

Sponsored By

PBT-on-Demand on Mellanox P4-Capable Hybrid Switch

Itzik Ashkenazi Networking Lab Chief Engineer CS Faculty, Technion, Israel

Agenda

- Introduction
- Enhanced Network Monitoring
- PBT-on-Demand
- Mellanox Spectrum-2
 - P4 Architecture
 - Extensibility Mechanisms
 - Telemetry Header
- PoC Implementation

Introduction

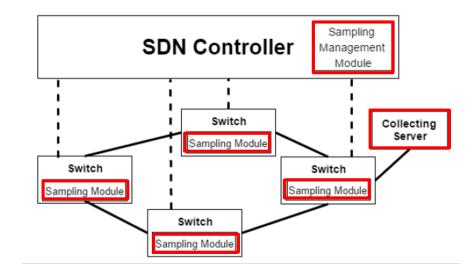
• Joint Project

LAB OF COMPUTER COMMUNICATION & NETWORKING Networking Education, Research and Innovation Computer Science Department, Technology

- Students: Sami Zreik, Abdallah Yassin
- Instructors: Alan Lo (Mellanox), Matty Kadosh (Mellanox), Itzik Ashkenazi (LCCN)

Enhanced Network Monitoring

- Needed for:
 - Traffic Engineering
 - Security
 - Anomaly Detection
 - Online Troubleshooting

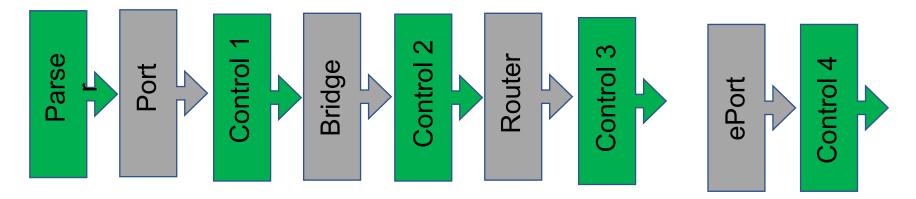

- OAM Protocols: IEEE 802.1ag , ITU-T Y.1731 are useful , but..
- Flow statistics (NetFlow) is not enough...
- Need the real packet level information
- Mirroring all packets is not a good option.
- So.. mirror sampled packets

Sampling-on-Demand

- Mirroring and Sampling is an expensive resource
- sampling-on-demand monitoring framework proposed by [1]
- Sampling Management Module (SMM)
 - An SDN controller application.
 - Determines the sampling rate of each flow at each Switch according to the monitoring goals of the network operator, while taking into account the monitoring capabilities of each switch.
- Sampling Module
 - Added to some or all network switches/routers.
 - Encapsulates each sampled packet and sends it to a collecting server.
- Collecting Server
 - One or more are located in the network in order to collect and process the sampled packets.

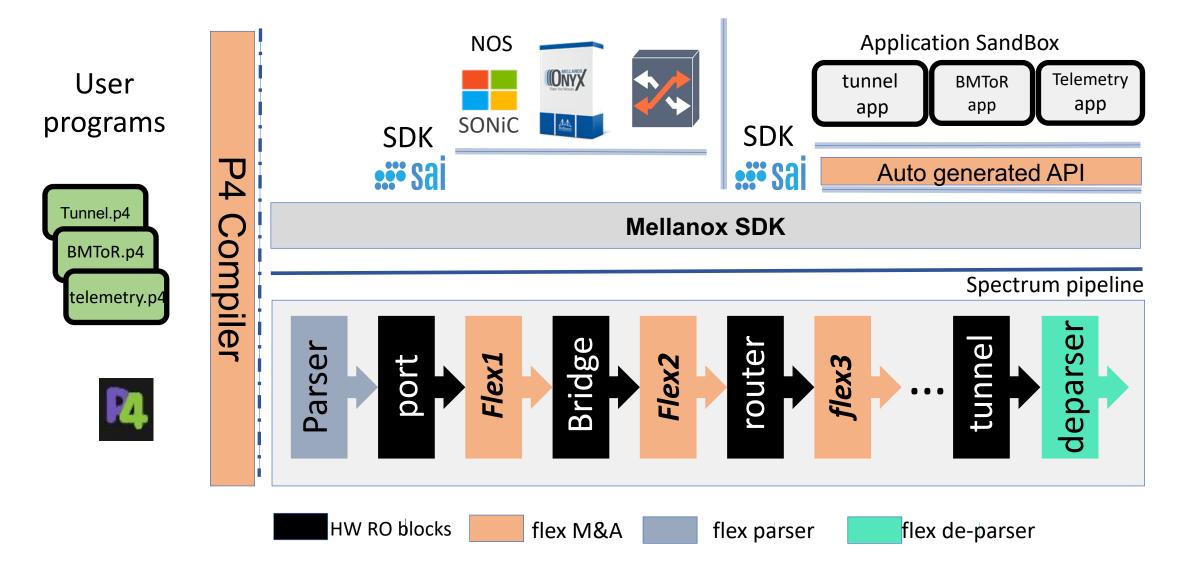
[1] R. Cohen, E. Moroshko: Sampling-on-Demand in SDN. IEEE/ACM Transactions on Networking, Vol. 26, No. 6, Dec. 2018

