
The P4 Language Specification
Version 1.1.0

January 27, 2016

The P4 Language Consortium

© 2014-2016, The P4 Language Consortium

CONTENTS CONTENTS

Contents

1 Introduction 5
1.1 The P4 Abstract Model . 5
1.2 The mTag Example . 7
1.3 Specification Conventions . 7

2 Structure of the P4 Language 8
2.1 Abstractions . 8
2.2 Value Specifications . 9
2.3 Types and declarations . 11
2.4 P4 data types . 12

2.4.1 Principles . 12
2.4.2 Base types . 13
2.4.3 Portability . 13
2.4.4 No saturated types . 14
2.4.5 Boolean . 14
2.4.6 Unsigned integers (bit-strings) . 14
2.4.7 Signed Integers . 15
2.4.8 Dynamically-sized bit-strings . 15
2.4.9 Infinite-precision integers . 16
2.4.10 Integer literal types . 16

2.5 Base type operations . 17
2.5.1 Computations on Boolean values . 17
2.5.2 Operations on unsigned fixed-width integers 18
2.5.3 Operations on signed fixed-width integers 18
2.5.4 A note about shifts . 19
2.5.5 varbit operations . 21
2.5.6 Operations on arbitrary-precision integers 21

2.6 Casts . 22
2.6.1 Explicit casts . 22
2.6.2 Implicit casts . 23
2.6.3 Illegal expressions . 24

2.7 References . 25
2.8 Expressions . 25
2.9 Pragma . 26

3 Headers and Fields 26
3.1 Header Type Declarations . 26
3.2 Header and Metadata Instances . 29

3.2.1 Testing if Header and Metadata Instances are Valid 30
3.2.2 Header Stacks . 31

2

CONTENTS CONTENTS

3.3 Header and Field References . 32
3.4 Field Lists . 32

4 Checksums and Hash-value generators 33
4.1 Checksums . 34

5 Parser Specification 36
5.1 Parsed Representation . 37
5.2 Parser Operation . 37
5.3 Value Sets . 38
5.4 Parser Function BNF . 39
5.5 The extract Function . 41
5.6 Parser Exceptions . 41

5.6.1 Standard Parser Exceptions . 42
5.6.2 Default Exception Handling . 42

6 Deparsing 43

7 Standard Intrinsic Metadata 43

8 Counters, Meters and Registers 46
8.1 Counters . 47
8.2 Meters . 48
8.3 Registers . 49

9 Match+Action Table Overview 50

10 Actions 51
10.1 Primitive Actions . 52

10.1.1 Parameter Binding . 65
10.2 Action Definitions . 66

10.2.1 Sequential Execution Semantics . 67

11 Action profile declarations 68

12 Table Declarations 70

13 Packet Processing and Control Flow 73

14 Egress Port Selection, Replication and Queuing 76

15 Recirculation and Cloning 77
15.1 Clone . 77

15.1.1 Clone to Ingress . 78
15.1.2 Clone to Egress . 78

3

CONTENTS CONTENTS

15.1.3 Mirroring . 79
15.2 Resubmit and Recirculate . 81

16 Extern objects 81
16.1 Extern types . 82
16.2 Extern Instances . 83

17 Appendices 84
17.1 Programming Conventions . 84
17.2 Revision History . 84

17.2.1 Summary of changes introduced in 1.1.0 84
17.3 Terminology (Incomplete) . 86
17.4 Summary of P4 BNF . 86
17.5 P4 Reserved Words . 95
17.6 Examples . 97

17.6.1 The Annotated mTag Example . 97
17.6.2 Adding Hysteresis to mTag Metering with Registers 112
17.6.3 ECMP Selection Example . 114

17.7 Addendum for Version 1.1.0 . 115
17.7.1 Architecture-language separation . 115
17.7.2 Targets . 116
17.7.3 Target Architecture Structure . 116
17.7.4 Target Architecture Selection . 117
17.7.5 Programmable blocks . 118
17.7.6 Standard Library . 119
17.7.7 Standard Switch Architecture . 121

17.8 References . 124

4

1 INTRODUCTION

1 Introduction

P4 is a language for expressing how packets are processed by the pipeline of a network
forwarding element such as a switch, NIC, router or network function appliance. It is
based upon an abstract forwarding model consisting of a parser and a set of match+

action table resources, divided between ingress and egress. The parser identifies the
headers present in each incoming packet. Each match+action table performs a lookup
on a subset of header fields and applies the actions corresponding to the first match
within each table. Figure 1 shows this model.

P4 itself is protocol independent, and hence users can define the forwarding behavior
of their own data-plane protocols in P4. A P4 program specifies the following for each
forwarding element.

• Header definitions: the format (the set of fields and their sizes) of each header
within a packet.

• Parse graph: the permitted header sequences within packets.

• Table definitions: the type of lookup to perform, the input fields to use, the actions
that may be applied, and the dimensions of each table.

• Action definitions: compound actions composed from a set of primitive actions.

• Pipeline layout and control flow: the layout of tables within the pipeline and the
packet flow through the pipeline.

P4 addresses the configuration of a forwarding element. Once configured, tables may
be populated and packet processing takes place. These post-configuration operations
are referred to as "run time" in this document. This does not preclude updating a for-
warding element’s configuration while it is running.

