
P4 Use Cases in Programmable NICs

Gordon Brebner
Fellow
Xilinx Labs

NICs: dumb, basic, smart, intelligent, programmable

>> 2

Network Interface Cards
(also known as Adapters)

Disclaimer: Vendor associations are illustrative, and not necessarily precisely mapped to dumb, basic, smart, intelligent, programmable.

More things offloaded to, or accelerated by, the NIC

SoC

FPGA

NPU

NICs vs. switches; NICs in endpoints and middleboxes

>> 3

Look pretty similar P4 use cases:
It’s the programmable data plane pipeline that matters

EndpointNIC

MiddleboxNIC

Look pretty similar: it’s a NIC on a server

Xilinx Labs ‘Adaptive NIC’ taxonomy

>> 4

Xilinx Labs Type 2/3 NIC prototypes, 2015-2018

>> 5

40/50G Ethernet MAC/PHY

Ingress
datapath
offload

P4

Application
function

acceleration

C/C++

PCIe/SRIOV

Virtual Machines hosted on CPU
DPDK

Egress
datapath
offload

P4

Memory

Later upgraded to 100G Ethernet Experimental use cases

Current playpen:
Xilinx Labs supported base shell

>> 6

Xilinx Vivado IP

Xilinx Labs open IP

† See P4 Roundtable 2020 talk: “Towards an Open P4 Programmable Hardware Platform”

2 x 100Gb/s
FPGA
SRAM, DRAM
PCIe Gen3 x 16

P4 playpen

P4 Portable NIC Architecture (PNA) project
• Some issues being considered:

• There are ingress and egress pipelines
• What are the standard components of each pipeline?

• Which are P4 programmable?
• Is more variability needed than in PSA?

• What about in-line externs, particularly fixed-function NIC blocks?
• What lookaside externs might be needed?

• Is direct interaction between ingress and egress allowed?
• What about isolation/virtualization?
• Should the collection of network ports be modelled explicitly?
• Is there a switch within the NIC?

• How is host CPU interface modelled?
• Differentiate data plane CPU, and control plane CPU, roles
• Impact on P4Runtime

• Beyond packet forwarding:
• Is protocol (e.g., TCP) termination covered?
• Is ‘Type 3’ NIC covered – payload processing as well as forwarding?

• Aiming for modular spec that has as much in common
with PSA as possible

• Wondering what extensions to P4 might be needed

• Current P4.org architecture sub-group
• Active helpers wanted …

>> 7

One initial proposal

Thank You

Contact info for further questions:
Gordon.Brebner@Xilinx.com

© 2020 Pensando Systems

P4 Use Cases in Programmable NICs

Mario Baldi John Cruz
Distinguished Technologist Member of Technical Staff

Pensando Systems, Inc.

for the Evolution of P4 and PSA

()

© 2020 Pensando Systems, Inc. - All Rights Reserved

© 2020 Pensando Systems, Inc. - All Rights Reserved

What Are We Going to Talk About?

Two use cases

● TCP connection tracking

○ Benefits of P4 writable tables

● Generic Segmentation Offload (GRO) and Large Receive

Offload (LRO)

○ Value of a PSA variant

An overview of the Distributed Services Card

● Our P4 playground

© 2020 Pensando Systems, Inc. - All Rights Reserved

The Distributed Services Card (DSC)

PCIe Programmable Platform

● 2 x 25Gb/s Ethernet ports

● 2 x 100Gb/s Ethernet ports

© 2020 Pensando Systems, Inc. - All Rights Reserved

DSC Programmable Processor Architecture

4

Host Interface

PCIe Memory

Coherent Interconnect

ARM
Cores

Service
Processing
Offloads

P4
Packet Processing

Dataplane

Packet Buffer
Traffic Manager

Ethernet Port Ethernet Port

Network Interface Network
Interface

A more detailed
explanation in the
P4 Expert
Roundtable Series
talk
“Programmable
Data Plane
Architecture for the
Network Edge”