PBT-on-Demand


- Postcard-Based Telemetry (PBT) exports the packet with on-line metadata like:
 - Switch ID
 - Time Stamp
 - Latency
 - Ingress/Egress queues occupancy
- PBT-on-Demand allows the network controller to tell the network switches how to use the expensive PBT resources in most optimal way

Mellanox Ethernet Switch

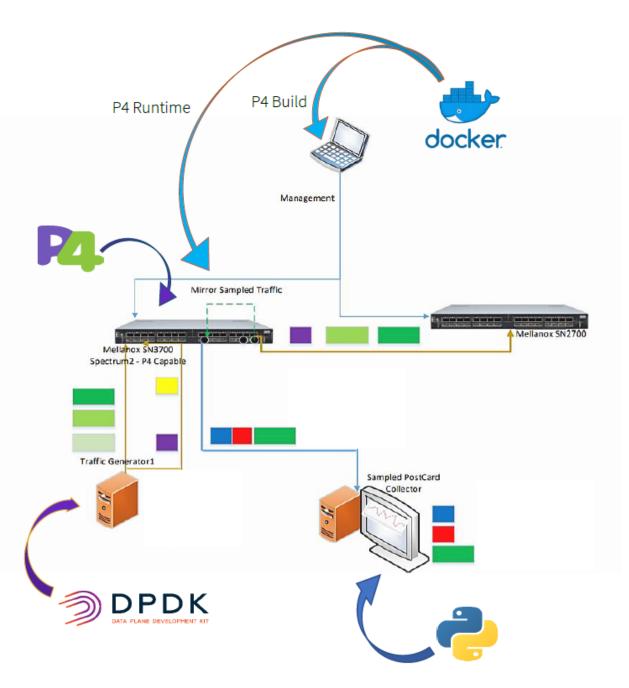
- Flexible form-factors with 16 to 128 physical ports.
- Supporting 1GbE through 400GbE.
- Based on Mellanox Spectrum-2 silicon.
- Hybrid packet forwarding concurrent capability: Legacy and Programmable.



Spectrum P4 target Architecture

- Programmable block 1: parser
 - Mellanox provides parsing graph base line User will be able to add new headers to the packet-parsing graph.
- Programmable block 2: ingress port
 - Ability to define chain of multiple match action table. Supported actions: drop, forward to port, mirror, packet modification, tunnel encap, tunnel decap, set QoS, counters, meters, go to table.
- Programmable block 3: ingress router
 - Ability to define chain of multiple match action tables. Supported actions: drop, mirror, packet modification, routing(including ECMP), tunnel encap, tunnel decap, set QoS, counters, meters, go to table.
- Programmable block 4: egress router
 - Ability to define chain of multiple match action tables. Supported actions: drop, mirror, packet ,forward to port , packet modification, set QoS, counters, meters ,go to table.
- Programmable block 5: egress port
 - Ability to define chain of multiple match action tables. Supported actions: drop, egress mirror, packet modification, set QoS, counters, meters ,go to table.

