
BISDN GmbH

Open Source vBNG Architecture and
Performance Evaluation

Hagen Woesner

ONF Broadband Spotlight Presentation, June 2020

Telco cloud: Bump in the wire

Most telco applications
are traffic filters or gateways

 Traditional cloud: End of the wire

Most cloud applications
are web services

VNF
Virtual Network

Function

VIM
Virtual Infra

Manager

VNF

Hypervisor

Compute /
Storage /
Network

VNF

VIM

VNF

Hypervisor

Compute /
Storage /
Network

MUCH higher
throughput

required!

Challenge: Traditional clouds are unsuited for telco
At least twice the bandwidth required for telco services

* DPDK = Data Plane Developer Kit – Intel‘s SDK for forwarding acceleration

Solution: Offload packet handling to infrastructure
SDN required to ‘remote control’ ASICs and FPGAs

Control/User Plane Separation (CUPS)
- Decompose network functions to become ‚cloud native‘

Common user plane abstraction: Linux pipeline
- baseboxd SDN controller translates Linux pipeline to whitebox

- No separate north-bound interface to controller – no SDN “apps“

- Re-use of millions of lines of Linux code
Hardware acceleration (up to factor 1.000)

- Step 1: DPDK* inside VNF – factor 10

- Step 2: Programmable NIC on server – factor 10

- Step 3: Whitebox switch – factor 10

benefit from NFV and run high-speed

x86 (DPDK/VPP)

Hypervisor
(server)

Programmable
Network card

ToR Switch

Programmable
ASIC

1 2 3 2
5
3

2
5
4

2
5
5

SEBA POD Topology

operator machine

mgmt network

ONOS, NEM, Kubernetes,
Docker Registry, AAA,
VOLTHA

OLT + SDN Fabric

 Port5

 Port1

ONU-1

ONU-2

Tibit

Tibit

BNG

IP/MPLS
core

COTS brings cost down

source: https://www.lanner-america.com/latest-news/network-disaggregation/

architectural options for BNG

server
(x86)

Switch
ASIC

FPGA /
SmartNIC

architectural options for BNG

server
(x86)

Switch
ASIC

FPGA /
SmartNIC

architectural options for BNG

server
(x86)

Switch
ASIC

FPGA /
SmartNIC

architectural options for BNG

server
(x86)

Switch
ASIC

FPGA /
SmartNIC

BISDN supports low-cost, high-volume platforms
● 1G/10G

○ AS 4610
○ Broadcom Helix4

● 10G/40G
○ AG7648
○ Broadcom Trident2

● 25G/100G
○ AG5648
○ Broadcom Tomahawk+

not every ‘white box’ is COTS
Deutsche Telekom and Delta announced Open BNG platform at OCP Summit 2019
http://www.delta-emea.com/news/pressDetail.aspx?secID=3&pID=1&typeID=1;2;8&itemID=9565&tid=0&hl=en-GB

custom designs won’t fly unless usable for mass market.
(personal opinion of Dr.-Ing. Hagen Woesner, Berlin)

➢ Dual Q2C,
➢ additional counter processor
➢ Xeon-D inside

SEBA Overview - need to integrate into OSS/BSS

GUI

vOLTHA Architecture

Schematic of grpc/OF coexistence in k8s
• currently working

on vOLTHA 1.6
• control plane

extracted into
VXLAN port

• transport via data
port (not the
internal CPU) switch

kubernetes-cluster

vOLTHA-core
create OLT abstraction

TiBiT-Adapter
discover OLT devices

k8s calico networking

OLT DATA-PORT

MGMT-PORT

gRPC switch
configurator

OLT vTEP

vTEP create
vTEP

mgmt
traffic

gRPC Server

OF-DPA

ASIC

ofagent

COTS BNG architecture - switch+server
Extend switch pipeline into server - balance the tasks to where they can be handled best

x86 server

100G25G

25G

Intel
XXV710

Intel
XXV710

Intel
XXV710

Intel
XXV710

25G

Access Core

SuperMicro X11DPI-N, 2 x
CPU Intel Xeon Gold 5120
(Skylake)
w/ 4 Intel XXV710DA2 cards

Delta AG5648v1
(BRCM Tomahawk+)
BISDN Linux, baseboxd
controller for L2 access and L3
core routing to spine

Tibit XGSPON module
could go here,
or any other OLT uplink

Packets do not leave hardware pipeline

...

