
Mathematical Operations in Programmable
Switches using TCAMs

Mojtaba Malekpourshahraki
Komal Shinde
Balajee Vamanan
Brent Stephens

University of Illinois at Chicago

1

• Example use cases
• Congestion control
• In-network computation
• Distributed consensus
• Monitoring, and measurement
• Load balancing

Programmable switches enable new switch
functionality

2

Today’s workflow for deploying switch programs

01110

Programmer P4 program Compiler Programmable switch

3

Architecture of programmable switches

ALUsLookup tables

Process standard arithmetic
operations, shift bit, header

modification, hashing operation

Compare input
against the table and

return the matching data.

4

Current switches support only a limited set of
mathematical operations

• Arithmetic logic unit (ALU) in programmable switches is limited

• Arithmetic operations: addition, subtraction
• Logical operations: left and right bit-shifts
• Header modification
• Hashing operation

Supported operations

• Multiplication
• Division

Unsupported operations

ALUs

5

• Simple rate limiter on PISA via packet drops
• Using counters to emulate a queue
• Drop the packet if queue size exceeds drop threshold

An example application on PISA

Drop the packet if sender violate desirable rate
Incoming
packets

Outgoing
packets

Rate limiter using counters
Desirable rate

6

• Simple rate limiter on PISA via packet drops
• Using counters to emulate a queue
• Drop the packet if queue size exceeds drop threshold

An example application on PISA

Incoming
packets

Outgoing
packets

Rate limiter using counters

𝑏𝑦𝑡𝑒𝑠 = 𝑡𝑖𝑚𝑒×𝑟𝑎𝑡𝑒

Desirable rate

Drop?
Tracking

time

7

Multiplication in ALUs

BMv2 PISA SwitchesProgrammer Code

expression too complex

...
value = (bit<32>)time*rate;

ALUs on programmable switches do not support multiplication
8

Many applications need mathematical operations

Many key applications require multiplication

• Example use cases
• Congestion control
• In-network computation
• Distributed consensus
• Monitoring, and measurement
• Load balancing

Input OutputProtocol

eXplicit Control Protocol
(XCP) Queue size

Capacity
Residual
Capacity

Time

• Four floating-point multiplications

• Seven multiplications/divisions

Rate Control Protocol
(RCP)

RateQueue size
Input rate

Time

9

How to provide multiplication in PISA?
Exact Multiplication Approximate Multiplication

Multiplication with addition and shift-bits
• Prohibitive, requires too many stages

• Exact result

Exact match lookup table
• Prohibitive, requires large memory

• Exact result

Approximate multiplication using left shift
• Large error

• Low overhead

Approximate using lookup table
• Low overhead

Can we emulate multiplication using
reasonably sized lookup tables and provide error bounds?

10

Contributions

• Propose an approximation approach for multiplication
• Bounded maximum error
• Limited number of table entries

• Present analysis of maximum error and TCAM usage
• Derive the optimal number of entries for a given error

11

Outline

• Introduction
• Use cases for programmable switches
• Key limitation of existing switches
• A motivating example
• Our contributions

• Design
• Evaluation
• Conclusion

12

Naïve solution to populate lookup table

2! = 64

• Naïve approach to calculate 𝑋×𝑌 = 𝑄
• Requires large number of entries 0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

𝑋 𝑌 𝑄

13

Our solution: reducing the table size

• Grouping numbers such that
• Numbers in the group are close
• Each group has a group head
• Using group head to calculate the product

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

𝑋 𝑌 𝑄

14

How to group? #1 Rounding

• Group numbers based on
• 𝑛 most significant bits

0 0 0 0 1 1 × ×

Match on 5 bits

Prefix

One table entry

15

0 1 0 0 1 1 0

0 1 0 0 1 1 1

1 1 0 0 1 0 1

1 1 0 0 1 1 0

GroupsPool of numbers

How to group? #1 Rounding

• Match on a fixed number of most significant bits
• This example matches on one bit

• Pros/Cons
• Simple
• Large error
• Large number of entries

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

𝑋 𝑌 𝑄

16

How to group? #2 Adaptive precision

• Group numbers based on
• The first non-zero significant bit:

17

0 1 0 0 1 1 0

0 1 0 0 0 0 1

0 0 0 0 1 0 1

0 0 0 0 1 1 1

GroupsPool of numbers

0 1 0 0 1 1 0

First non-zero
significant bit

𝑏 = 1

How to group? #2 Adaptive precision

• Group numbers based on
• Two digits after first non-zero significant bit (𝑏 = 2)

0 1 0 0 1 1 0

First non-zero
significant bit

One number after
that

𝑏 = 2

18

0 1 0 0 1 1 0

0 1 0 0 0 0 1

0 0 0 0 1 0 1

0 0 0 0 1 1 1

GroupsPool of numbers

How to group? #2 Adaptive precision

• Use varying number of matching bits per group
• Grouping is based on first non-zero

most significant digit (𝑏 = 1)

• Pros/Cons
• Bounded error
• Limited memory usage
• Different precision for different groups

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

𝑋 𝑌 𝑄

19

• LPM allows representing groups in TCAMs

• Implement grouping with LPM
for one bit (b=1)

Using LPM in grouping

0 0 0
0 0 1
0 1×

1× ×

New 𝑋 (𝑏 = 1)

0 0 0
0 0 1
0 1×

1× ×

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

𝑌 𝑄

20

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

𝑋

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

?

0 0 0
0 0 1
?

?
?
?
?

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 1

0 1 0
0 1 0

1 0 1
1 0 1
1 0 1
1 0 1

• Choose group head to minimize error

• Idea: choose a number close to average
• why: average is known to

minimize error

Choosing group head

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

𝑌 𝑄

More information in paper
21

0 0 0
0 0 1
0 1×

1× ×

New 𝑋 (𝑏 = 1)

0 0 0
0 0 1
0 1×

1× ×

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

𝑋

2! = 64

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 1 1

0 0 0
0 0 1
0 1 0

1 0 0
1 0 1
1 1 0
1 1 1

Smaller table size using LPM
𝑌 𝑄

• The number of table entries in this
approach is 75% less than naive approach

• Error increases when the value Increases

22

𝑋
0 0 0
0 0 0
0 0 0
0 0 0

0 0 1
0 0 1
0 0 1
0 0 1

0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0 1

1 0 1
0 1 0

0 0 0
0 0 1

1× ×

0 0 0
0 0 1

1× ×

0 1×

0 1×2" = 16

New Table (adaptive precision)

Analysis of memory overhead and error

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 = 𝑒!𝑒"
2#(1 + ln 2

$2%
2#)

2$2%

0 0 …1×⋯×

𝑥

𝑏!

0 0 …1 0…×

𝑦

𝑏"

𝑒! = 𝑥 − 𝑏! + 2 2##$%

𝑒" = 𝑦 − 𝑏" + 2 2#$$%

More information in paper

𝐸𝑟𝑟𝑜𝑟 =
2& + 1 2'

2#$ + 2' + 1 2&
2## − 1

2&2'

Number of entries Maximum approximation error

23

Outline

• Introduction
• Use cases for programmable switches
• Key limitation of existing switches
• A motivating example
• Our contributions

• Design
• Evaluation
• Conclusion

24

Methodology

• All numbers have same number of bits
• 32 bits for all numbers

• Same error adaptation factor for 𝑋 and 𝑌 (𝑏8 = 𝑏9)

• Evaluation Goal:

𝑋×𝑌 = 𝑄

32 32 32

Numbers

Numbers of bits

How error and number of entries changes when 𝑏 changes?

25

Number of entries (memory overhead)

Brute force

Less than 1MB

26

Adaptation factor (𝑏)

Adaptation factor (𝑏)

Accuracy (error)

High error
Low error less than 1%

Ideal value for 𝑏 in our experiments

27

Conclusion and future work
• We designed an approximate approach to support multiplication using lookup tables
• We are working toward Implementing a P4 pre-compiler that

• Converts a P4 program with multiplication à P4 program with lookup tables
• Can achieve a suitable trade-off between table size and accuracy (error)

Pe
r C

om
pi

le
r

Accuracy

Memory

BMv2 PISA SwitchesProgrammer

...
value = (bit<32>)time*rate;

01110

Compiler

28

Thank You

mmalek3@uic.edu
www.cs.uic.edu/~mmalekpo

29