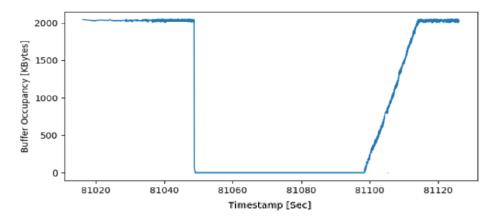
Hybrid Programmability

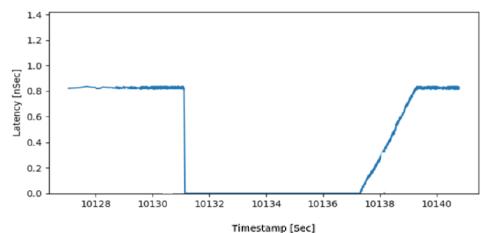

P4 Extensibility Mechanisms

- Spectrum architecture extends on P4 by providing access to hybrid mode actions as externs
 - Policy based switching
 - extern void set_pbs_port(in label_port_t pbs_port);
 - Trapping packet and send to CPU
 - extern void trap(in bit<8> trap_type, in bit<32> trap_id);
 - Mirroring packets to a remote controller using GRE
 - extern void mirror_to_remote_l3(in bit<8> session_id);
 - Setting QOS and shapers
 - extern void set_policer(in bit<64> policer_id);
- User P4 code can combine these primitives using a standard action
- A rich set of Spectrum pipeline metadata (via standard_metadata_t) is provided at various control points in the pipeline

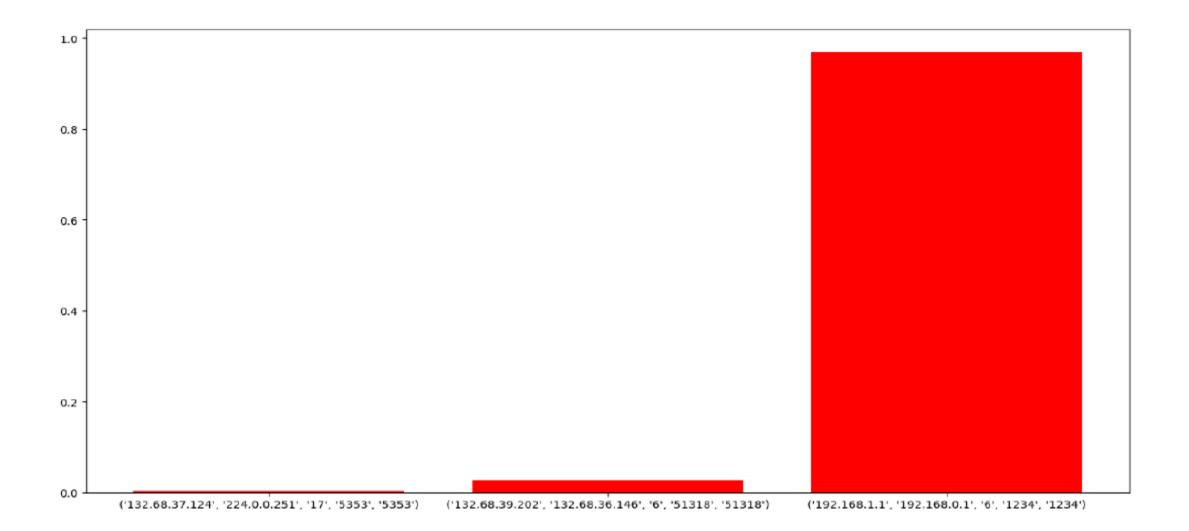
Spectrum-2 Telemetry Header Implementation

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5	4 3	2 1	Offset 00h
mirror_e	ingress_label_port S					
raw_opcode '2'	pad_count	flags	pack- et type			04h
timestamp[80:48]					08h	
timestamp[47:16]					08h 0Ch 10h	
timestar	original_packet_size				10h	
egress_label_port		psn				14h
mirror_header_tlvs						
[Internal] For Spectrum-2 the TLVs are hard coded as folows:						
,0,	ing buff_occupancy					18h
'1'	egr buff_occupancy					18h ICh
'2'	latency					20h
·3'	flags_ext 4					24h
·4·	mirror_reason	·5'		telass		28h
·6·	mirror_agent	'135' [Internal] 128+7		pg		2Ch


Our PoC


Postcard Based Telemetry on Mellanox Switch

Real-Time Graphs


• Egress Buffer Occupancy

• Latency

Real-Time Heavy-Heater Distribution

Sponsored By

Thank You

iashken@cs.technion.ac.il Lccn.cs.technion.ac.il