1.1 The P4 Abstract Model

The following diagram shows a high level representation of the P4 abstract model.

The P4 machine operates with only a few simple rules.

• For each packet, the parser produces a Parsed Representation on which match+

action tables operate.

• The match+action tables in the Ingress Pipeline generate an Egress Specification
which determines the set of ports (and number of packet instances for each port)
to which the packet will be sent.

• The Queuing Mechanism processes this Egress Specification, generates the nec-
essary instances of the packet and submits each to the Egress Pipeline. Egress

5

1.1 The P4 Abstract Model 1 INTRODUCTION

Figure 1: Abstract Forwarding Model

queuing may buffer packets when there is over-subscription for an output port,
although this is not mandated by P4.

• A packet instance’s physical destination is determined before entering the Egress
Pipeline. Once it is in the Egress Pipeline, this destination is assumed not to
change (though the packet may be dropped or its headers further modified).

• After all processing by the Egress Pipeline is complete, the packet instance’s header
is formed from the Parsed Representation (as modified by match+action process-
ing) and the resulting packet is transmitted.

Although not shown in this diagram, P4 supports recirculation and cloning of packets.
This is described in detail in Section 15.

P4 focuses on the specification of the parser, match+action tables, and the control flow
through the pipelines. Programmers control this by writing a P4 program which speci-
fies the switch configuration as shown at the top of Figure 1.

A packet-processing machine that can be programmed in P4 is called a target. Although
a target may directly execute a P4 program, it is assumed in this document that the
program is compiled into a suitable configuration for the target.

In the current version, P4 does not expose, for example, the functionality of the Queu-

6

1.2 The mTag Example 1 INTRODUCTION

ing Mechanism and does not specify the semantics of the Egress Specification beyond
what is mentioned above. Currently they are defined in target specific input to the
compiler and exposed in conjunction with other interfaces that provide run time sys-
tem management and configuration. Future versions of P4 may expose configuration
of these mechanisms allowing consistent management of such resources from the P4
program.

1.2 The mTag Example

The original P4 paper [1] includes an example called mTag. We use this example through-
out this specification as a means of explaining the basic language features as they are
presented. Complete source for this example, including sample run time APIs, is avail-
able at the P4 web site [2].

We give an overview of the mTag example here. Quoting from the original paper:

Consider an example L2 network deployment with top-of-rack (ToR) switches
at the edge connected by a two-tier core. We will assume the number of
end-hosts is growing and the core L2 tables are overflowing. . . . P4 lets us
express a custom solution with minimal changes to the network architec-
ture. . . . The routes through the core are encoded by a 32-bit tag composed
of four single-byte fields. The 32-bit tag can carry a "source route".... Each
core switch need only examine one byte of the tag and switch on that infor-
mation. [1]

Two P4 programs are defined for this example: One for edge switches (called "ToR"
above) and one for aggregation switches (called "core switches" above). These two pro-
grams share definitions for packet headers, the parser and actions.

1.3 Specification Conventions

This document represents P4 grammatical constructs using BNF with the following
conventions:

• The BNF is presented in green boxes.

• Non-terminal nodes are indicated with bold.

• A node with a name ending in _name is implicitly a string whose first character is
a letter (not a digit).

• Nodes followed by + indicate one or more instances.

• Nodes followed by * indicate zero or more instances.

• A vertical bar, |, separates options from which exactly one must be selected.

7

2 STRUCTURE OF THE P4 LANGUAGE

• Square brackets, [], are used to group nodes. A group is optional unless it is fol-
lowed by +. A group may be followed by * indicating zero or more instances of the
group.

• Symbols with special significance (e.g., [] * + |) may be used as terminal nodes
by enclosing them in quotes: for example "*".

• Symbols other than those listed above are literals. Examples include curly braces,
colon, semi-colon, parentheses, and comma.

• If a rule does not fit on one line, a new line immediately follows ::= and the de-
scription ends with a blank line.

• Example P4 code appears in blue boxes

• Example code in a language other than P4 appears in beige boxes

Header types and table definitions are specified declaratively. These typically consist of
a set of attribute/value pairs separated by a colon.

Parsers, actions and control flow are specified imperatively with typed parameters (if
any) and a limited set of operations.

2 Structure of the P4 Language

2.1 Abstractions

P4 provides the following top-level abstractions:

• Base types: Integers and bitstrings with arbitrary widths.

• Headers:

– Header types: A specification of fields within a header.

– Header instances: A specific instance of a packet header or metadata.

• Parser state function: Defines how headers are identified within a packet.

• Action function: A composition of primitive actions that are to be applied to-
gether.

• Table instance: Specified by the fields to match and the permitted actions.

• Control flow function: Imperative description of the table application order.

• Stateful memories: Counters, meters and registers which persist across packets.

• Extern:

8

2.2 Value Specifications 2 STRUCTURE OF THE P4 LANGUAGE

– Extern types: An object type provided by a standard library or target provider
which can perform functionality not otherwise expressible in P4.

– Extern instances: A specific instance of an extern type.

In addition to these high level abstractions, the following are used

• For a header instance:

– Metadata: Per-packet state which may not be derived from packet data.
Otherwise treated the same as a packet header.

