

Sponsored By

Silicon One – Multiple roles

Guy Caspary Engineering Director **Cisco**

A single silicon architecture for all market segments

$\frac{1}{2}$ **CISCO**

The problem

CISCO

- Silicon devices address two different use cases: routers and switches.
- Routers are highly programmable, with deep buffers and large scale.
- Switches are high bandwidth with low power consumption.

The industry diverged into two markets: each defined by unique architecture, systems and software. $(||...||)$

A brief history

- Work on Silicon One started six year ago
- We identified that programmability is a must
	- Features:
		- Faster SW development is faster than silicon development
		- Longer features are added pre- and post- silicon
		- Safer bugs can be fixed post-silicon
	- Broad market applicability
	- A fixed function device must support the super-set of all functions
	- Maintainability

$\frac{1}{2}$ **CISCO**

Why P4

- Several tasks were performed in parallel:
	- Coding of high level application to cover all markets
	- Architecture design
	- Development tools (e.g. compiler, debugger)
- Started with C but found out it is too general.
- Application paradigm was naturally match/process.
- Decided to adopt P4 as base.

NPU architecture

NPU contains an array of processing engines Run-to-complete P4 programmable

 $\frac{1}{2}$

CISCO

One code image covers all markets

Different flows execute different parts of the application Architecture allows for a different number of processors Performance and feature scalability

Why run to complete?

- For each packet we spend the "exact" amount of cycles, latency and power required
- Very complex but low bandwidth flows (e.g. control packets) have negligible impact on performance

• Allows for natural and efficient coding

- The first architecture that serves several different market segments service provider and web-scale.
- Elevating routing silicon performance to the same level as switching silicon performance (bandwidth and power).
- Allows for future product lines to have a consistent silicon architecture.
- ONE experience across the entire network, across all network functions and covering all form factors.
- Significantly reduce OpEx: network engineers save time on testing functionality, qualifying new hardware, and deploying new services with greater consistency and faster time-to-market.

$\frac{1}{2}$ **CISCO**

Cisco Silicon One Q100

- The first device in this architecture
- The first routing silicon to break through the 10Tbps benchmark for network bandwidth, without compromising carrier-class capabilities, e.g., feature richness, large queue set, deep buffers, large NPU tables, and advanced programmability.
- Demonstrates many architectural advantages:
	- Supports a fixed switch or router with 10.8T worth of network ports up to large non-blocking distributed routers with Petabit scales.
	- All with non-blocking performance, deep buffering with rich QoS, and programmable forwarding.

Cisco Silicon One Q100 – cont.

- A single device may be used as standalone network processor (optional deep buffers), line card network processor (optional deep buffers) and fabric element in a distributed router.
- All accomplished with a common and unified P4 forwarding code and SDK.

\cdot ll \cdot ll \cdot **CISCO**

Cisco 8000 series routers

- Powered by Cisco Silicon One ASICs supporting full routing functionality with a single ASIC.
- Platforms scale from 10.8 Tbps to 260 Tbps.
- Common architecture and designs across modular and fixed routers provide topological regularity, scalability, consistent features and operational simplicity.

Cisco 8200 Series

وي دي.
افزاي

 $\frac{1}{2}$

CISCO

- Uses the Cisco Silicon One Q100 to deliver full routing functionality with a single ASIC per router.
- The architecture supports large forwarding tables, deep buffers, flexible packet operations, and enhanced programmability.
- Two fixed 10.8Tb/s platforms:
	- The Cisco 8201 is a 1RU fixed configuration with 24x400GbE and 12x100GbE ports
	- The Cisco 8202 is a 2RU fixed configuration with 12x400GbE and 60x100GbE ports

Cisco 8800 Series

وي دي.
افزاي

 \mathbf{d}

High bandwidth via modular chassis with a redundant control plane and switch fabric:

- The Cisco Router 8808 is an 8-slot, 115.2 Tb/s, 16RU chassis
- The Cisco Router 8812 is a 12-slot, 172.8 Tb/s, 21RU chassis
- The Cisco Router 8818 is an 18-slot, 259.2 Tb/s, 33RU chassis

*Total bandwidth is based on Silicon One Q100; infrastructure provides for more. Stay tuned …

Programmability in action: Pre/Post silicon validation

- A dedicated P4 application for silicon verification and validation
- A non-standard injected packet contains commands for the device:
	- Path through device
	- Resources to exercise:
		- Lookups
		- Counter increments
		- more

 \mathbf{d} \mathbf{d}

Programmability in action: power measurement

- Fast bring-up of power testing application defined by customer:
	- Ethernet packets
	- Specific flow through ports
	- Specific database lookups
- Prototype in 2 hours
- Debug and testing in 2 days
- Delivered a week after request …
- Shipping and customs clearance 7 days

.. | | . . | | . CISCO Silicon One

Sponsored By

Thank You

Contact: Guy Caspary <gcaspary@cisco.com>

Sponsored By

Security Stability and Transparency: is P4 the answer?

