
P4 at the Edge

Nate Foster
Cornell University

P4 at th

Photo credit: Mollie Foster

edge, noun.
1. A place or part farthest away from the center of something
2. The point or state immediately before something momentous
occurs

State of P4
New Features
• Continued evolution of P416 Language,

P4Runtime, and INT specifications
• Growing set of developers actively

contributing to open-source software
packages

New Targets
• User-space (e.g., Orange p4c-ubpf)
• Programmable NICs (e.g., Pensando DSC)
New Applications
• Congestion control using telemetry
• DDoS mitigation on P4-enabled switches

Future Directions
Language Design

Graceful evolution to accommodate
richer processing possible at edge

Architecture
Renewed enthusiasm for a “standard
model” for programmable NICs

APIs
Push pipeline independence further
up the stack—e.g. into switch OS

Applications
• On cusp of a “Cambrian explosion”
• Broaden scope beyond telemetry

Photo credit: Nate Foster

Technical
Challenges

State
How do we manage the richer kinds of state that are
available at the network edge?

Expressiveness
How do we accommodate complex transformations
that go beyond P4’s existing pipeline architectures?

Modularity, Portability, Predictability…
How do we do all this while retaining the essential
features of the P4 language?

Photo credit: Mollie Foster

Guiding Principles
Community
• Open to anyone who wants to participate
• Decisions based on technical merit (not business or politics)
Strategic Goals
• Make P4 the de facto standard for packet processing, whether in

hardware or software
• Find synergies with related efforts (e.g., ONF, eBPF, XDP, etc.)
Core Philosophy
• Declarative features with clear semantics
• Domain-specific constructs familiar to practitioners
• Predictable resource utilization and performance

P4 Distinguished Service Award

🏆

P4 Distinguished Service
Award

Citation: For dedicated
service to the P4 community
as a designer of the P416
language, the primary
developer of the p4c
reference compiler, and co-
chair of the P4 Language
Design Working Group

Mihai Budiu
VMware Research

Antonin Bas
VMware

P4 Distinguished Service
Award

Citation: For dedicated
service to the P4 community
as a designer of P4Runtime,
the primary developer of the
bmv2 software switch, and
co-chair of the P4 API
Working Group

Working Group Updates

Language Design Working Group
v1.2.0 (October 2019)
• Strings and logging
• Richer types (int, tuples, etc.)
• Relaxed annotations
v1.2.1 (Spring 2020)
• Struct expressions
• Default initialization
• Side-effects
Software Development
• p4c-ubpf backend
• Differential testing of p4c (h/t Fabian Ruffy)
Future Plans
• Modularity
• Architecture specifications

API Working Group
v1.1.0 (March 2020)
• Overhaul master arbitration
• New RPCs for querying capabilities
• Better support for multicast

v1.2.0 (Spring 2020)
• Optional match kinds
• Structured annotations
• Language bindings (e.g., GoLang)
Software Development
• Stratum released as open-source

Future Directions
• Currently considering features for v2.0.0

Architecture Working Group

© Copyright 2019 Xilinx

10. P4 Portable NIC Architecture (PNA) project
˃ Some issues being considered:

There are ingress and egress pipelines
‒ What are the standard components of each pipeline?

� Which are P4 programmable?

‒ Is more variability needed than in PSA?
� What about in-line externs, particularly fixed-function NIC blocks?
� What lookaside externs might be needed?

‒ Is direct interaction between ingress and egress allowed?
‒ What about isolation/virtualization?
‒ Should the collection of network ports be modelled explicitly?

How is host CPU interface modelled?
‒ Differentiate data plane CPU, and control plane CPU, roles
‒ Impact on P4Runtime

Beyond packet forwarding:
‒ Is protocol (e.g., TCP) termination covered?
‒ IV µT\SH 3¶ NIC FRYHUHG ± payload processing as well as forwarding?

Aiming for modular spec that has as much in
common with PSA as possible

˃ Current P4.org architecture sub-group
AFWLYH KHOSHUV ZaQWHG «

>> 12

Proposal: Andy F. visualization

Portable NIC Architecture (Fall 2020)
• Based on Portable Switch Architecture

(PSA)
• Identifying use-cases
• Standardizing common functions and

blocks
• Exploring language extensions

Software Development
• Continued work on PSA reference

implementation based on p4c and bmv2

Applications Working Group
Overview
• In-band Network Telemetry (INT) has been widely adopted as a fundamental

building block for building network infrastructure
• New use-cases and operation modes for INT have been identified
v2.0 (Spring 2020)
• New transport, metadata, operation modes
• Alignment with IETF IOAM
• Coalescing multiple reports in a single packet
• Domain-specific extensions provide flexibility without sacrificing efficiency
v2.x (Future)
• End host centric use cases
• INT-aware closed-loop control of transport and congestion

Community Highlights

Pensando Distributed Services Card
Features
• P4-programmable pipeline
• Flexible ARM cores
Opportunities
• The only way to deal with widening gap

between network and CPU performance
• Richer forms of processing become

possible at the network edge
Questions
• How should P4 evolve to accommodate

general-purpose constructs?
• How do we manage richer forms of

state?
• How do we reason about performance?

https://p4.org/p4/pensando-joins-p4.html

https://p4.org/p4/pensando-joins-p4.html

Orange’s P4-to-uBPF Compiler
Features
• New backend for p4c
• Simple architectural model:

o Parser
o Match-Action Control
o Deparser

• Enables using P4 with kernel bypass
frameworks (DPDK, AF_XDP, etc.)