– Header stack: a contiguous array of header instances.

– Dependent fields: Fields whose values depend on a calculation applied to
other fields or constants.

• For a parser:

– Value set: run-time updatable values used to determine parse state transi-
tions.

– Checksum calculations: The ability to apply a function to a set of bytes from
the packet and test that a field matches the calculation.

2.2 Value Specifications

P4 supports generic and bit-width specific values. These are unified through the fol-
lowing representation.

const_value ::=

bool_value |

["+" | -] [width_spec] unsigned_value

unsigned_value ::=

binary_value |

decimal_value |

hexadecimal_value

bool_value ::= true | false

binary_value ::= binary_base binary_digit+
decimal_value ::= decimal_digit+
hexadecimal_value ::= hexadecimal_base hexadecimal_digit+

binary_base ::= 0b | 0B

hexadecimal_base ::= 0x | 0X

9

2.2 Value Specifications 2 STRUCTURE OF THE P4 LANGUAGE

binary_digit ::= _ | 0 | 1

decimal_digit ::= binary_digit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

hexadecimal_digit ::=

decimal_digit | a | A | b | B | c | C | d | D | e | E | f | F

width_spec ::=

decimal_digit+ w |

decimal_digit+ s

field_value ::= const_value

The width specification is followed by a letter w or s depending on the sign of the value.
The width must be specified in decimal.

Note that constants always start with a digit to distinguish them from other identi-
fiers.

The node const_value may be read as ’constant value’. The node field_value is used
in this specification to emphasize that the width of the representation may be relevant;
otherwise it is a synonym for const_value.

Whitespace terminates a constant specification.

Underscores are permitted in values to add clarity by grouping digits; they are ignored
otherwise. Examples include: 78_256_803 (replacing commas in decimal representa-
tion) or 0b1101_1110_0101 (grouping bits into nibbles or bytes in binary representa-
tion).

Negative numbers are represented in two’s complement. See Section 2.4 for the P4 typ-
ing rules.

Here are some example values.

Notation Decimal Value Bit Width Notes
42 42 6 Default base is decimal
16w42 42 16 The same value, but explicitly given a width

of 16 bits.
0b101010 42 6 Binary representation of 42
12w0x100 256 12 Example of bit width and hexadecimal base

indication.
7w0b1 1 7 Binary value specified with explicit width
-0B101 -5 4

Table 1: Value Representation Examples

10

2.3 Types and declarations 2 STRUCTURE OF THE P4 LANGUAGE

2.3 Types and declarations

A P4 program consists of concrete declarations of the abstractions listed in Section 2.1.

Object declarations occur at the top-level of the program; declarations cannot happen
conditionally, such as inside a specific parse state or branch of a control flow. Declara-
tions consist of a type, as specified in the grammar below, followed by a unique identi-
fier and an object body. The exact format of the body depends on the object type, and
is described in more detail for each type throughout this document.

The order that objects are declared in does not matter, and objects can reference other
objects that were declared before them in the code.

In general each P4 level declaration has its own namespace, though potential ambigui-
ties are identified in the spec.

P4 types generally consist of the kind of abstraction, followed by the specific type name.

type_spec ::=

header [header_type_name] |

metadata [header_type_name] |

field_list |

field_list_calculation |

parser |

parser_exception |

parser_value_set |

counter |

meter |

register |

action |

action_profile |

table |

control |

extern [extern_type_name] |

data_type

data_type ::=

bit |

bit < decimal_digit+ > |

varbit < decimal_digit+ > |

int < decimal_digit+ >

P4 actions consist of signatures which look like the typed parameter lists of traditional

11

2.4 P4 data types 2 STRUCTURE OF THE P4 LANGUAGE

programming languages. The types of the parameters in these signatures must be one
of the above.

Section 2.4 explains the details of data_type. The bit type represents a bitstring of the
length specified within angle brackets (a compile time constant). If the angle brackets
are omitted, the length is implied to be 1. Most of the data processed by P4 is stored in a
bitstring of some sort, as described in Section 2.4. The varbit type represents a bitstring
with a length that is variable at run time, but at most the length specified within angle
brackets (again, a compile time constant). This data type is used for quickly parsing
through variable-length headers and does not currently have utility beyond that. More
functionality may be added for this type in subsequent versions of P4 (such as the ability
to read it from a match+action pipeline). The int type represetns a fixed-width signed
integer

Types which are followed by an optional identifier like header can be used in two ways:

• "header foo" refers to a header instance specifically of header_type foo

• "header" without an identifier refers to any header instance, of any type.

2.4 P4 data types

P4 is a strongly-typed language; all values are statically typed. Programs that do not
pass type-checking are invalid.

P4 supports several base types and allows the construction of derived types. This sec-
tion discusses only the following base types: Booleans and types for representing inte-
gers (bitstrings).

2.4.1 Principles

The typing rules for the integer types are chosen according to the following princi-
ples:

Inspired from C: Typing of integers is modeled after the well-defined parts of C, ex-
panded to cope with arbitrary fixed-width integers. In particular, the type of the
result of an expression only depends on the expression operands, and not on how
the result of the expression is consumed.

