
Andy Fingerhut April, 2020

How P4 as a language is evolving

The P4 Language

• Past
• Present
• Future

Past

• P4_14
• 2014 - !rst language speci!cation
• Several new versions developed, one of which was named P4_16

• P4_16
• May 2017 - Version 1.0
• Nov 2018 - Version 1.1
• Oct 2019 - Version 1.2
• May 2020 - Version 1.2.1

P4_16 Version 1.1

• Catching up to things P4_14 already had:
• Saturating arithmetic
• Parser value sets

• New things for programmer convenience
• functions
• Optional and named parameters
• enum types that have an underlying bit<W> type, e.g. bit<8>

P4_16 Version 1.1

• New and primarily for control plane API
• type keyword

• Helps control plane API mark values with types such as switch port ids, Ethernet/
IPv4/IPv6 addresses, etc.

• Structured annotations
• Restricted to lists of simple values, or dictionary of key/value pairs
• Covers most use cases desired by control plane software developers to add custom

annotations to tables, actions, parameters, etc.
• Restricted structure makes them easier to parse/consume

Version 1.2

• sizeof(header) - spelled my_header.minSizeInBytes()
• No longer do you need to #de!ne a constant for header sizes

• Control plane API
• String type, primarily for inclusion in annotations, not for data plane

programming
• A dozen other things …

Present

• LDWG has a goal of trying to keep a regular cadence of updates, which will mean
some updates are smaller.

• P4_16 language speci!cation 1.2.1 to be released soon (May 2020?)
• Structure values expressions

• Convenient literal syntax for values of a struct or header
• my_struct = { a = 1, b = 17 };

• @pure and @noSideE"ects annotations to aid compiler in performing more kinds
of optimizations, earlier.

Yogi Berra

“It’s tough to make predictions,
especially about the future.”

Possible P4 futures

• More day-to-day programmer
conveniences

• Making code a bit more reusable
and modular
• Module system
• Generic types
• These take just the right

combination of knowledge,
interest, and free time to develop

Possible futures

• More interest in P4 from companies developing programmable NICs
• May drive new language features to take advantage of their capabilities.
• Many packet processing features are inherently more stateful here.
• Loops?
• Arrays of structs for something besides header stacks to iterate over?
• Tables with the option to add entries to them, in the data plane? Use case: #ow tables

• externs have been in P4_16 since the beginning, and cover many use cases without extending the P4
language itself
• e.g. video codec, TCP o$oad, TCP termination
• Developing new P4_16 architectures will be at least as interesting here as adding to the language

Possible futures

• Java object system with garbage collection, class implementation inheritance, and
interfaces

• :-)

Join in!

• If you have an itch for P4 language enhancement, the Language Design Work Group
welcomes participation.

Avenir:
Future-Proofing the Control Plane
via Data Plane Synthesis

Eric Campbell
Cornell University

1

Controller

Applications

Decoupled
Control & Data

SB API for Forwarding
Devices

High level
Abstractions

2

Controller

Applications

1. Switch
Heterogeneity

2. Future-Proof

3

goals

Controller

Applications

4

Controller

Applications

5

Controller

Applications

6

1. Switch
Heterogeneity

2. Future-Proof

goals

Automatic Runtime Translator

Controller

Applications

7

1. Switch
Heterogeneity

2. Future-Proof

goals

The Secret Sauce?

Program Synthesis

8

How does Synthesis* Work?

Modify Solution for
Counterexample

Verify
Correctness

Candidate
Implementation

Counterexample

Success!

Soundness:
Every solution is correct

Completeness:
A solution is found when one exists9*counter-example guided inductive synthesis

Correctness: Program Equivalence

Checked using a Theorem Prover (e.g. z3)
10

Abstract Switch

Abstract Runtime Operation

Physical Switch

Physical Runtime Operation

Extending With Counterexample

Heuristic-Guided Search for

?

?
11

Abstract Switch

Abstract Runtime API Call

Physical Switch

Physical Runtime API Call

Preliminary Experiments
• ONOS Switch Reboot

• Abstract: fabric.p4
• Physical: broadcom switch
• ~40k insertions
• ONOS takes ~15mins,

Avenir takes ~32mins

• Good performance is due to Incrementality!

Table Row
Table Row
Table Row

Table Row

. . .