© 2020 Pensando Systems© 2020 Pensando Systems, Inc. - All Rights Reserved

A case for P4
enhancements

Use Case 1

© 2020 Pensando Systems, Inc. - All Rights Reserved

TCP Connection Tracking

Reconstruct the state of a TCP connection by observing packets

● Make sure the end points are in a legitimate state

● Security purposes - protect against injection of packets that are
not consistent with the state

○ E.g., wrong sequence numbers

● Stateful operation
○ Connection state needs to be kept

○ Process header fields and update connection state accordingly

© 2020 Pensando Systems, Inc. - All Rights Reserved

table session_state {
 key = {

...
metadata.flow_lkp.lkp_src : exact;
metadata.flow_lkp.lkp_dst : exact;
metadata.flow_lkp.lkp_proto : exact;
metadata.flow_lkp.lkp_sport : exact;
metadata.flow_lkp.lkp_dport : exact;

 }
 actions = {
 nop;
 tcp_session_state_info;
 }
 default_action = nop;
 size = FLOW_STATE_TABLE_SIZE;

 ...
 }

TCP Session State Table

© 2020 Pensando Systems, Inc. - All Rights Reserved

Table Entry Update within the P4 Data Plane

Table fields (action parameters) can be declared as writable

action tcp_session_state_info(
@__ref bit<32> iflow_tcp_seq_num,
@__ref bit<32> iflow_tcp_ack_num,
@__ref bit<16> iflow_tcp_win_sz,
@__ref bit<4> iflow_tcp_win_scale,
...
bit<32> syn_cookie_delta,
bit<14> rflow_exceptions_seen,
bit<1> tcp_sack_perm_option_negotiated) {

...
}

© 2020 Pensando Systems, Inc. - All Rights Reserved

TCP Session State Update - a P4 Extension
A table field (action parameter) can be on the left side of an

assignment operator

action tcp_session_state_info(
@__ref bit<32> iflow_tcp_ack_num ,
@__ref bit<16> iflow_tcp_win_sz,
bit<32> syn_cookie_delta,
...
bit<1> tcp_sack_perm_option_negotiated) {

...
if (CMP_SEQNUM_LE32(iflow_tcp_ack_num , hdr.l4_u.tcp.ackNo) &&
 CMP_SEQNUM_LE32(hdr.l4_u.tcp.ackNo, rflow_tcp_seq_num)) {

iflow_tcp_ack_num = hdr.l4_u.tcp.ackNo;
iflow_tcp_win_sz = hdr.l4_u.tcp.window;

}
...

}

© 2020 Pensando Systems, Inc. - All Rights Reserved

In Standard P4

Registers must be used for state that can be updated
from within the data plane

typedef bit<32> SessionIndx_t;

Register<bit<32>, SessionIndx_t>(FLOW_STATE_TABLE_SIZE) iflow_tcp_seq_num;
Register<bit<32>, SessionIndx_t>(FLOW_STATE_TABLE_SIZE) iflow_tcp_ack_num;
Register<bit<16>, SessionIndx_t>(FLOW_STATE_TABLE_SIZE) iflow_tcp_win_sz;
Register<bit<4>, SessionIndx_t>(FLOW_STATE_TABLE_SIZE)
iflow_tcp_win_scale;
Register<bit<32>, SessionIndx_t>(FLOW_STATE_TABLE_SIZE) rflow_tcp_seq_num;

...

© 2020 Pensando Systems, Inc. - All Rights Reserved

Session table seems unchanged ...
table session_info {

key = {
 ...

metadata.flow_lkp.lkp_src : exact;
metadata.flow_lkp.lkp_dst : exact;
metadata.flow_lkp.lkp_proto : exact;
metadata.flow_lkp.lkp_sport : exact;
metadata.flow_lkp.lkp_dport : exact;

 }
actions = {

 nop;
 tcp_session_state_info;
 }

default_action = nop;
size = FLOW_STATE_TABLE_SIZE;
...