No undefined behaviors: P4 attempts to remedy the undefined C behaviors. Unfortu-
nately C has many undefined behaviors, including specifying the size of an inte-
ger (int), results produced on overflow, and results for some arguments values
(e.g., shifts with negative amounts, division of negative numbers, overflows on
signed numbers, etc.). In contrast, P4 computations on integer types have no un-
defined behaviors.

12

2.4 P4 data types 2 STRUCTURE OF THE P4 LANGUAGE

Least surprise: The P4 typing rules are chosen to behave as closely as possible to tra-
ditional well-behaved C programs.

Forbid rather than surprise: Rather than provide surprising or undefined results (e.g.,
in C comparisons between signed and unsigned integers), we have chosen to for-
bid expressions with ambiguous interpretations. For example, P4 does not allow
binary operations that combine signed and unsigned integers.

The priority of arithmetic operations is also chosen similar to C (e.g., multiplication
binds stronger than addition).

2.4.2 Base types

The P4 base types are shown in Table 2.

Type Description Example Section
bool Boolean values bool 2.4.5
bit<W> Fixed-width unsigned integers of an

arbitrary width W

bit<20> 2.4.6

int<W> Fixed-width signed integers of an ar-
bitrary width W , represented using
two’s complement

int<33> 2.4.7

varbit<W> Bit-strings of dynamically-computed
width (also called varbits) with a
maximum width W

varbit<1024> 2.4.8

int Infinite-precision integer constant
values

int 2.4.9

Table 2: Base P4 Types

Values can be converted to a different type by using casts. The range of casts available
is intentionally restricted. There are very few implicit casts. Most binary operations
require both operands to be of the same type. No operations produce runtime excep-
tions.

2.4.3 Portability

No P4 target can support all possible types and operations. For example, the following
type is legal in P4: bit<23132312>. Hence, each target can impose restrictions on the
values it can support. Such restrictions may include:

• The maximum width supported

13

2.4 P4 data types 2 STRUCTURE OF THE P4 LANGUAGE

• Alignment and padding constraints (e.g., arithmetic may only be supported on
widths which are an integral number of bytes).

• Constraints on some operands (e.g., some architectures may only support multi-
plications with small constants, or shifts with small values).

Target-specific documentation should describe such restrictions, and target-specific
compilers should provide clear error messages when such restrictions are encountered.
An architecture may reject a well-typed P4 program and still be conformant to the P4
spec. However, if an architecture accepts a P4 program as valid, the runtime program
behavior should match this specification.

2.4.4 No saturated types

P4 does not support saturated integer types for the following reasons:

• Saturated types are unlikely to be portable.

• The semantics of many operations on saturated types may be open for debate.

• Most operations may be unnecessary on saturated types (addition, subtraction
and multiplication seem to be the most frequent ones).

• Finally, saturated arithmetic can be implemented by using P4 v1.1 extern cus-
tom constructs that operate on bitstrings rather than by built-in arithmetic op-
erators. For example, an architecture could provide an extern saturated_alu

whose methods operate on unsigned bitstrings but perform saturated operations.

2.4.5 Boolean

The Boolean type contains two values, false and true. The type is written as bool.
Operations on Boolean values are described in Section 2.5.1. Booleans are not inte-
gers.

2.4.6 Unsigned integers (bit-strings)

An unsigned integer (which we also call a “bit-string”) has an arbitrary width, expressed
in bits. A bit-string of width W is declared as: bit<W>. W must be a compile-time constant
value evaluating to a positive integer greater than 0.

14

2.4 P4 data types 2 STRUCTURE OF THE P4 LANGUAGE

Bits within a bit-string are numbered from 0 to W-1. Bit 0 is the least significant, and bit
W-1 is the most significant1.

For example, the type bit<128> denotes the type of bit-string values with 128 bits num-
bered from 0 to 127, where bit 127 is the most significant.

The type bit is a shorthand for bit<1>.

P4 target architectures may impose additional compile-time or runtime constraints on
bit types: for example, they may limit the maximum size, or they may only support
some arithmetic operations on certain sizes (e.g., 16-, 32- and 64- bit values).

All operations that can be performed on unsigned integers are described in Section 2.5.2.

2.4.7 Signed Integers

Signed integers are represented using 2’s complement. An integer with W bits is declared
as: int<W>. W must be a compile-time constant value evaluating to a positive integer
greater than 0.

Bits within an integer are numbered from 0 to W-1. Bit 0 is the least significant, and bit
W-1 is the sign bit.

For example, the type int<64> describes the type of integers represented using exactly
64 bits.

There are no constraints of the value of W , but specific targets may impose limits.

All operations that can be performed on signed integers are described in Section 2.5.3.

2.4.8 Dynamically-sized bit-strings

Some network protocols use fields whose size is only known at runtime (e.g., IPv4 op-
tions). To support restricted manipulations of such values, P4 provides a special bit-
string type whose size is set at runtime, called a varbit.

varbit<W> denotes a bit-string with a width of at most W bits, where W is a compile-
time constant value evaluating to a positive integer. For example, the type varbit<120>
denotes the type of bit-string values that may have between 0 and 120 bits. Most oper-
ations that are applicable to fixed-size bit-strings (unsigned numbers) cannot be per-
formed on dynamically sized bit-strings.

