
1

Building and Delivering a
P4-based Network Tester

Ram Murthy
Software Lead
Keysight Technologies

2

AGENDA

• Introduction to Network Testers

• Case Study: BGP Convergence over ECMP

• A Deeper Dive into Implementation

• P4 vs FPGA product development

• Key takeaways and conclusions

3

• The main objective of a tester is to measure and characterize network devices and systems.

• Single device (DUT) metrics:
1. Characterize throughput performance with flow tracking
2. Measure latency of device
3. Verify forwarding correctness with sequence checking
4. Emulate traffic scenarios from the simplest point to point link all the way to fully-meshed

• System (SUT) metrics:
1. Verify stateful protocols (i.e. BGP, OSPF, IS-IS)
2. Validate routing performance and convergence (i.e. ECMP)

4

• Can we make a viable product which
addresses use-cases and meets
performance requirements?

• Can we use existing Ixia IP, maintain the
same user-experience, and integrate a
completely new dataplane technology?

• What are the resources required to complete
the project?

• What is the developmental and build
workflow?

K E Y Q U E S T I O N S

5

Test Objective
• Validate how quickly ECMP links can rebalance
traffic after failures

Methodology
• Tester simulates a remote link failure
• Observe the number of lost packets after
convergence
• Analyze traffic flows before and after the
convergence
• Vary the number of ECMP links & 5-tuple

6

7

H O W T O I M P L E M E N T U S E C A S E W I T H P 4 ?

Primitives needed:

• Stateful BGP protocol emulation

• Precise traffic patterns over BGP routes for ECMP
distribution

• Flow tracking and loss measurements

• Latency of flows on each BGP route

• Rate precision on each flow

• Precise measurements of live statistics per flow

8

Simple, yet performant dataplane
Doesn’t “understand” use-cases

8

Packet
Template
Memory

scheduler

Stream
Marking

Timestamps,
Signature

Modify Content
per stream

Traffic
Port/Stream

Statistics

Parser,
signature
detection

Stream
analytics

Port Out

Performance
Statistics

Control/
Management

CPU

Port In

Complex, use-
case aware
applications,

GUI, automation
APIs, etc.

Control
Plane

Multiple ports

DUT/
SUT

9

F L O W G E N E R AT I O N

• In typical FPGA based testers, products support
user defined fields (UDFs) that can modify any
arbitrary offset with a variety of patterns.

• This is a challenge in P4 from both a data plane
and control plane perspective. The more natural
API is protocol specific and based on field
definitions in parser.

• Coming back to the use case: Is modifying arbitrary
offsets absolutely necessary?

• In this scenario, the fields that need to vary are
fairly specific (i.e. L2/L3 source/destination
addresses, L4 source/destination ports, flow
identifier)

10

F L O W G E N E R AT I O N

• With a more limited approach it is fairly simple to
implement the use case. Can simply use Match
Action Units.

• Maintain a stateful packet index counter for each
flow group

• MAU reads on a packet index counter and
populates with appropriate values

action do_modify_fields(dmac, smac, vid0,
vid1, dipv4, sipv4, dipv6, sipv6, pgid,
l4_dport, l4_sport)
{

modify_field(outer_eth.dstAddr, dmac);
modify_field(outer_eth.srcAddr, smac);
modify_field(vlan_tag[0].vid, vid0);
modify_field(vlan_tag[1].vid, vid1);
modify_field(outer_ipv4.dstAddr, dipv4);
modify_field(outer_ipv4.srcAddr, sipv4);
modify_field(outer_ipv6.dstAddr, dipv6);
modify_field(outer_ipv6.srcAddr, sipv6);
modify_field(instrum.pgid, pgid);
modify_field(tcp.dstPort, l4_dport);
modify_field(tcp.srcPort, l4_sport);
modify_field(udp.dstPort, l4_dport);
modify_field(udp.srcPort, l4_sport);

}

table udf_vlist_tbl {
reads {

meta.stream: ternary;
g_pkt_cntr.value: ternary;
eg_intr_md.egress_port: ternary;

}
actions {

do_modify_fields;
}

}

11

F L O W T R A C K I N G

• In typical FPGA based testers, products support a
floating signature and instrumentation header.

• This signature can typically be placed anywhere in
the packet to provide the end-user maximum
flexibility. Challenging to implement in P4 parser.

table rx_instrum_tbl {
reads {

big_sig.sig1: ternary;
big_sig.sig2: ternary;
big_sig.sig3: ternary;
ig_intr_md.ingress_port :

ternary;
}
actions {

_nop;
do_set_rx_instrum;

}
default_action: _nop;
size: MAX_PIPELINE_PORTS;

}

12

F L O W S TAT I S T I C S

• If the signature has been matched need to extract
flow identifier (PGID) and compute statistics.

• Ideally should be able to get a time snapshot of all
statistics and timestamps to effectively correlate
and measure real time transmit and receive
counters.

