
Realizing Source Routed Multicast
Using Mellanox’s Programmable

Hardware Switches
Matty Kadosh1, Yonatan Piasetzky1, Barak Gafni1,

Lalith Suresh2, Muhammad Shahbaz3, Sujata Banerjee2

1Mellanox, 2VMware, 3Stanford

10,000s of tenants
100s of workloads

Group Communication in Public Clouds
Replication

for databases and state machines

Publish-Subscribe
like ZeroMQ and RabbitMQ

Infrastructure Apps
like VMware NSX and OpenStack

Millions of distinct
group

communications
2

Limitations of Native Multicast

Limited state in switches for group entries < 10K

Excessive control churn
due to membership and topology changes

Data Center Controller

Processing
overhead

3

Restricted to Application-Level Multicast

P S S S
Processing
overhead Low throughput

Traffic overhead

PublisherP SubscriberS 4

Elmo: Source Routed Multicast

P S S S

PublisherP SubscriberS 5

à SIGCOMM’19
Group Table Entry:
ID à Ports

Elmo: Source Routed Multicast

P S S S

PublisherP SubscriberS 6

Packet Rules or p-rules:
List of (Switch ID à Ports encoded as bitmaps) tuple
as well as a default p-rule.

P S S S

Elmo: Source Routed Multicast

PublisherP SubscriberS 7

Upstream
P-Rules

Downstream
P-Rules

P S S S

Elmo: Source Routed Multicast

PublisherP SubscriberS 8

U
ps
tr
ea
m

Dow
nstream

- Read a p-rule
- Read the default p-rule

Mellanox Programmable switch model

Spectrum SDK

Auto generated SDK objects

• Hybrid – Integration between legacy (switch router) and programmable pipeline
• NOS (ONYX / SONiC) and user applications run in parallel

Bridge Router Policy
Engine

Mellanox p4 Agent

Switch pipeline
Pa

rs
er

po
rt

Fl
ex

1

Br
id

ge

Fl
ex

2

ro
ut

er

fle
x3

tu
nn

el

de
pa

rs
er…

M
ellanox P4 com

piler

Action.p4
Matadata.p4
Spectrum.p4

User code

10

Parser state machine

Vxlan
GPE

Elmo
UP

Elmo
DP

base

Other
(Inner

ethernet
etc..)

Elmo
DP

(TLV
Parser)

Elmo_DP.Num_of_DPs not reached

UP.bitmap
UP.bitmap_valid

DP.bitmap
DP.bitmap_valid
Deafult_DP.bitmap
Default_DP.bitmap_valid

inner_ip.dip

Extracted fields

11

Options parser

§ Options are common among network protocols (IPv4, TCP, etc..)

§ Options follows some common structure
§ Base header has a known length

§ Total header length (computed)

§ Total options length

§ Options are built in a TLV fashion:
§ Type (self-indicator)
§ Length (some granularity)
§ Type and Length fields are fixed

§ This structure mainly exists to support unknown options

§ State transition is defined in the base header

§ In Elmo:
§ Downstream P-rules are options
§ Unknown switch ID
§ Default p-rule – common Switch ID

12

Single switch Functionality

§ Upstream bitmap

§ Downstream bitmap

§ Default p-rule
§ Increase scale on the expense of excess traffic

§ Normal forwarding by the legacy pipeline

13

Demo

§ Mcast groups:

1. H1 transmits to H2:
UP bitmap : [000, 010]
no DP header

2. H1 transmits to H3, H4 and H6:
UP bitmap: [001, 001]
DP: [S1: 001, L2: 101]

Spine 1

Leaf 1 Leaf 2

H1 H2 H3 H4 H5 H6

3. H1 transmits to H2, H4, H5:
UP bitmap: [001, 010]
DP:[S1: 001, L2: 110]

4. H1 transmits to H5, H6:
UP bitmap: [001, 000]
DP: [S1: 001, default: 011]

14

Demo

§ Mcast groups:

1. H1 transmits to H2:
UP bitmap : [000, 010]
no DP header

2. H1 transmits to H3, H4 and H6:
UP bitmap: [001, 001]
DP: [S1: 001, L2: 101]

Spine 1

Leaf 1 Leaf 2

H1 H2 H3 H4 H5 H6

3. H1 transmits to H2, H4, H5:
UP bitmap: [001, 010]
DP:[S1: 001, L2: 110]

4. H1 transmits to H5, H6:
UP bitmap: [001, 000]
DP: [S1: 001, default: 011]

15

Demo

16

Challenges

§ In the following slides, we’ll share our experience from this work.
§ Challenges encountered during this work:

§ Multicast
§ Options parsing
§ Extraction

17

Multicast

§ Multicast is not handled by the PSA model (extern)

§ Hard for stateless switch multicast

§ This work - directly expose MC bitmap to the dataplane:
§ metadata.egress_ports = headers.elmo_downstream_default_p_rule.bitmap;

§ Multicast group table can be easily supported

§ Hybrid architecture - support non-physical ports as well (e.g., router interface etc..)

18

Options parsing

§ Options current implementation in P4
§ possible but not trivial
§ Not easily offloadable

§ Common use case
§ Worthwhile to have standard fashion of defining
§ Easily HW offloaded by the different vendors.

§ Build a sub-parser prototype which follows the observed structure

19

Extractions

§ Extract methods act on entire headers –consumes them and advances the cursor

§ It is further assumed that HW will extract all the fields of the accepted header.
§ Could be costly

§ What if you require a subset of the fields?

§ May prevent HW optimizing by selective extraction
§ Dynamically loaded control

§ Advanced field extraction features like variable offset (SRv6 Current SID or Elmo UP bitmap)

20

Extraction - proposal

§ We implemented field extraction primitives on our architecture:
§ Void extract_field<T>(out T headerLvalue.field);
§ void extract_field<T>(out T headerLvalue.field, in bit<32> variableFieldOffset);
§ void extract_field<T>(out T headerLvalue.field, in bit<32> variableFieldSizeInBits, in bit<32> variableFieldOffset);

§ Extract a single field and advance the cursor,
§ Adds to current header primitives (not replace)

§ Useful also for:
§ variable offset fields
§ more than one variable length field in a header

§ Another option - Usage analysis in the compiler backend
§ Sufficient for monolithic P4 executables

§ Problematic for target architectures which allow dynamic insertion of control pipelines (which share the same parser)

21

Conclusions

§ Elmo compactly encodes multicast policy inside packets

§ Designed for multi-tenant data centers scales

§ Demonstrated, for the first time, Elmo implementation with wire speed performance using hybrid
programmable dataplane

§ All legacy forwarding and control plane is intact

Thank You

Matty Kadosh (Mellanox), mattyk@mellanox.com
Lalith Suresh (VMware), lsuresh@vmware.com

Acknowledment
Jen Rexford1

Nick Feamster2

Ori Rottenstreich3, 5

Mukesh Hira4, Mihai Budiu4, Ben Pfaff4

Alan Lo5, Aviv Kfir5, Jose Yallouz5

[1] Princeton [2] U. Chicago [3] Technion [4] VMware [5] Mellanox

http://mellanox.com
http://vmware.com