1No P4 operation currently depends on the bit numbering within an integer, but future language
additions may.

15

2.4 P4 data types 2 STRUCTURE OF THE P4 LANGUAGE

P4 target architectures may impose additional compile-time or runtime constraints
on varbit types: for example, they may limit the maximum size, or they may require
varbit values to always contain an integer number of bytes at runtime.

All operations that can be performed on dynamically-sized bitstrings are described in
Section 2.5.5.

2.4.9 Infinite-precision integers

The infinite-precision datatype describes integers with an unlimited precision. This
type is written as int. This type is reserved for compile-time integer literals only. No
P4 run-time value can have an int type; at compile time the compiler will convert all
int values that have a runtime component to fixed-width types, according to the rules
described below.

All operations that can be performed on infinite-precision integers are described in Sec-
tion 2.5.6.

2.4.10 Integer literal types

As described in Section 2.2, there are three types of integer literals (constants):

• A simple integer constant has type int.

• A simple positive integer can be prefixed with a width and the character ’w’ (no
spaces) to indicate an unsigned integer with the specified width in bits.

• A simple integer (positive or negative) can be prefixed with a width and the char-
acter ’s’ (no spaces) to indicate a signed integer with the specified width in bits.

Table 3 shows several examples of integer literals and their types.

Literal Interpretation
10 Type is int, value is 10.
-10 Type is int, value is -10.

8w10 Type is bit<8>, value is 10.
-8w10 Illegal: negative unsigned number.
8s10 Type is int<8>, value is 10.
-8s10 Type is int<8>, value is -10.

2s3 Type is int<2>, value is -1 (last 2 bits), overflow warning.
1w10 Type is bit<1>, value is 0 (last bit), overflow warning.
1s10 Type is int<1>, value is 0 (last bit), overflow warning.

Table 3: Integer literals and their types.

16

2.5 Base type operations 2 STRUCTURE OF THE P4 LANGUAGE

2.5 Base type operations

This section describes all legal operations that can be performed on base types. For
each operation we describe the input operand types and the result type.

2.5.1 Computations on Boolean values

Note: In C binary Boolean operations are performed using short-circuit evaluation,
where the second operand is only evaluated if necessary. This is important only if the
evaluation of an operand can produce side-effects. Currently there are no operations in
P4 that produce side-effects. In consequence, there is no semantic difference between
short-circuit and full evaluation. If the P4 language is extended in the future to encom-
pass operations with side-effects, the semantics of Boolean operations may have to be
revisited.

Table 4 describes all operations available on Boolean values.

Operation Description
and2 Binary associative operation; both operands must be Boolean; result

is Boolean.
or3 Binary associative operation; both operands must be Boolean; result

is Boolean.
not4 Unary operation; operand is Boolean, result is Boolean.
==, != Test for equality/inequality; result is Boolean.

Table 4: Boolean operations

In addition, all comparison operations (==, !=, >, <, <=, >=), described below, produce as
results Boolean values.

There are no implicit casts from bit-strings to Booleans or vice-versa. In consequence,
a C program fragment such as:
if (x) ...

(for x an integer base type) must be written in P4 as:
if (x != 0) ...

(see also the discussion on infinite-precision types and implicit casts 2.6.2 for how the
0 in this expression is evaluated).

2We propose replacing the keyword and with the equivalent C operator && in a future P4 revision.
3We propose replacing the keyword or with the equivalent C operator || in a future P4 revision.
4We propose replacing the keyword not with the equivalent C operator ! in a future P4 revision.

17

2.5 Base type operations 2 STRUCTURE OF THE P4 LANGUAGE

2.5.2 Operations on unsigned fixed-width integers

This section discusses all operations that can be performed on values with bit<W> types.

Operations “wrap-around”, similar to C operations on unsigned values (i.e., represent-
ing a large value on W bits will only keep the least-significant W bits of the value). There
are no arithmetic exceptions; the runtime result of an arithmetic operation is defined
for all combinations of input arguments.

All binary operations (except shifts) require both operands to have the same exact type
and width; supplying operands with different widths produces a compile-time error. No
implicit casts are inserted by the compiler to equalize the widths. There are no binary
operations that combine signed and unsigned values (except shifts).

Table 5 shows all operations available on unsigned values.

There is no unsigned integer division operator.

2.5.3 Operations on signed fixed-width integers

This section discusses all operations that can be performed on int<W> types. An int<W>
type is a signed integer with W bits represented using 2’s complement.

“Underflow” or “overflow” produced by arithmetic cannot be detected: operations “wrap-
around”, similar to C operations on unsigned values (i.e., representing a large value on W

bits will only keep the least-significant W bits of the value)5. There are no arithmetic ex-
ceptions; the runtime result of an arithmetic operation is defined for all combinations
of input arguments.

All binary operations (except shifts) require both operands to have the same exact type
(signedness) and width; supplying operands with different widths or signedness pro-
duces a compile-time error. No implicit casts are inserted by the compiler to equalize
the widths. there are no binary operations that combine signed and unsigned values
(except shifts).

Table 6 shows all operations available on signed values. Note that bitwise operations
are well-defined, since the representation is mandated to be 2’s complement. There is
no signed integer division operator.