Dr. Paola Grosso Associate Professor "Multiscale Networked Systems" University of Amsterdam – The Netherlands

mns-research.nl

Science usecases

Photo source: SKA organisation

Radio astronomy (SKA)

High energy physics (LHC)

Science data is moving around the world

Photo source: LSST/NSF/AURA
Radio astronomy (LSST)

Societal usecases

Photo source: Genetic Literacy Project

Personalized medicine (EPI)

Photo source: DL4LD project

Logistics (DL4LD)

Personal data is shared by many parties.

Smart cities (AMDeX) *Photo source: AMS Economic Board*

Multiscale Networked Systems

How can we provide security, stability and transparency in the networks of the Future?

Not just from the perspective of network operators but also for end users!

Why P4?

Per packet processing in the dataplane provides advantages compared to out-of-band
approaches for fine grained telemetry. No need for summarization and a wealth of information that is usable in many contexts.

- Transparency goal:
	- From telemetry we acquire insights in what is happening in the network, eg the path taken by flows.
- Security goal:
	- From telemetry follows the possibility to identify attacks and feed intrusion detection systems (see SARnet project).
- Stability goal:
	- From telemetry follows you can identify bottlenecks and buffers filling up along the path, eg the amount of data in queues leveraging time stamping.

How we use P4?

Use of the software switch and compilers from p4.org for our initial research and then moved to hardware $(*)$.

- Barefoot switches give us better performance switching capabilities
- Smart NICS allow us to bring the P4 capabilities all the way to host
- $(*)$ Still very useful in educational settings for students labs.

Telemetry

Multiscale Networked Systems

Knossen, Silke, Joseph Hill, and Paola Grosso. "Hop Recording and Forwarding State Logging: Two Implementations for Path *Tracking in P4." 2019 IEEE/ACM Innovating the Network for* Data-Intensive Science (INDIS). IEEE, 2019.

8 bytes

Security

Adapting for autonomous response (ML learning)

Bloom filters in P4

 $\overline{0}$ $\overline{0}$ $\overline{0}$ Ω 0 $\boldsymbol{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ 0 1 w

 $\{x, y, z\}$

Hill, Joseph, Mitchel Aloserij, and Paola Grosso. "Tracking *network flows with P4."*

2018 IEEE/ACM Innovating the Network for Data-Intensive *Science (INDIS). IEEE, 2018*.

SECURITY, STABILITY AND TRANSPARENCY OF INTER-NETWORK COMMUNICATIONS

Sponsored By

Thank You… … and thanks to Silke Knossen, Mitchell Aloserij and Joseph Hill (from UvA)

p.grosso@uva.nl

2stic.nl mns-research.nl

P4-Programmable Data **Plane Use-cases**

Arkadiy Shapiro, Product Line Manager, Software

Barefoot Division, Connectivity Group, Intel

Arkadiy.Shapiro@intel.com

Programmable Data Plane Building Blocks

Barefoot Tofino – Block Diagram Reset / PCIe CPU MAC DMA
Clocks PCIe CPU MAC engine **Reset** engines Control & configuration Rx Egress Tx MAC Tx Rx MACs Ingress SerDes 10/25/40/50/100 **Pipeline** Pipeline 10/25/40/50/100 **SerDes** pipe Rx Rx MACs **Ingress Egress** Tx MAC Tx **SerDes** 10/25/40/50/100 'ipeline 10/25/40/50/100 **Pipeline** SerDes pipe **Traffic**

P4 vs Alternatives

Barefoot Baremetal Switch Ecosystem

Disaggregated Programmable Solution Building **Blocks**

10

Use-case: Flexible Scaling

- Different table sizes for leaf and spine
- Different table sizes for different deployments
- Update with changing network conditions
- Example: IPv4 vs IPv6 heavy fabric

Use-case: Cloud Gateway

- **Details**
	- IPv6 GRE gateway solution
	- Migration from DPDK / OpenFlow
	- \blacksquare Whitebox switch \pm ONL
	- Custom P4-16 data plane, controlled via program APIs using GRPC
	- Custom SDN controller
- **Benefits**
	- Higher performance
	- Flexibility and control

UCLOUD

Use-case: Baremetal Server Hosting with SONiC

Joint demo with Microsoft and Arista

Use-case: Network Packet Brokers

- § **Data plane & API Simplification**
- Header Stripping
- Packet Slicing
- Flexible Tunnel Encapsulation / **Decapsulation**
- Enhanced load-sharing (weighted, GTP correlation)
- Flexible TCAM table scaling for policies

Use-case: Emerging Technologies

SRv6 endpoint and transit node functionality Tofino performs large scale **PPPoE**

session termination

