Lingua Franca for ST (L2 =
i et BB d & int32 id = 2;
se_zna izing data: S aq storage S i e
e Binary data representation

Structures can be extended and enum PhoneType {
intain backward compatibilit MOBILE = 0;

maintain patibility HOME = 1:

e Code generators for many WORK = 2;
languages ¥

e Strongly pred message PhoneNumber {
Not required for gRPC, but very string number = 1:
handy PhoneType type = 2;

}

repeated PhoneNumber phone = 4;

}

S— Q Google Cloud Platform

@grpcio Slide from Vijay Pai

gRPC Service Example

// The greeter service definition.
service Greeter {
// Sends a greeting
rpc SayHello (HelloRequest) returns (HelloReply) {}

}

// The request message containing the user's name.
message HelloRequest {
string name = 1;

}

// The response message containing the greetings
message HelloReply {
string message = 1;

}
More details here: https://grpc.io/docs/quides/

Copyright © 2019 - Open Networking Foundation

https://grpc.io/docs/guides/

Achieving ASIC Independence

L3 Routing

My Station

(Routing Classifier)

\J ACL

/ (Redirect, drop & Pkt in)

< (IPv6 w/ ECMP)

L2 Forwarding

demo.p4

‘ Generate control
plane contract

P4 compiler é

Allocate resources to realize the pipeline,

and generate runtime mapping

B 4

O :

z@ — demo.p4info
A

Control plane

[fpm backend (Broadcom) } [bmv2 backend } [Tofino backend (Barefoot) }

p4runtime.proto

l

| N N

PARuntime server

l

bcm_demo.bin

BROADCOM.
T -

Target driver

bf_demo.bin e |

bmv2_demo.bin

—

Copyright © 2019 - Open v

——
—

Switch ASIC

BAREFCOT

NETWORKS

CLWUINIIY | vUluauul i

Achieving Platform Independence

{OPENCONFIG

openconfig.yang

Control plane

n. 0 i
- |
OpenNetworkLinux (@9

Copyright © 2019 - Open Networking Foundation

Stratum
i - interfaces
_i OpenConfig Stratum Config | — ntertace
! Mapper 2 etho
H (is_key=true)
state
Stratum Platform Manager } ifindex
ONL Platform API (ONLPv2) |)V,\(bignsmggks
_____________________________ oo
BOEOREREE Inventec (CSQcCT

Stratum Switch Support Today

NETWORKS

Switch Vendor
@ A\nelTa | BEEDEEEOE Inventec CSQcT | €storois

Switching ASIC

Wedgel00BF-32X

BAREEE%%;‘:! AG9064v1 32x100 Gbps D5054 BF6064X
Tofino 64x100Gbps | WedgelOOBF-65X | 32X100Gbps+ 64x100 Gbps
Up to 6.5 Tbps 65 x 100 Gbps 48x 25 Gbps
ERojncon. Z9100 AS7712 D7032 T7032-1X1
Tomahawk 32 x 100 Gbps 32 x 100 Gbps 32 x 100 Gbps 32 x 100 Gbps
Up to 3.2 Tbps

+ 2 software switches: bmv2 (functional software switch) & dummy switch (used for API testing)

Near-term future platforms:
e Additional platforms for existing targets

o Existing vendors + Asterfusion, ... Arion
e Mellanox SN2700 (Spectrum) Mellanox
e Datacom platforms (PowerPC-based) DATACOM

Copyright © 2019 - Open Networking Foundation

Building and Installing Stratum

Traditional Switch Containerized Stratum Deployment
Image Management |
Step 1: Stratum R 4 —& Container Repository
Build ONL v - Stratum
stratum_bcm
image offline ONL | _ | Dockerfile -
(or download a Builder || | Switch SDKs [

pre-built one)

\ B stratum_Dbf
l |
ONLPI Drivers H— ONL :

|

P o o o e o o

I
- . :
Switch Image Repository : Stratum can be
ONL Image . packaged with the
ONL-ONLPv2_AMD64_ INSTALLED.installer I . .
ONL | oS . Switch OS image or
N mage with Stratum I
ONL—ONLPV2—SgTRATUM_AMD64_INSTALLED. installer I de,?loyed asa
s , | container on a bare
tep 2: | ' switch OS

Install ONL y
on boot via ONIE [Switch]

Copyright © 2019 - Open Networking Foundation

Testing Stratum Devices

Humans

Test Vectors serve as compliance tests for

Stratum-based devices Test Scenarios Automatic Test
in CDLang Vector
They can be written manually or generated l Cnision:
automatically
- Stratum comes with a Contract Definition language | CDLang
(cdlang) for generating test vectors Compiler

Test Vector

TestVectors Runner |«
4—

Test Case] (low-level, can be plugged in to complex
test frameworks)

Stimulus 1 Expectation 1 | | | | | oee-mmdrmoTTTTTTTTTTTI L T e
Stimulus 2 |:> Expectation 2 RRRRET gRPC [.- g

I —» Switch Under Test
|

T A A

L Switch Ports

Y y

TestVectors Runner is a data-driven framework \

that enables users to execute TestVectors
- Reference impl. in golang; supports P4ART/gNMI

Copyright © 2019 - Open Networking Foundation

» Traffic generators and validators

Tutorial Goals

e Learn how to work with P4 and YANG code

e Understand P4Runtime and gNMI and use CLI utilities to
communicate with Stratum devices

e Gain experience running ONOS and Stratum

e Modify a simple Control Plane application that interacts with a
P4-defined pipeline

Copyright © 2019 - Open Networking Foundation

Hands-on overview

Goal: Build IPv6-based leaf-spine fabric with P4, Stratum and
ONOS

Getting there step-by-step:

e Exercise 1 - P4 and P4Runtime basics

e Exercise 2 - Yang, OpenConfig, and gNMI basics

e Exercise 3 - Using ONOS as the control plane for Stratum

e Exercise 4 - Modify P4 program and ONOS app to enable IP
routing

Copyright © 2019 - Open Networking Foundation