5Note that C does not define the result of operations that overflow when computing on signed values,
whereas P4 does.

18

2.5 Base type operations 2 STRUCTURE OF THE P4 LANGUAGE

Operation Description
==, != Test for equality/inequality. Both operands must have the same

width. The result is a Boolean value.
<, >, <=, >= Unsigned comparisons. Both operands must have the same width.

The result is a Boolean value.
&, |, ^ Bitwise operations; both operands must have the same width; result

is unsigned and has the same width.
˜ Result is unsigned and has the same width as the input. Bitwise com-

plement.
<<, >> Left operand is unsigned, right operand must be either an unsigned

number or a non-negative constant integer. The result has the same
type as the left operand. These perform logical shifts (fill with zero.)
Shifts with an amount greater or equal to the width of the input pro-
duce a result with all bits zero.

+ (unary) Unary plus sign; behaves as a no-op.
- (unary) Unary negation; the result is computed by by subtracting its value

from 2W . The result is always unsigned and it has the same width as
the input. The semantics is the same as the C negation of unsigned
numbers.

+ (binary) Binary addition; associative. Both operands must have the same type;
result has the same type. Result is computed by truncating the result
of the mathematical addition to the width of the output (similar to C).

- (binary) Binary subtraction; associative. Both operands must have the same
type; result is unsigned, and has the same type. Result is computed
by adding the negation of the second operand (similar to C).

* Binary unsigned multiplication; associative. Both inputs must have
the same width; result has the same width as the inputs, and is un-
signed. P4 targets may impose additional restrictions (e.g., may re-
quire one of the operands to be a compile-time constant value, or
only allow multiplications with powers of two).

Table 5: Operations on unsigned values.

2.5.4 A note about shifts

Shifts (on signed and unsigned values) deserve a special discussion for the following
reasons:

• As in C, right shift behaves differently for signed and unsigned values: right shift
for signed values is an arithmetic shift.

• Shifting with a negative amount does not have a clear semantics: while in C the
result is undefined, in P4 the type system makes it illegal to shift with a negative

19

2.5 Base type operations 2 STRUCTURE OF THE P4 LANGUAGE

Operation Description
==, != Test for equality/inequality. Both operands must have the same

width. The result is a Boolean value.
<, >, <=, >= Signed comparisons. Both operands must have the same width. The

result is a Boolean value.
&, |, ^ Bitwise operations; both operands must have the same width; result

is signed and has the same width.
˜ Result is signed and has the same width as the input. Bitwise comple-

ment.
<<, >> Left operand is signed, right operand must be either an unsigned

number or a non-negative constant integer. The result has the same
type as the left operand. These perform arithmetic shifts. Shifts with
an amount greater or equal to the width of the input are allowed.

+ (unary) Unary plus sign; behaves as a no-op.
- (unary) Unary negation; the result is signed and it has the same width as the

input.
+ (binary) Binary addition; associative. Both operands must have the same type;

result has the same type.
- (binary) Binary subtraction; associative. Both operands must have the same

type; result is signed, and has the same type.

* Binary signed multiplication; associative. Both inputs must have the
same width; result has the same width as the inputs, and is signed.
P4 targets may impose additional restrictions (e.g., may require one
of the operands to be a compile-time constant value, or only allow
multiplications with powers of two).

Table 6: Operations on signed values.

amount.

• In C, shifting with an amount larger or equal to the number of bits has an unde-
fined result (unlike our definition).

• Finally, shifting may require doing work which is exponential in the number of
bits of the right-hand-side operand. Consider the following examples:

bit<8> x;

bit<16> y;

... y << x ...

... y << 1024 ...

Unlike C, P4 gives a precise meaning shifting with an amount larger than the size
of the shifted value.

20

2.5 Base type operations 2 STRUCTURE OF THE P4 LANGUAGE

Due to these reasons, P4 targets may impose additional restrictions to shift operations:

• Targets may reject shifts by non-constant amounts.

• Targets may reject shifts with large non-constant amounts. For example, a target
may forbid shifting an 8-bit value by a value wider than 3 bits.

2.5.5 varbit operations

The type varbit<W> denotes variable-size bitstrings with a maximum static width of W
bits. Such a bit-string has a dynamic width, which must be smaller or equal than W .
Prior to initialization a varbit has a dynamic width of 0. Varbits support the following
operation:

• Parser extraction into a varbit. This operation sets the dynamic width of the value.
The extracted value must be shorter than the static width W .

There are no arithmetic, comparisons, bit-wise, or bit extraction operators on varbits.
If these are desired, varbit types should not be used.

2.5.6 Operations on arbitrary-precision integers

The type int denotes integer values on which computations are performed with arbi-
trary precision. Table 7 shows all operations that are defined for int values. The only
values that can have the type int are compile-time constants.

All the operands that participate in an operation must have type int; binary operations
(except shift) cannot combine int values with fixed-width types. For such expressions
the compiler will always insert an implicit cast; this cast will always convert the int
value to the fixed-width type.

All computations on int values are carried without information loss. For example, mul-
tiplying two 1024-bit values may produce a 2048-bit value (note that concrete repre-
sentation of int values is not specified). Casting an int value to a fixed-width type will
preserve the least-significant bits. If the truncation causes significant bits to be lost, the
compiler should emit a suitable warning.