Opportunities
• Flexibility of eBPF
• Performance of P4
• Rapid prototyping of language extensions

Network-Assisted Congestion Feedback

P4-enabled Network-assisted Congestion Feedback:
A Case for NACKs

Anja Feldmann, Balakrishnan Chandrasekaran
Seifeddine Fathalli, Emilia N. Weyulu

Max-Planck-Institut für Informatik
{anja,balac,fathalli,eweyulu}@mpi-inf.mpg.de

ABSTRACT
There exists an extensive body of work, spanning more than
two decades, on congestion control schemes and signaling
mechanisms. The majority of prior work does not, however,
entertain the notion of network-assisted feedback for conges-
tion control. The scope of the remaining work has also been,
unfortunately, rather narrow: Some e�orts limit themselves
to using weak signals (involving a few bits in the header)
and relying on receivers to re�ect such signals to the sender;
few others maintain per-�ow statistics or explicitly set the
rates the senders should use. Virtually all suggested network-
assisted congestion feedback mechanisms are ine�ective, not
scalable, or limited to data-center contexts.

In this proposal, we exploit data-plane programmability of
P4 switches as well as hardware-supported priority classes to
present a novel network-assisted congestion feedback (NCF)
mechanism. The feedback entails NACKs that are directly
sent to the sender, and does not involve the receiver; it is,
hence, quick and e�cient. We propose sending such NACKs
during periods of congestion to senders of elephant �ows
and outline a scalable approach to identify elephant �ows.
Unlike prior work, NCF is applicable to both data-centers as
well as Internet-wide.

CCS CONCEPTS
•Networks→Packet classi�cation;Programmable net-
works; In-network processing;

KEYWORDS
Congestion control, P4, AQM, NACKs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
BS ’19, December 2–3, 2019, Palo Alto, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7745-4/19/12. . . $15.00
https://doi.org/10.1145/3375235.3375238

1 INTRODUCTION
Congestion control is responsible for avoiding congestion
collapse and is one of the most challenging tasks in the In-
ternet [5, 25, 29]. E�ectively controlling the congestion is
becoming increasingly di�cult, e.g., [3, 23], due to availabil-
ity of very-high-speed links, increases in tra�c diversity and
burstiness, decreases in bu�er sizes (relative to link speed),
and the needs of the congestion-control (CC) mechanism
to meet diverse goals. Today’s goals focus not only on fair
sharing of network resources, e.g., [35], but also on lowering
delays, maximizing throughput, and e�ectively solving the
Incast challenge (e.g., [3, 9, 11, 14]).

It is, therefore, not surprising that there is a large body of
work on congestion control, including numerous CC schemes
(e.g., Cubic [22], the default CC mechanism in Linux ker-
nels, and BBR [9]), congestion-signaling mechanisms (e.g.,
ECN [28]) and many data-center-speci�c (e.g., DCTCP [3],
pFabric [4], PCC [13, 14], QJUMP [20], NDP [23], Copa [6],
and Homa [36]) as well as application-speci�c CC schemes
(e.g., QUIC [30]). Huang et al. [24] presents an in-depth sur-
vey of this solution space. Recent approaches have also pro-
posed the use of machine learning algorithms to dynamically
tune the CC mechanism to achieve the optimal performance
in a given scenario [31, 45].
The idea of eliciting support from the network to im-

prove end-to-end CC schemes is not new (e.g., [2, 15, 27,
32, 37]). Scope of prior work in this space, however, has been
rather narrow: Prior e�orts either restrict themselves to us-
ing only a few bits for signaling (e.g., ECN [42], SNA [18],
DECbit [43], and ATM [34]) or to setting explicit rates for
senders (e.g., [37] and RCP [15]). While the former is an in-
su�cient signal and also does not guarantee that the signal
will a�ect only the source(s) responsible for congestion, the
latter per-�ow mechanism is simply not scalable. Even other
approaches that accommodate rich congestion signals (e.g.,
[27, 32]) rely on receivers re�ecting such signals back to the
senders, implying a delayed congestion-feedback loop.

Among the reccurring takeaways of prior CC work are the
following four observations: (1) We require mechanisms to
handle both short �ows and long �ows, typically referred to

1

Insight
Use P4-enabled switches to give
end hosts precise feedback about
network congestion

Challenges
• Scalable data collection
• Elephants vs. mice flows
• Fair sharing of resources
• Avoid introducing new faults
Open Question
• How should we think about

congestion control schemes with
telemetry-driven approaches?

Wrapping Up…

Thank You
P4 Technical Steering Team
● Nate Foster (Cornell, chair)
● Nick McKeown (Stanford)
● Guru Parulkar (ONF)
● Jennifer Rexford (Princeton)
● Amin Vahdat (Google)

Working Group Co-Chairs
● Language: Mihai Budiu, Nate Foster
● APIs: Antonin Bas, Waqar Mohsin
● Architecture: Andy Fingerhut
● Applications: Mukesh Hira, Jeongkeun Lee
● Education: Robert Soulé, Noa Zilberman

General Chair: Guru Parulkar (ONF)

PC Co-Chairs
● Larry Peterson (ONF)
● Anirudh Sivaraman (NYU)

Organizers
● Sedef Ozcana (P4)
● Denise Barton (ONF)
● Rachel Everman (Intel)
● Michelle Roth (ONF)
● Timon Sloane (ONF)

Sponsors
● Google
● Intel
● Stordis

Get Involved
● Join the P4 Project!

○ No fee to participate
○ Lightweight legal agreement based on Apache2 License
○ Possible to become an ONF Collaborator or Member

● Participate in Working Groups
○ Anyone with a good idea can help shape the future of P4
○ Open governance model with code of conduct
○ Decisions made by consensus on technical merits

● Contribute to P4 Software
○ Compiler (p4c)
○ Software switch (bmv2)
○ Control-plane APIs (P4Runtime)
○ Tutorials & Documentation
○ Applications (INT)

Thank You!

