
NetWarden: Mitigating Network Covert
Channels While Preserving Performance

Jiarong Xing

Ph.D. student

Rice University

Motivation: Mitigating network covert channels

2

Secretary

President

Launch code:
1011

Code is 1011

Ah!
1011

Attacker

Launch
code

Motivation: Mitigating network covert channels

3

Secretary

President

Launch code:
1011

Ah!
1011

Attacker

Launch
code

• Covert channels:

TCP hdr: 1011

H E L L O

• Storage channels: changing the packet header fields.

Motivation: Mitigating network covert channels

4

Secretary

President

Launch code:
1011

Ah!
1011

Attacker

Launch
code

• Covert channels:

TCP hdr: 1011

H E L L O

H E L L O

1 0 11

• Storage channels: changing the packet header fields.

• Timing channels: changing the timing of packets.

Covert channels are a longstanding problem

5

• They can leak data over long distance effectively
• Covert storage channels

• TCP ISN (1997), TTL (2004), Partial ACK (2009)

• Covert timing channels
• IP-layer (2004), TCP-layer (2008), PHY-layer (2014)

• Major security standards require protection against them
• E.g., Common Criteria

State of the art: Storage channel defense

6

replace (+2)

Repeat for EVERY packets for Tbps traffic

Field X = a

replace (+2)
Field X = a +2

Field X = b

replace (+2)
Field X = b +2

Field X = c

replace (+2)
Field X = c +2

Field X = d

replace (+2)
Field X = d +2

…

• State-of-the-art solutions are software-based
• Detection: Per-packet header inspection
• Mitigation: Per-packet header modification

TCP sender

TCP hdr: 1011

H E L L O

TCP receiver

TCP hdr: 1101

H E L L O

• As a result, they are very inefficient!

7

State of the art: Timing channel detection

• Detection: Statistics-based tests over packet gaps
• Looking for signs of statistical deviation
• → Not always accurate

H E L L O
Normal
traffic:

H E L L O
With

channel:
Two peaks

One peak

Distribution of packet gaps

1 0 11

8

With channel:

After mitigating:

H E L L O

1 0 11

H E L L O

1 1 10

State of the art: Timing channel mitigation

• Mitigation: Add random delay to each packet
• Destroy the original timing of the packets

9

With channel:

After mitigating:

H E L L O

1 0 11

H E L L O

1 1 10

extra delay

State of the art: Timing channel mitigation

• Mitigation: Add random delay to each packet
• Destroy the original timing of the packets

• It will increase the latency of TCP connections

10

Problem: Performance penalty

• Detection:

• Per-packet inspection required

• Software cannot keep up with Tbps traffic

• Mitigation:

• Adding random delay to each packet → Increase latency

• Collateral damage → Affects legitimate traffic (e.g., false positives)

11

Key question

Can we mitigate covert channels
while preserving performance?

Approach: NetWarden

12

• NetWarden: A performance-preserving covert channel defense.

Secretary

President

Launch code:
1011

????

Attacker

TCP hdr: 1011

H E L L O

H E L L O

1 0 11

ToR switch

NetWarden

Key challenges and solutions

13

• Challenge #1: Efficient detection

• Solution: Using P4 switches

• Challenge #2: Performance-preserving mitigation

• Solution: Performance “boosting”

• Key principle: Hardware/software co-design

Outline

- Motivation: Mitigating network covert channels

- State of the art: Performance penalty

- Approach: NetWarden

- NetWarden design

- Principles of hardware/software co-design

- Challenge #1: Efficient detection

- Challenge #2: Performance-preserving mitigation

- Evaluation

- Conclusion

14

15

Key principle: Hardware/software co-design

• A generic principle that is applicable to many
P4 applications.

P4 switch anatomy

16

M
em

o
ry

ALU Match/
Action
Table

Match/
Action
Table

Match/
Action
Table

Switch control plane

PCIe bus

Stages Stages

• Data plane

• Header modification, ns timestamp, per-flow state, line speed

• Limited memory, simple math computation

• Control plane

• Abundant memory, complex math computation

• Software speed
Complementary!

17

Key principle: Hardware/software co-design

M
em

o
ry

ALU Match/
Action
Table

Match/
Action
Table

Match/
Action
Table

Switch control plane

PCIe bus

Stages Stages

• Computation: Per-packet operations

• Memory: Constant state

• Computation: Batch operations

• Memory: Growing state

• Minimize crosstalk

Covert channel defense roadmap

18

• Time channel defenses

IPD
computation

Statistical tests

Per-flow state maintenance

• Storage channel defenses

Header
modification

Per-flow state maintenance

Packet
delaying

Performance
booster

Performance
booster

19

Task list

IPD
computation

Statistical tests

Packet
delaying

Performance
booster

Header
modification

Per-flow state
maintaining

Control plane

Data plane

IPD
computation

Header
modification

Per-flow state
maintaining

Statistical tests

Performance
booster

Packet caching

Programmable switch

Applying the hardware/software co-design principle

20

• Solution: Build efficient detections in P4 switches
by applying the hardware/software co-design
principle.

Challenge #1: Efficient detection

21

How to compute inter-packet delay (IPD)?

• Solution: Using ns-timescale P4 timestamps

• IPD = Current timestamp – last timestamp

• Send all IPDs to the control plane directly?

• Crosstalk minimization principle!

Control plane

Data plane

IPD computation

Statistical tests

Packet caching

22

How to store IPDs in a memory-efficient manner?