Note: bitwise-operations (|, &, ^, ˜) are not defined for int values. Division and modulo
are illegal for negative values (the C language does not give a clear semantics to division
of signed integers when values are negative).

21

2.6 Casts 2 STRUCTURE OF THE P4 LANGUAGE

Operation Description
==, != Test for equality/inequality. Both operands must be ints. The result

is a Boolean value.
<, >, <=, >= Signed comparisons. Both operands must be ints. The result is a

Boolean value.
<<, >> Right operand must be a positive int. The result has the same type

as the left operand. a << b is a ×2b . a » b is ba/2bc (expressed using
real-number division).

+ (unary) Unary plus sign; behaves as a no-op.
- (unary) Unary negation; the result is an int; no information is lost in nega-

tion.
+ (binary) Binary addition; associative. Both operands must be int; result is int,

and no information is lost in addition (no overflow).
- (binary) Binary subtraction; associative. Both operands must be int; result is

int; no information is lost in subtraction (no overflow).

* Binary signed multiplication; associative. Both inputs must be int;
result is int. No overflow occurs.

/, % Binary signed division and modulo. Both inputs must be positive int
values; result is a positive int value.

Table 7: Operations on arbitrary-precision constant integers.

2.6 Casts

2.6.1 Explicit casts

P4 supports a very limited range of casts. Most casts must be explicit. Most binary
operations require both operands to have the exact same type. Some type conversions
may require multiple chained casts. While more onerous for the user, this approach has
several benefits:

• Makes user intent unambiguous.

• Makes the conversion cost explicit. Some casts involve sign-extensions, and thus
require significant computational resources.

• Reduces the number of cases that have to be considered in the P4 specification.

A cast expression is written as in C, (typeRef)exp, where typeRef is a reference to a type
(e.g., a type name).

All legal casts are shown in table 8.

22

2.6 Casts 2 STRUCTURE OF THE P4 LANGUAGE

From To Description
bit<1> bool 0 is false, 1 is true
bool bit<1> reverse of the above
bit<W> int<W> Preserves all bits unchanged
int<W> bit<W> Preserves all bits unchanged
bit<W> bit<W1> if W≥ W1 this keeps least-significant W1 bits, if W< W1 this causes exten-

sion with zero bits
int<W> int<W1> if W≥ W1 this keeps least-significant W1 bits, if W< W1 this causes exten-

sion with the sign bits
int bit<W> Represents the integer value using two’s complement on a large

enough number of bits and keeps the least-significant W bits; overflow
should lead to a warning, including conversion of a negative number

int int<W> Represents the integer value using two’s complement on a large
enough number of bits and keeps the least-significant W bits; over-
flow should lead to a warning

Table 8: Legal P4 casts.

2.6.2 Implicit casts

Unlike C, P4 allows a very limited number of implicit casts. The reason is that often
the implicit casts have a non-trivial semantics, which is invisible for the programmer.
Implicit casts are allowed in P4 only when their meaning is completely unambigu-
ous:

• To convert an int value to a fixed-width type.

• In assignments (including passing arguments to method calls), when RHS has a
different type from LHS.

Most binary operations that take an int and a fixed-width operand will insert an im-
plicit cast to convert the int operand to the type of the fixed-width operand.

Consider a program with the following values:

bit<8> x;

bit<16> y;

int<8> z;

Table 9 shows how implicit casts are inserted by the compiler:

23

2.6 Casts 2 STRUCTURE OF THE P4 LANGUAGE

Expression Implementation
x+1 x+(bit<8>)1
z<0 z<(int<8>)0
x<<13 0; overflow warning
x|0xFFF x|(bit<8>)0xFFF; overflow warning

Table 9: Examples of implicit casts.

2.6.3 Illegal expressions

Consider a program with the following values:

bit<8> x;

bit<16> y;

int<8> z;

Table 10 shows several expressions which are illegal because they do not obey the P4
typing rules. For each expression we provide several ways that the expression could
be manually rewritten into a legal expression. Note that for some expression there are
several legal alternatives, which may produce different results!

Expression Why is it illegal Alternatives
x+y Different widths (bit<16>)x+y or

x+(bit<8>)y

x+z Different signs (int<8>)x+z or
x+(bit<8>)z

(int<8>)y Cannot change both size and width (int<8>)(bit<8>)y or
(int<8>)(int<16>)y

y+z Different widths and signs (int<8>)(bit<8>)y+z or
y+(bit<16>)(bit<8>)z or
(bit<8>)y+(bit<8>)z or
(int<16>)y+(int<16>)z

x<<z RHS of shift cannot be signed x<<(bit<8>)z

x<z Different signs x<(bit<8>)z or
(int<8>)x<z

1<<x Width of 1 unknown ((bit<32>)1)<<x or
32w1<<x

˜1 Bitwise operation on int ˜32w1

5&-3 Bitwise operation on int 32w5&-3

Table 10: Illegal P4 expressions.

