
Efficient P4+FPGA-based
Forwarding for SCION,
a Path-Aware Internet
Architecture

Kamila Součková
Research Engineer
Network Security Group, ETH Zurich

A Software Engineer’s Peek at P4 on
FPGAs

Intro

Thinking about hardware

Building the SCION router

1

2

3

4 Lessons Learned

Intro
Why? How? What?

https://scion-architecture.net ● https://scionlab.org

Why?

4

https://scion-architecture.net/
https://scionlab.org/

Why?

5

A

C

B

D F
E

A
C
Fpa

th

PTR

To go beyond research, it must be practical to build the routers.
• Is it practical and economical to implement it at high speeds?
• If so, how can we make the protocol easier to implement efficiently?

Why?

6

can do SCION cost-effective

How?

Options for high-speed packet forwarding:

flexible / slow fast / rigid

software
(userspace / eBPF / DPDK / …)

existing
router

HW

programmable
switch

(e.g. Barefoot Tofino)

FPGA

7

HW design
insight

FPGA

How?

4x 10GbE, Xilinx Virtex 7 FPGA
8

P4 support (proof-of-concept):

NetFPGA

NetFPGA SUME:

What?

Performance target:

• 4 ports at 10 Gbps full duplex
⇒ total sustained throughput: 40 Gbps

• line rate with smallest possible frames (86 B in SCION)
⇒ almost 60 Mpps

9

Thinking about hardware
A software engineer’s perspective

Hardware vs Software

time

A B Cpacket

11

A

B C
• software: sequence of instructions

operates on data one at a time
• hardware: fixed circuit: all

operations happen all the time,
data flows through instructions
⇒ “think in space, not in time”

Hardware vs Software

packet 1

time

A B C

A B C

A B C

packet 2

packet 3

D

D

D

12

A

B C

D
• pipelining:

throughput:
1 per cycle
regardless of # of stages

Too much logic in a single stage
⇒ large delay:

13

Hardware vs Software

time

A B :-(

timing constraint violation ⇒ the circuit won’t
work at the intended speed

A

B C

D

C

Too much logic in a single stage
⇒ large delay:

14

Hardware vs Software

time

A B :-)

timing constraint violation ⇒ the circuit won’t
work at the intended speed

A

B C

D

C C’

Too much logic in a single stage
⇒ large delay:

15

Hardware vs Software

time

A B :-(

timing constraint violation ⇒ the circuit won’t
work at the intended speed

A

B C

D

C

Too much logic in a single stage
⇒ large delay:

16

Hardware vs Software

time

A B :-)

timing constraint violation ⇒ the circuit won’t
work at the intended speed

A

B C

D

C

Building the SCION router
Tricks, challenges, lessons learned

Adding crypto

SCION path hops are cryptographically authenticated (AES-CMAC)

18

@Xilinx_MaxLatency(10)
extern void my_aes128(

in bit<128> K,
in bit<128> data,
out bit<128> result

);

generates an interface in Verilog, you provide native implementation
• must be pipelined
• declare as X_aes128 (naming matters)
• can only be called once per declaration (declare multiple if needed)

Mix and match:
embed native in P4

Coping with the SCION header

SCION header: • contains the path ⇒ variable number* of
hop fields in header
• pointer to current hop
• path needs to come out unchanged on

the output

19

hop field
ptr

hop field

...
...

hop field

Øheader stack
Øvarbit

✘ not supported
✘ not supported

* can be long: at least up to 64

Obvious approaches:

Sub-problem 1:
Outputting the unchanged path
Avoid needing to recreate the header on output:
packet_mod (Xilinx extension, requires modifying native wrapper):

20

parser ExampleModDeparser(packet_mod p, in headers_t h) {
state start {

p.update(h.ethernet);
transition select(h.ethernet.ethertype) {

ETHERTYPE_IPV4: deparse_ipv4;
ETHERTYPE_IPV6: deparse_ipv6;

}
}

…
} Mix and match: P4 is

part of a larger design

Sub-problem 2:
Getting to my hop field
Strategy: Skip over unused hops, read my hop

21

Øpkt.advance(x)

Øloop

Ø “big bad if”:

✘ only works when x is a compile-time constant
✘ needs to be unrolled ⇒ very deep circuit :-(

Wide pipelines
better than deep

But: requires a lot
of FPGA area

num hops?

skip 0

read my field

skip 1 skip 63...
0 1 63

Sub-problem 2:
Getting to my hop field
Ø“big bad if” in two stages:

22

nhops[5:3]?

skip 0 skip 8 skip 56
...

0 1 7

nhops[2:0]?

skip 0

read my field

skip 1 skip 7
...

0 1 7

2x latency for area

less full FPGA
⇒ better placement
⇒ better performance

Depth vs width tradeoffs
are worth thinking about

PC
Ie

HO
ST

Reduce, Reuse, Recycle

Expose network interfaces to the host,
pass through any packets that cannot be handled to SW

23

NetFPGA

CONFIGURATION;
STATUS & METRICS

UNMODIFIED
SOFTWARE ROUTER

SCION CONTROL PLANE

REGISTER R/W nf0 nf1 nf2 nf3

eth3eth0 eth1 eth2

Not everything
belongs in HW

Area and timing constraints

24

FORWARDING

VALIDATION AES

HF FRESHNESS CHECK

POINTERS UPDATE

SWITCHING
PA

RS
ER

DE
PA

RS
ER

HE
AD

ER
S

PACKET

SWITCH
METADATA

HE
AD

ER
S

CONFIGURATION + STATS

• inherent complexity + workarounds for bugs ⇒ lots of logic
• no control over pipeline stages, P4-NetFPGA compiler makes too few
⇒ couldn’t meet timing

Signal moving through circuit ⇒ data locality
matters; parallelism is free; being late is BadMeeting timing

• critical path
(maximum delay):

25

computation 1

computation 2

result

⇒
computation 1

combine
into result

computation 2

wider/parallel is (usually)
better than deeper/serial:

• think about data locality / dependencies
• small, simple, self-contained modules
• “tight” interfaces: correct use of in/out (avoid inout); no

extraneous parameters

26https://github.com/AnotherKamila/scion-p4netfpga

https://github.com/AnotherKamila/scion-p4netfpga

Lessons learned
Next time I’m doing this…

Network protocol design

• avoid variable length fields (really)
• should be parseable without interpretation
• a tag implicitly defining the next field’s length is bad
• explicit lengths, not "continue" flags

28

easier to pipeline + parallelise

faster & cheaper HW

High-speed packet processing with P4

★★★★☆ would buy again :-)
+ suitable even for complex protocols
+ useful abstraction: high-level, yet can run fast
+ pipelining and parallelism handled by compiler
- not really target-independent:
• targets have different strengths and limitations
• to get performance, code needs to be target-specific
• conversion of P4 code to target-specific implementation is not

obvious

29

timing

FPGA-friendly P4 code

30

Key idea:
Signal moving

through the circuit

pipelining

…

…

⇒ wide/parallel > deep/serial (*)

⇒ small, self-contained modules
⇒ tight interfaces (in/out vs inout)

If I had a time machine…

• I would use P4
• I would better understand that P4-NetFPGA is a proof of concept ⇒

prototype early, prototype often
• discover problems and workarounds earlier

• I would get paid for it ;-)

31

Thank You

email:
Matrix:
Twitter:

https://scion-architecture.net

32

skamila@ethz.ch
@kamila:unchat.cat
@AnotherKamila

https://scion-architecture.net/