• Parsers assumed equivalent
• Externs manually modelled
• Hashes are tricky

Caveats

12

Switch Reboot

13

Automatic Runtime Translator

1. Easy Switch
Heterogeneity

2. Future-Proof

time 14

Thank You

email: ehc86@cornell.edu

Special thanks to:
Priya Srikumar, Nate Foster, Hossein Hojjat,
Bill Hallahan, Ruzica Piskac, Robert Soulé,
Brian O’Connor, Carmelo Cascone,
Jed Liu, Andy Fingerhut, Vignesh Ramamurthy

Work supported by Infosys & the NSF
15

P4 to userspace BPF:
Extending the userspace packet
processing pipeline at runtime

TomaV] OViĎVki

Team members:
Mateusz Kossakowski
Halina Tarasiuk

Orange Labs
Warsaw University of Technology

Context

• More and more P4 targets are emerging…
• Software targets have their role..

Motivation

• NFV deployments requires high-performance
• OVS-DPDK, VPP, OVS-AFͺXDP…

• all these targets runs in userspace
• fixed packet processing pipeline
• not extensible enough

• We need some safe runtime extensibility mechanism…
• … uBPF!

Introduction to Userspace BPF VM

• Userspace BPF Virtual Machine*
• JIT compilation to x86 architecture
• Static analyzer (verifier)
• BPF maps
• Provides set of helpers (e.g.
ubpf_update_map())

• eBPF vs. uBPF:
• Kernel vs. Userspace
• GPL vs. Apache 2.0 license
• uBPF implements a ͣthin” VM

(e.g. no tail calls)

* https://github.com/iovisor/ubpf 4

https://github.com/iovisor/ubpf

P4 to userspace BPF

P4c-uBPF – design principles & workflow

• The userspace BPF backend for the P4 compiler
• The design is strongly based on eBPF/XDP backend
• BPF maps are used to implement P4 tables, registers, etc.

• Generates BPF bytecode: P416 -> C -> uBPF

The ubpf_model.p4 architecture model

• Main blocks:
• Parser
• Control block
• Deparser

• Supported features:
• Registers
• Hash functions
• Checksum computation

Custom C extern functions support

• p4c-ubpf enables custom C
externs:

• User-defined C functions invoked
from the P4 program!

• Must be compatible with BPF VM

• New exciting use cases!
• Stateful externs using BPF maps

P4 to userspace BPF in action

P4rt-OVS: Extending the OVS pipeline at runtime

• Programming workflow:
• Write ͣprog.p4” ;use ubpf_model.p4)
• p4c-ubpf ʹo prog.c prog.p4
• clang -O2 -target bpf -c prog.c -o prog.o
• ovs-ofctl load-bpf-prog br0 <prog-id> prog.o
• ovs-ofctl add-flow br0 actions=prog:<prog-id>

• Use cases:
• GPRS Tunnelling Protocol (GTP)
• Point-to-Point Protocol over Ethernet (PPPoE)
• In-Band Network Telemetry (INT)*
• Stateful firewall

* Ongoing work

Comparison with other BPF-related backends

• uBPF backend provides support for stateful packet processing!
• No counters!

Feature p4c-ebpf p4c-xdp p4c-ubpf

Packet filtering YES YES YES

Packet modifications NO YES YES

Tunneling NO YES YES

Packet forwarding NO YES YES

Registers NO NO YES

Counters YES YES NO

Checksum computation NO YES YES

Custom C externs YES Not tested YES

Summary

• p4c-ubpf ʹ the new back-end for the P4 compiler!
• Open problem:

• uBPF VM is not standardized, different flavors

• Future work:
• Enhancements to P4 compiler (e.g. counters)
• Performance optimizations
• Design and implement a new P4Runtime switch based on OVS AF_XDP/DPDK

• Open questions:
• How far are we from industry-grade and production-ready implementation of

P4 software switch?

Thank You

osinstom@gmail.com / tomasz.osinski2@orange.com

https://github.com/p4lang/p4c/tree/master/backends/ubpf
https://github.com/Orange-OpenSource/p4rt-ovs
https://www.openvswitch.org/support/ovscon2019/#4.3F

https://github.com/p4lang/p4c/tree/master/backends/ubpf
https://github.com/Orange-OpenSource/p4rt-ovs
https://www.openvswitch.org/support/ovscon2019/%234.3F