... ...
ASIC pipeline ASIC pipeline

control
plane

DDP: Split control
from data traffic in
hardware

delegate complex tasks
like traffic shaping, NAT,
firewall into DPDK
worker processes

keep simple tasks like fan-out,
routing, MPLS, in whitebox ASIC

...

downstream pipeline

DDP
NIC

upstream pipeline

table1table0

table0

P4 pipeline / folded
• similarity in the pipeline structure
• both ingress and egress stage are handled in the same switch
• control interface is PFCP (NOT p4runtime), but similar paradigm
• use local OpenFlow controller for switch (github.com/bisdn/basebox)

core 2 core 3 core 4core 1

horizontal scaling
• scale to 16 parallel BNG instances on a single server

• 2 instances per 25G port

...

... ...
ASIC pipeline ASIC pipeline

upstream pipeline

DDP
NIC

control
plane ...

downstream pipeline

... ...

upstream pipeline downstream pipeline

Dynamic Device Personalization - DDP
• program filters into NIC pipeline, profiles available for PPPoE, IPSec(?),

GTP
• cloud filters can be set/programmed with ethtool

• Here we use some specific filter config (made by Intel)
• create 5 VFs

• VF_0 is 'control VF', bind to kernel driver, on to VXLAN (remote control server)

• VF_1, VF_3 downlink

• VF_2, VF_4 uplink

• initialize NIC such that PPPoE control traffic is sent to CP VFs

vBNG Base Config - Uplink Packet Flow stages

21

Packet RX ACL Flow
Classification

Metering/
Policing Routing Packet TX

• 5 Tuple Lookup
• 100 Infra REJ Rules
• 15 Martian REJ rules
• 15 SMTP ACC Rules (P0)
• Default SMTP REJ rule (P1)
• Default ACC

• 1 total route
per instance

• 1 Rule per Port

• Multiple Instances
• 1 Port per instance

• 1 FC rule per Sub
• Classify on QinQ
• Total rules per instance =

Total subs supported per
instance (e.g. 4K)

• 1 Policer per
Sub

ACL lookup tuple needs to be
extended to block unwanted

ICMP traffic

VLA
NEth VLA

N IP Eth IP

home Network

Every UL container instance runs full packet flow on single vCPUvCPU0UL

vBNG Base Config- Downlink packet flow stages

22

Packet RX ACL Traffic
Management Routing Packet TX

• Reverse path forwarding
• Default drop • 1 Rule per Sub

• QinQ & PPPoE encap
• LPM on 32bits• Multiple Instances

• 1 Port per instance

VLANEth VLA
N IPEth IP

homeNetwork

Every DL container instance runs on 2x vCPU
vCPU0 vCPU1DL

Packet RX ACL Traffic
Management Routing

Port x 1 :: 25Gb
SubPort x 1 :: 25Gb
Pipe x 4K :: 6.25Mb
TC x 4 :: 1.5Mb

vBNG Full Config - Uplink Packet Flow stages

23

Packet RX ACL Flow
Classification

Metering/
Policing

Routing Packet TX

• 5 Tuple Lookup
• 100 Infra REJ Rules
• 15 Martian REJ rules
• 15 SMTP ACC Rules (P0)
• Default SMTP REJ rule (P1)
• Default ACC

• 1 total route
per instance

• 1 Rule per Port

• Multiple Instances
• 1 Port per instance

• 1 FC rule per Sub
• Classify on QinQ
• Total rules per instance =

Total subs supported per
instance (e.g. 4K)

• 1 Policer per
Sub

ACL lookup tuple needs to be
extended to block unwanted

ICMP traffic

VLA
NEth VLA

N IP Eth IP

home Network

Every UL container instance runs full packet flow on single vCPUvCPU0UL

DSCP NAT

• 4K entries
mapped to
DSCP 46

• Static NAPT translation
• 4K unique private IP address ->
1 public IP address with 4K UDP
ports

vBNG Full Config- Downlink packet flow stages

24

Packet RX ACL Traffic
Management Packet TX

• Reverse path forwarding
• Default drop

• 1 Rule per Sub
• QinQ & PPPoE encap
• LPM on 32bits

• Multiple Instances
• 1 Port per instance

VLANEth VLA
N IPEth IP

home
Network

Every DL container instance runs on 2x vCPU
vCPU0 vCPU1DL

Packet RX ACL Traffic
Management Routing

Port x 1 :: 25Gb
SubPort x 1 :: 25Gb
Pipe x 4K :: 6.25Mb
TC x 4 :: 1.5Mb

NAT

• Static NAPT reverse
translation

• 1 public IP address with
4K UDP ports ->

• 4K unique private IP
address

Example IP pipeline code

;***************DECLARE ACTION PROFILE********

table action profile AP5 ipv4 offset 270 fwd encap qinq_pppoe

;***************PB'S CREATION*****************

pipeline downstream|firewall period 10 offset_port_id 0 cpu 0

;***************PB LINKING********************

pipeline downstream|routing port in bsz 32 swq SWQU02

;***************TABLE CREATION****************

pipeline downstream|routing table match lpm ipv4 offset 286 size 4K action AP5

;************TABLE ASSOCIATION****************

pipeline downstream|routing port in 0 table 0

;*********************************PIPELINE BLOCKS*******************************;