 }
}

© 2020 Pensando Systems, Inc. - All Rights Reserved

But it contains only static data and index mapping

action tcp_session_state_info(
bit<32> syn_cookie_delta,
...
bit<1> tcp_sack_perm_option_negotiated),
bit<16> session_index {

...
bit<32> t_iflow_ack_num = iflow_tcp_ack_num.read (session_index);
bit<32> t_rflow_seq_num = rflow_tcp_seq_num.read(session_index);
if (CMP_SEQNUM_LE32(t_iflow_ack_num, hdr.l4_u.tcp.ackNo) &&
 CMP_SEQNUM_LE32(hdr.l4_u.tcp.ackNo, t_rflow_seq_num)) {

iflow_tcp_ack_num.write (session_index,
hdr.l4_u.tcp.ackNo);

iflow_tcp_win_sz.write (session_index,
hdr.l4_u.tcp.window);

}
...

}

© 2020 Pensando Systems, Inc. - All Rights Reserved

Register vs. Writable Table Comparison

More cumbersome

Less legible

● Code less more compact

● All relevant and related information not in one place

Less efficient memory allocation

● Might be difficult to optimize allocation with separate registers

● Table is one memory block vs several allocations for registers

● Each register has discrete width

© 2020 Pensando Systems, Inc. - All Rights Reserved

Writable Table Implementation Challenges
Ensure that reads after writes are not getting stale data

● Performance and complexity

● Specialized hardware to propagate the writes

Coherence across parallel pipelines and multiple stages

T-CAM cannot be used

Registers work around this through constraints

● Specific hardware devices, not general memory

● Limited size

● Limited parallelism

● Limited scope

© 2020 Pensando Systems© 2020 Pensando Systems, Inc. - All Rights Reserved

A case for a new
architecture

Use Case 2

© 2020 Pensando Systems, Inc. - All Rights Reserved

Use Case 2a: Generic Segmentation Offload (GSO)

Host hands over a large buffer or a collection of buffers to the DSC in
a single transmit request

DSC performs the offload using the following operations

● Splits the data portion of the packet into smaller segments (say
1460 bytes)

● Adds the header portion of the packet to each segment

● Updates IP and L4 lengths

● Update IP identifier, TCP sequence number, and TCP flags

● Update IP and L4 checksums

© 2020 Pensando Systems, Inc. - All Rights Reserved

Use Case 2a: Generic Segmentation Offload (GSO)

Payload
H

ea
de

rs

Segment 1 Segment 2 Segment 3 Segment 4

H
ea

de
rs

H
ea

de
rs

H
ea

de
rs

H
ea

de
rs

© 2020 Pensando Systems, Inc. - All Rights Reserved

GSO Pseudocode (Host Functionality)

Input : TX ring with pointers to {hdr_addr, hdr_sz, data_addr, data_sz}

● While TX ring is not empty:
○ read next buffer

○ data_left = buffer.data_sz

○ data_ptr = buffer.data_addr

○ while (data_left > 0):

■ this_segment_size = MAX(data_left, SEGMENT_SIZE)

■ DMA [buffer.hdr_addr, buffer.hdr_sz] + [buffer.data_addr,
this_segment_size]

■ data_left -= this_segment_size

Note that there is no parsing or deparsing

© 2020 Pensando Systems, Inc. - All Rights Reserved

GSO Pseudocode (Network Functionality)

Input : Packet

● Parse the packet to get individual packet headers

● For each layer (tunnel)
○ Update IP identifier, IP length, IP checksum

○ Update sequence number (if TCP), L4 length (if UDP), L4 checksum

© 2020 Pensando Systems, Inc. - All Rights Reserved

GSO (Host Functionality)

control tx_pkt {

 tx_ring.apply();

 if (metadata.tx_ring_done == 0) {

 tx_buffer. apply();

 }

}

© 2020 Pensando Systems, Inc. - All Rights Reserved

GSO (Host Functionality)

table tx_ring {

 key = {

 metadata.tx_ring_addr : exact;

 }

 actions = {

 process_tx_ring;

 }

}

action process_tx_ring(bit<32> p_index,
@@__ref bit<32> c_index) {

 if (c_index == pindex) {

 metadata.tx_ring_done = 1;

 ring_doorbell();