• Solution: IPD intervalization

• Store IPD interval counters rather than exact IPDs

[0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, ∞)

IPD=8
IPD=23

IPD=27
IPD=81

23

How to reduce per-flow memory consumption?

• Solution: IPD sketching

• Trade off per-flow accuracy for space saving

Hash functions

count

count

…

count

Count-min sketches

Hash 1 (id)

Hash 2 (id)
…

Hash n (id)

24

One peak Two peaks

How to reduce IPDs sent to the control plane?

• Solution: IPD pre-check in the data plane

• Do a quick check and only send suspicious flow IPDs
to the control plane.

Normal traffic pattern Suspicious pattern

25

With channel:

After mitigating:

H E L L O

1 0 11

H E L L O

1 1 10

extra delay

• Solution: Using the Control plane
• Performs statistical tests
• Adds random inter-packet delay by caching

• Note: This incurs extra delay.

How to mitigate covert timing channels?

Statistical tests

26

Challenge #2: Performance-preserving mitigation

• Problem: Existing mitigations incur performance loss.

NetWarden

Extra delay

Arrive late

27

Challenge #2: Performance-preserving mitigation

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• Receive window booster: Enlarge receive window
field temporarily.

• Solution: Temporarily boosting TCP performance to
neutralize the performance penalty.

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• .

28

Challenge #2: Performance-preserving mitigation

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• Receive window booster: Enlarge receive window
field temporarily.

• Solution: Temporarily boosting TCP performance to
neutralize the performance penalty.

• Two boosters:

• ACK booster: Generate ACK packets in advance.

• Receive window booster: Enlarge receive window
field temporarily.

29

Boosting performance: ACK booster

• Creates the illusion of a shorter latency as perceived by the sender.

NetWarden

Extra delay

Shorter RTT

Arrive at the
same time

30

Works as a TCP proxy

NetWarden

• NetWarden works as a TCP proxy for malicious traffic.

Data plane

Control plane

Suspicious traffic

Normal traffic

Retransmission

NetWarden panorama

31

Key (4-tuple) Val

10.0.0.2:22:1.2.3.4:80 1

10.0.1.3:80:152.2.0.9:87 2

10.0.0.4:22:150.12.0.1:53 0

10.0.0.4:21:150.12.0.2:52 3

Idx Rwnd Seq Time Precheck Decision

0 32400 23412367 6435876 Alert Mal.

1 24600 91820234 6436112 Pass Benign

2 16400 3817443 6431002 Pass Benign

3 8000 452319034 6440987 Pass Benign

Connection table State variables

Fastpath (data plane)

Slowpath (control plane)

Data packets

Conn. state

Connection Installation

CM1 CM2 CM3 CM4

273 6555 182 381

137 6000 9182 37

32 2048 3817 2

822 1000 4523 42

Count-min sketches

Packet buffersStatistical tests

Type I channel defense

Type II channel defense

Type III channel defense

Update IPD precheck result

Update KS-test result

Exact IPDs for KS-test

Caching data packets for
timing channel defense

Caching data packets for
storage channel defense

Storage channel defenses

IPDs

State update

Timing channel detection Storage channel
defenses

Packet
buffer

Statistical tests

Minimized crosstalk

Connection
manager

Outline

- Motivation: Mitigating network covert channels

- State of the art: Performance penalty

- Approach: NetWarden

- NetWarden design

- Principles of hardware/software co-design

- Challenge #1: Efficient detection

- Challenge #2: Performance-preserving mitigation

- Evaluation

- Conclusion

32

Evaluation setup

33

• NetWarden prototype:

• Runs in Tofino Wedge 100BF-32X switch.

• 2500 LoC of P4 + 3000 LoC of C+Python

• Threat model:

• A compromised server + a trusted P4 switch running NetWarden

• Leak a 2048-bit RSA key via covert channel.

• Workloads:

• Web search (Alizadeh-SIGCOMM’15)

• Baseline:

• Defenses without performance boosting

How effective is NetWarden in covert channels mitigation ?

34
• NetWarden can mitigate covert channels effectively.

• Naïve defense: renders decoding to a random guess.

• NetWarden: very close to a random guess.

35
• NetWarden can mitigate covert channels with minimal performance loss.

• Naïve defense incurs 25% performance penalty.

• NetWarden only has 1% performance deviation.

How well does NetWarden preserve performance?

36

• How effective is NetWarden in covert channels mitigation?

• How well does NetWarden preserve performance?

• How well does NetWarden work with different TCP variant?

• How scalable is NetWarden?

• How much overhead does NetWarden incur?

• How well does NetWarden work with complex applications?

• How robust is NetWarden in self attacks?

See more evaluation results in our paper

Outline

- Motivation: Mitigating network covert channels

- State of the art: Performance penalty

- Approach: NetWarden

- NetWarden design

- Principles of hardware/software co-design

- Challenge #1: Efficient detection

- Challenge #2: Performance-preserving mitigation

- Evaluation

- Conclusion

37

Conclusion

38

• Motivation: Mitigating network covert channels

• Key limitation of existing approaches:

• Performance penalty

• Our approach: NetWarden

• Principles of hardware/software co-design

• Efficient detection and mitigation

• Performance preservation

• Evaluation:

• Mitigates covert channels with minimum performance loss!

Thank You!

Email: jxing@rice.edu
Personal web: https://jxing.me/
Project web: https://qiaokang.org/poise-web/