pipeline downstream|routing table 0 rule add match default action fwd drop

pipeline downstream|routing table 0 rule add bulk
./bng_configs/bulk_rules/dl_bng/route_bulk_pppoe_ins_%S5.txt

vBNG Control Plane attachment

image from
WT-459 -10SB, page 24

Packet Forwarding
Control Protocol
(PFCP)

Measurement setup
using a Spirent TestCenter 5.01 at DT

• 2*100Gbit/s Spirent ports attached to single server
• SuperMicro X11DPI-N, 2xCPU Intel Xeon Gold 5120

• 14 core @ 2.2GHz
• Delta Agema AG5648 (BRCM Tomahawk) does routing and switching

• split to 8*25G Intel XXV710DA2 cards
• baseboxd controller on switch

• bidirectional traffic access+core in one port

• asymmetric upstream to downstream traffic ratio
• upstream between 10 and 25% of downstream

• session setup speed limited by DPDK pipeline implementation
• currently ~10 sessions/s per instance, will be fixed

Queue dimensioning

identified three bottlenecks:
- DPDK IP Pipeline
- Fortville ASIC on NIC
- and then “something somewhere” in PCI/CPU, practical limitations of

PCI bandwidth to CPU.

main focus on downstream pipeline.
upstream traffic in general much lower than downstream, and no HQoS
(we did measure upstream, too.) 30

Characterization of IP pipeline

single vBNG instance consists of two containers
- upstream: one hyperthreaded core
- downstream: two hyperthreaded cores

- siblings on one CPU core, one for HQoS only, the other for all the rest

DDP allows splitting the traffic into more than one instance
- single instance cannot quite serve a full 25 GbE port

- this depends on the CPU, we used a 2.2 GHz CPU from 2017

… just take two. 31

DPDK pipeline measurements
throughput test (RFC 2544) - achievable throughput with zero packet loss

for 4K sessions, single instance can process 5Mpps. ⇒ 11.1 Gbit/s @256 byte

two instances in the same port process 10Mpps. ⇒ 22.2 Gbit/s @256 byte

dominating factor for pipeline processing is number of sessions (lookup time for routing and
HQoS)

32

DPDK pipeline measurements
throughput test (RFC 2544), average delay at peak load

average delay stays below 1ms

max delay is typically twice the average, min delay around 30 microseconds

33

34

512 sessions

4K sessions1K sessions

2K sessions

dashed line
is 1 ms
end-to-end
delay (incl.
switch)

delays above 1ms
typically mean
packet loss

For 2 instances
… typical delay around 70 𝞵s

- delay curves are flat until very high load is applied
- switch traversal is 3.8 𝞵s, i.e. a total of 7.6 𝞵s is

included that is caused by the switch
- similar number for Mellanox and Broadcom

35

1K
sessions

2K
sessions

4K
sessions

port vs. card limitations

single port can serve full line rate of a dual port
XXV710 card
dual-port card is limited to ~20 Mpps
both ports can be filled up to 45-46 Gbit/s in total
above that, packet losses “before” the pipeline

36

single card to multiple cards

multiple cards on the same socket are not completely
independent in our server (!)
loss-free operation until 80% offered load.

multiple sockets are indeed completely independent

total achievable loss-free throughput is 160Gbit/s
combined up+downstream traffic 37

160 Gbit/s total throughput,
lossless

8 ports, 2 instances per port, 16 G down/ 4G upstream traffic

38

vBNG x86+whitebox implementation
Lessons learned

DDP allows forwarding of traffic into separate vBNG instances
- no hashing, no cache pollution, 4K entries fit into cache

delay is generally low, but moreover: manageable
- if delay is too high ⇒ add a pipeline

processing of 160 Gbit/s of traffic is possible on a
commodity (low end) server
there are bottlenecks outside of the pipeline

- increasing the Rx/Tx queue size to 4K and
mempool to 320K helped a lot

39

Conclusions
● COTS is bringing cost of access equipment down

● Linux as common API over switches and servers

● stateful functions like OLTs can be separated from forwarding

● stateful functions like PPPoE session termination, HQoS, NAT should be
separated from forwarding

● whiteboxes + pluggable OLTs + programmable NICs allow this