 } else {

 c_index = (c_index + 1) % RING_SZ;

 }

}

© 2020 Pensando Systems, Inc. - All Rights Reserved

GSO (Host Functionality)

table tx_buffer {

 key = {

 metadata.c_index : exact;

 }

 actions = {

 process_tx_buffer;

 }

}

action process_tx_buffer(
bit<64> hdr_addr,bit<16> hdr_sz,
bit<64> data_addr, bit<32> data_sz) {

 bit<32> data_remain = data_sz;

 bit<32> data_ptr = data_addr;

 bit<32> seg_sz;

 while (data_remain > 0) {

 seg_sz = MAX(data_remain, MAX_SEGMENT_SZ);

 dma(hdr_addr, hdr_sz, data_ptr, seg_sz);

 data_ptr += seg_sz;

 data_remain -= seg_sz;

 }

}

© 2020 Pensando Systems, Inc. - All Rights Reserved

Use Case 2b: Large Receive Offload (LRO)

Performed on packet reception (opposite of GSO)

● Identify consecutive packets that belong to the same TCP
connection

● Append payload data to LRO buffer
○ for TCP, update sequence number in header

● If buffer is full, notify host of new packet

● On timer expiry
○ If LRO buffer is not empty, notify host of new packet

© 2020 Pensando Systems, Inc. - All Rights Reserved

Use Case 2b: Large Receive Offload (LRO)

Segment 1Segment 2Segment 3Segment 4

H
ea

de
rs

Payload

H
ea

de
rs

H
ea

de
rs

H
ea

de
rs

H
ea

de
rs

© 2020 Pensando Systems, Inc. - All Rights Reserved

New Constructs Required
● Doorbell

○ A register the driver can update to start a P4 program
○ A register a P4 program can update to notify completion

● DMA
○ GSO

■ Copy header and segments to form multiple packets

○ LRO
■ Copy payload from multiple packets to form a larger message

● Timers
● Stateful Memory

○ To keep track of state
○ GSO : last segment offloaded; LRO : last segment received

© 2020 Pensando Systems, Inc. - All Rights Reserved

Doorbell

● P4 programs are traditionally triggered by an incoming packet on
an interface

● Need capability to trigger P4 programs by driver after placing
data in the TX descriptor ring

● Need capability to notify driver after appending an entry to the
completion queue or RX descriptor ring

Required constructs:

● Start P4 program execution on doorbell

● Extern to ring doorbell

© 2020 Pensando Systems, Inc. - All Rights Reserved

DMA

Required constructs:

● Extern function(s) to perform different DMA operations
○ Memory to Packet (for transmission)

■ Support for gather

○ Packet to Memory (on reception)

■ Support for scatter

○ Memory to Memory

■ Offloads like encryption, compression

○ Metadata to Memory

■ Update TX and RX descriptor rings

© 2020 Pensando Systems, Inc. - All Rights Reserved

Timers

Required Constructs:

● Extern to start a timer

● Start P4 program execution on timer expiry

© 2020 Pensando Systems, Inc. - All Rights Reserved

Yes, but with an architecture that is an evolution of the PSA
● Parsing is optional

○ Different trigger than packet arrival to start the processing

○ E.g., Timers, doorbells

● Preparation of multi packet data
○ On card memory possibly required

● Access to memory
○ For on-card memory, the table construct might be used

● Memory transfer capability
○ E.g., DMA

To conclude: P4 for Host-Attached Devices?

© 2020 Pensando Systems, Inc. - All Rights Reserved

A Possibile (Portable NIC) Architecture

PSA

Parser Pipeline Deparser

N
et

w
or

k
po

rts

H
ost Interface

Processing
Engine

Processing
Engine

Processing
Engine

P4 programmable Metadata controllable/configurable

Parser

Pipeline

Deparser PIpeline

Data
Transfer

Data
Transfer

Pipeline

P
acket buffer

© 2020 Pensando Systems

Thank You

baldi@pensando.io - jcruz@pensando.io

www.pensando.io
blog.pensando.io

© 2020 Pensando Systems, Inc. - All Rights Reserved

