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10,000s of tenants
100s of workloads

Group Communication in Public Clouds 
Replication

for databases and state machines

Publish-Subscribe
like ZeroMQ and RabbitMQ

Infrastructure Apps
like VMware NSX and OpenStack

Millions of distinct 
group 

communications
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Limitations of Native Multicast 

Limited state in switches for group entries < 10K

Excessive control churn 
due to membership and topology changes

Data Center Controller

Processing
overhead
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Restricted to Application-Level Multicast 

P S S S
Processing
overhead Low throughput

Traffic overhead
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Elmo: Source Routed Multicast
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à SIGCOMM’19
Group Table Entry:
ID à Ports



Elmo: Source Routed Multicast

P S S S

PublisherP SubscriberS 6

Packet Rules or p-rules:
List of (Switch ID à Ports encoded as bitmaps) tuple
as well as a default p-rule.
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Elmo: Source Routed Multicast 
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Upstream
P-Rules

Downstream
P-Rules
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Elmo: Source Routed Multicast 
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- Read a p-rule
- Read the default p-rule



Mellanox Programmable switch model

Spectrum SDK 

Auto generated SDK objects    

• Hybrid – Integration between legacy (switch router) and programmable pipeline
• NOS (ONYX / SONiC) and user applications run in parallel 

Bridge Router Policy 
Engine

Mellanox p4 Agent 

Switch pipeline
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Action.p4
Matadata.p4
Spectrum.p4  
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Parser state machine

Vxlan
GPE

Elmo
UP

Elmo
DP

base

Other
(Inner 

ethernet 
etc..)

Elmo
DP

(TLV 
Parser)

Elmo_DP.Num_of_DPs not reached

UP.bitmap
UP.bitmap_valid

DP.bitmap
DP.bitmap_valid
Deafult_DP.bitmap
Default_DP.bitmap_valid

inner_ip.dip

Extracted fields
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Options parser

§ Options are common among network protocols (IPv4, TCP, etc.. )

§ Options follows some common structure
§ Base header has a known length 

§ Total header length (computed)

§ Total options length

§ Options are built in a TLV fashion:
§ Type (self-indicator) 
§ Length (some granularity)
§ Type and Length fields are fixed

§ This structure mainly exists to support unknown options

§ State transition is defined in the base header

§ In Elmo:
§ Downstream P-rules are options
§ Unknown switch ID
§ Default p-rule – common Switch ID
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Single switch Functionality

§ Upstream bitmap

§ Downstream bitmap 

§ Default p-rule
§ Increase scale on the expense of excess traffic

§ Normal forwarding by the legacy pipeline
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Demo

§ Mcast groups:

1. H1 transmits to H2:
UP bitmap  : [000, 010]
no DP header

2. H1 transmits to H3, H4 and H6:
UP bitmap: [001, 001]
DP:  [S1: 001,  L2: 101]

Spine 1

Leaf 1 Leaf 2

H1 H2 H3 H4 H5 H6

3. H1 transmits to H2, H4, H5:
UP bitmap: [001, 010]
DP:[S1: 001, L2: 110]

4. H1 transmits to H5, H6:
UP bitmap: [001, 000]
DP: [S1: 001, default: 011]
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Demo 
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Challenges

§ In the following slides, we’ll share our experience from this work. 
§ Challenges encountered during this work:

§ Multicast
§ Options parsing
§ Extraction
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Multicast

§ Multicast is not handled by the PSA model  (extern)

§ Hard for stateless switch multicast

§ This work - directly expose MC bitmap to the dataplane:
§ metadata.egress_ports = headers.elmo_downstream_default_p_rule.bitmap;

§ Multicast group table can be easily supported

§ Hybrid architecture - support non-physical ports as well (e.g., router interface etc..)
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Options parsing

§ Options current implementation in P4
§ possible but not trivial
§ Not easily offloadable

§ Common use case
§ Worthwhile to have standard fashion of defining
§ Easily HW offloaded by the different vendors.

§ Build a sub-parser prototype which follows the observed structure
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Extractions 

§ Extract methods act on entire headers –consumes them and advances the cursor

§ It is further assumed that HW will extract all the fields of the accepted header.
§ Could be costly

§ What if you require a subset of the fields?

§ May prevent HW optimizing by selective extraction
§ Dynamically loaded control

§ Advanced field extraction features like variable offset (SRv6 Current SID or Elmo UP bitmap)
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Extraction - proposal

§ We implemented field extraction primitives on our architecture:
§ Void extract_field<T>(out T headerLvalue.field);
§ void extract_field<T>(out T headerLvalue.field, in bit<32> variableFieldOffset); 
§ void extract_field<T>(out T headerLvalue.field, in bit<32> variableFieldSizeInBits, in bit<32> variableFieldOffset); 

§ Extract a single field and advance the cursor, 
§ Adds to current header primitives (not replace)

§ Useful also for:
§ variable offset fields
§ more than one variable length field in a header

§ Another option - Usage analysis in the compiler backend
§ Sufficient for monolithic P4 executables

§ Problematic for target architectures which allow dynamic insertion of control pipelines (which share the same parser)
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Conclusions

§ Elmo compactly encodes multicast policy inside packets

§ Designed for multi-tenant data centers scales

§ Demonstrated, for the first time, Elmo implementation with wire speed performance using hybrid 
programmable dataplane

§ All legacy forwarding and control plane is intact
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Matty Kadosh (Mellanox), mattyk@mellanox.com
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