• FPGAs use ping-pong RAM buffers to create
snapshots across the chip

13

B U I L D S

FPGA

• Typical build times for FPGA images are 3-6 hours
to route and 1.5 hours to synthesize

• Need on average 5 seeds for build strategies which
is done in parallel

• Also need to take into account timing and utilization
which adds additional components to development
process

Route Results
Real-time: 01:25:22, CPU-
time: 03:33:45, RAM: 14341.875

Synth Results
Real-time: 01:32:49, CPU-time: 00:53:44, RAM: 12557.008

P4

• Typical build times for P4 images + API bindings is
about 5 minutes

• Allows for much quicker iterations on code,
compile, deploy cycle

• Enables an agile development methodology using
sprints for feature development and bug fixing

time p4_build.sh pktgen9.p4
real 4m40.359s
user 14m56.508s
sys 0m18.544s

14

A P I S

FPGA

• FPGA designers typically provide a design
document of a module

• Design document will include register memory map
of block as well as high level procedures to
program and manage module. Passed to SW team
to integrate into application stack.

P4

• P4 compiler auto-generates APIs for P4 program

• APIs can be exercised in a variety of ways such as
RPC (i.e. gRPC) or directly via C APIs

• API integration into application stack is typically
done by the same P4 developer.

Bit Name Description R/W Defaul
t

31:2
1

Reserved Unused RO 0

20 Enable ‘1’ – Enable Insertion R/W X
19:6 UDF Byte Offset Byte offset from start of packet for the start

of the 32 bit overlay. Can be odd. Any
offset in the packet is allowed.

R/W X

5:4 Reserved Unused RO 0
3:0 Mask ‘1’ – Unrotated Byte Enable R/W X

P4 Code

P4 Compiler

1011100
0101010
1010010
1010101

Device
Binary

APIApplication
Code

Single
source

of truth

Developer

P4 Control Plane

P4 Device

15

S C A L A B I L I T Y, P R E C I S I O N , A C C U R A C Y

FPGA

• Typical products are specified prior to hardware
development to achieve desired scalability.

i. Number of Trackable Flows – some products
support up to 1M

ii. Number of Flow groups – some products
support up to 1K per port

iii. Stateful Protocol Emulation scale
iv. Number of modifiers and depth of memory for

them

• Rate precision through schedulers implemented in
RTL

• Jitter minimization with timestamping logic at tail
end of egress and head of ingress. Leads to high
latency accuracy

P4

• Scalability of platform determined by resources
provided by ASIC and initially required trial and
error with pipeline optimizations.

• Any precision and accuracy is subject to the
underlying accuracy of fixed functions in the ASIC.
P4 does not provide any kind of guarantees for this.

• At the end of the day, P4 is tailored for higher level
programming of switch fabrics. Not nearly the same
flexibility as RTL.

16

I S P 4 T H E F U T U R E O F N E T W O R K T E S T ?

• The answer is a qualified yes J

• FPGAs will always be critical for L23 Network Testing in the following domains:
I. New speeds and feeds – Every increase in Serdes signaling rates will require Network

Testers for ASIC validation. The P4 programmable ASICs at these speeds will always be
released too late in the life cycle of a new Ethernet speed to address this market. The first
Network tester to market in 800Gb or 1.6Tb will be FPGA based.

II. High Scalability Verification – Due to the cost constraints of switching silicon, P4
programmable switches will most likely always lag in system resources to support use
cases requiring high performance and scalability as stand-alone devices.

• P4 programmable ASIC + FPGA hybrid systems have a promising future as systems can
leverage the programmability and throughput of these ASICs alongside the flexibility accessible
through FPGAs.

• P4 enabled systems in general will spark innovation in the network test industry through its
programming paradigm and ecosystem

17

P 4 D R I V E N I N N O VAT I O N

• The ability to compile the data plane in 5 minutes is game changing for network test as the pace of innovation
is the speed of typing

• Auto-generated P4 APIs make the P4 code the single source of truth. Separate specifications are not needed,
effort is reduced, errors are avoided and turnaround times are shrunk.

• Uniform, simple, P4 APIs allow the dataplane to be continuously tested by automation pipelines using
relatively simple test harnesses. Testing of the API and thus the P4 program can occur independently of the
integration into existing application stacks.

• P4's level of abstraction, simplicity, and software-based approach accelerates feature velocity and enables
individual developers to contribute across the application stack easily and own features end to end.

• Overall, P4 programmable platforms enable testing products to be developed iteratively and rapidly by self
contained software teams in a much more responsive model to evolving customer needs. This directly reflects
the change of scope from a hardware project to a software project.

18

• Through our exploratory and product development cycles we found that we could definitely leverage a P4
programmable chip to deliver a viable Network Tester!

• We were able to leverage our years of IP to deliver the same user experience while abstracting the
implementation details of the data plane. Ironically, the bulk of the work was in the control plane and software
integration. The data plane portion was fairly straightforward to implement and unit test.

• From a resource perspective, we were able to rapidly prototype and bootstrap the product with a small self
contained team.

• Leveraging P4 allowed us to transform a typical hardware project into a software project. Specifically, we were
able to successfully transition to a modern agile development process with CI/CD pipelines across the
application stack. This has us setup to be able to quickly mobilize and meet evolving customer needs.

K E Y Q U E S T I O N S

19

• Keysight UHD Team

• Intel/Barefoot Engineering and
Support Team

• P4 Language Consortium and SONiC

20

Thank You

ram.murthy@keysight.com
https://www.linkedin.com/in/ram-murthy-
699ab795/
https://www.ixiacom.com/products/uhd100t32-32-
port-100ge-test-system

https://www.linkedin.com/in/ram-murthy-699ab795/
https://www.ixiacom.com/products/uhd100t32-32-port-100ge-test-system

