
Programmable In-Network Security
for Context-aware BYOD Policies

Qiao Kang
Rice University

BYOD: Bring Your Own Device (to work)

2

$73 billion

Problem: Bring Your Own Device

• BYOD devices are generally less well managed than their enterprise counterparts –
easier to be compromised
• We need to enforce access control for BYOD clients

3

Allow Or Block?

Risks

What policies does BYOD need?

• Context-aware policies: More effective for BYOD than traditional access control
• Dynamic decisions based on “contexts”
• Challenge: How to enforce these policies?

4

Block access if client is outside of
the company building

Block access if SSL
version <= 6.5.2

Block access if
administrator is offline

Block access if the
recorder is on

What’s is the state of the art?

• SDN-based BYOD policy enforcement [PBS – NDSS’16]
• Performance bottleneck: SDN control plane
• DoS attacks against the SDN control plane [AvantGuard - CCS’13]

5

New flow Drop or forward

SDN control plane

SDN data plane

SDN application

Context update Flow ID Context
0x8fab 6.1.0

Dec.
Drop

Client module

Opportunity: Programmable data planes

• New hardware features:
• Programmable parser: Customized protocols
• ALU: Arithmetic computations
• Memory: Stateful processing

• High performance : <1us delay for Tbps traffic
• Programmable using the P4 language! 6

Tbps traffic with <1us delay

Research question

Can we leverage programmable switches to address the
limitations of SDN-based solution?

7

Poise at 1000 feet

8

PoiseBYOD Policy

• Language: An expressive language for defining BYOD policies
• Compiler: Generates device configurations and switch programs
• P4 data plane design: A dynamic and efficient security primitive

Device configs

P4 programs

Outline

• Motivation
• Poise Design

• The Poise language
• Compiling Poise policies
• Data plane design

• Evaluation
• Conclusion

9

Outline

• Motivation
• Poise Design

• The Poise language
• Compiling Poise policies
• Data plane design

• Evaluation
• Conclusion

10

The Poise language

• An expressive language for writing context-aware policies
• Predicates on customized client contexts
• Support pre-defined primitive actions

11

Block access if SSL
version <= 6.5.2

if match (sslver <= 6.5)
then drop

Policy

Predicate

Primitive Action

Compiling Poise policies

• Contexts (sslver) are compiled to customized header fields
• Security actions (if-else) are compiled to match/action table entries

12

table decision_tab
{

key = {ctx.sslver: exact}

entries = {
<= 6.5.0: dec = DROP
> 6.5.0: dec = ALLOW

}
}

header ctx_t {
sslver: 16

}

if match (sslver <= 6.5)
then drop

Outline

• Motivation
• Poise Design

• The Poise language
• Compiling Poise policies
• Data plane design

• Evaluation
• Conclusion

13

Starting basis: Tagging every packet

• Problem: Too much traffic overhead
• Suppose 20 contexts each 4 bytes; average packet size is 500 bytes
• 20×4/500 = 16% extra traffic!

• Solution: Send context using dedicated “context packets” occasionally
• Keep data packets unmodified

14

Enterprise
serverAccess point P4 switch

BYOD device

Data packet

Context

Poise runtime: A novel in-network primitive

15

Remember the
decision

Enforce the latest
decision

Enterprise
serverAccess point P4 switch

BYOD device

Data packetContext packet

Context packetData packet

• Dynamic: Decisions are based on latest context
• Adjustable accuracy: Users can tune the context packet period
• Efficient: Only context packets carry contexts; data packets unmodified

Corse-grained

Fine-grained

How to remember per-flow decision?

• Uses a Match/Action table to maintain the latest per-flow decision
• Context packets: Update existing entries / insert new entries
• Data packets: Look up the table to fetch decision

16

Key (flow ID) Value (decision)

10.0.0.1:22:6 Allow

10.0.0.3:80:6 Drop

Data packet

Data packet

Context packet
10.0.0.4:22:6 Allow

Flow table
(Match/Action table)

Context packet
--------- Drop

Challenge: New flow insertion delay

• Installation a new flow: Delay is on the order of milliseconds!
• We might have missed many of packets!

17

New flow

Control plane

Miss Insert
entry

Delay:
500us ~ 5ms

Context

Data 1

Data 2

Data 3

Data 4

Trigger table insertion

(after 1ms) Entry inserted

?

New flow

Data 5

Key (flow ID) Decision

10.0.0.1:22:6 Allow

10.0.0.3:80:6 Drop

Solution: Buffering control plane updates

• Solution: Buffering updates in a cache
• Cache implemented in switch stateful registers: Changes are in real time.
• See our paper for more design details:

• 1) Handling cache collisions, 2) mitigating DoS attacks to Flow Table and Cache. 18

Context

Miss Insert entry

Data

Buffer entry
(immediately visible)Key Dec

10.0.0.1:22:6 Allow

10.0.0.3:80:6 Drop

Control plane

Hit

Miss

Enforce decision

10.0.0.1:80:6 Allow

Flow table
(Match/Action Table)

Cache
(register array)

Outline

• Motivation
• Poise Design

• The Poise language
• Compiling Poise policies
• Data plane design

• Evaluation
• Conclusion

19

Evaluation setup

• Prototype implementation
• Compiler: Bison + Flex
• Android client module: a kernel module on Linux 3.18.31
• ~6000 LoC

• Evaluation setup
• Tofino Wedge 100BF switch 32 X 100 Gbps = 3.2 Tbps

20

What we have evaluated

• Correctness: Can Poise enforces BYOD policies correctly?
• Overhead: How much delay or throughput degradation that Poise incurs?
• Scalability: How complex/large policies can Poise support?
• Poise vs. SDN: Is Poise resilient to control plane saturation attacks?

21

• SDN-based solution: PBS – NDSS’16
• Floodlight v1.2 + Open vSwitch v2.9.2

• Methodology:
• DoS attacker: Launch frequent context changes
• Measure how normal user traffic are affected

Poise vs. SDN: Packet delay

• SDN: Takes ~1 second to process packets under heavy attacks
• Poise: Remain at a constant level

22

Poise: 4ms

SDN: ~ 1s

Poise vs. SDN: New flow installation

• SDN: Fails to install new flows under heave attacks
• Poise: Almost always installs 100% new flows
• Poise is highly resilient to DoS attacks to the controller 23

SDN: Cannot
install new flows

Poise: Install
new flows normally

Conclusion

• Motivation: Better network security with programmable switches
• This talk focusses on the security application of enforcing BYOD policies

• We designed and implemented Poise
• Leveraging P4 switches for enforcing security policies

• Poise transforms the hardware features to security benefits
• Resilient to DoS attacks!

24

Thank You

Contact: qiaokang@rice.edu
Our full paper will appear at USENIX Security
2020