24

2.7 References 2 STRUCTURE OF THE P4 LANGUAGE

2.7 References

Concrete instances of the above types are referenced via their instance names. P4 is
lexically scoped.

object_ref ::=

instance_name |

header_ref |

field_ref

The terminal instance_name refers to any named object, while header and field refer-
ences are handled specially as described in Section 3.3.

2.8 Expressions

Various language constructs can contain expressions built out of these object refer-
ences.

general_expr ::=

bool_expr | arith_expr | const_expr | object_ref

bool_expr ::=

valid (object_ref) | bool_expr bool_op bool_expr |

not bool_expr | (bool_expr) | arith_expr rel_op arith_expr |

bool_value

arith_expr ::=

object_ref | const_value |

max (arith_expr , arith_expr) | min (arith_expr , arith_expr) |

(arith_expr) | arith_expr bin_op arith_expr | un_op arith_expr |

(data_type) arith_expr

const_expr ::= const_value |

max (const_expr , const_expr) | min (const_expr, const_expr) |

(const_expr) | const_expr bin_op const_expr | un_op const_expr

bin_op ::= "+" | "*" | - | << | >> | & | "|" | ^

un_op ::= ~ | -

bool_op ::= or | and

rel_op ::= > | >= | == | <= | < | !=

25

2.9 Pragma 3 HEADERS AND FIELDS

Operator precedence and associativity follows C programming conventions.

The min and max functions return whatever is the smaller or larger of their two argu-
ments, respectively, or the first argument if the two compare equally.

2.9 Pragma

A P4 program may make use of directives for compilers. The specific meanings of any
directives are compiler specific and target specific, which are beyond the scope of this
specification. The P4 grammar that enables this feature is as follows. pragma_text is
any string or strings up to the end of the line.

p4_pragma ::= @pragma pragma_name pragma_text

3 Headers and Fields

3.1 Header Type Declarations

Header types describe the layout of fields and provide names for referencing informa-
tion. Header types are used to declare header and metadata instances. These are dis-
cussed in the next section.

Header types are specified declaratively according to the following BNF:

header_type_declaration ::=

header_type header_type_name { header_dec_body }

header_dec_body ::=

fields { field_dec * }

[length : length_exp ;]

field_dec ::= data_type field_name ;

length_bin_op ::= "+" | - | "*" | << | >>

length_exp ::=

const_expr |

field_name |

length_exp length_bin_op length_exp |

(length_exp)

Header types are defined with the following conventions.

26

3.1 Header Type Declarations 3 HEADERS AND FIELDS

• Header types must have a fields attribute.

– The list of individual fields is ordered.

– Fields must be either of type bit or varbit.

– The bit offset of a field from the start of the header is determined by the sum
of the widths of the fields preceding it in the list.

– Bytes are ordered sequentially (from the packet ordering).

– Bits are ordered within bytes by most-significant-bit first. Thus, if the first
field listed in a header has a bit width of 1, it is the high order bit of the first
byte in that header.

– All bits in the header must be allocated to some field.

– One field at most within a header type may be of type varbit, which indicates
it is of variable length.

• If all fields are fixed width (no fields of type varbit) then the header is said to be of
fixed length. Otherwise it is of variable length.

• A header length in bits must be a multiple of eight. In other words, a header can
have only a natural number of bytes.

• The length attribute specifies an expression whose evaluation gives the length of
the header in bytes for variable length headers.

– It must be present if the header has variable length (some field has type var-
bit).

– A compiler warning must be generated if it is present for a fixed length header.

– Fields referenced in the length attribute must be located before the variable
length field.

• If, at run time, the calculated length results in more data extracted to the varbit
than its declared maximum length a parser exception is triggered. See Section 5.6.

• Operator precedence and associativity follows C programming conventions.

An example declaration for a VLAN header (802.1Q) is:

header_type vlan_t {

fields {

bit<3> pcp;

bit cfi;

bit<12> vid;

bit<16> ethertype;

27

3.1 Header Type Declarations 3 HEADERS AND FIELDS

}

}

Metadata header types are declared with the same syntax.

header_type packet_metadata_t {

fields {

bit<16> ingress_port; // The port on which the packet arrived.

bit<16> length; // The number of bytes in the packet.

// For Ethernet, does not include the CRC.

// Cannot be used if the switch is in

// ’cut-through’ mode.

bit<8> type; // Represents the type of instance of

// the packet:

// - PACKET_TYPE_NORMAL

// - PACKET_TYPE_INGRESS_CLONE

// - PACKET_TYPE_EGRESS_CLONE

// - PACKET_TYPE_RECIRCULATED

// Specific compilers will provide macros

// to give the above identifiers the

// appropriate values

}

}

P4 supports variable-length packet headers via fields of type varbit. The width of such
a field is inferred from the total header length (which is in bytes) as indicated by the
length attribute: ((8 * length) - sum-of-fixed-width-fields). Only one field at
most within a header may specify a field of type varbit.

An example of a variable-width header is IPv4 with options:

header_type ipv4_t {

fields {

bit<4> version;

bit<4> ihl;

bit<8> diffserv;

bit<16> totalLen;

bit<16> identification;

bit<3> flags;

bit<13> fragOffset;

bit<8> ttl;

28

3.2 Header and Metadata Instances 3 HEADERS AND FIELDS

bit<8> protocol;

bit<16> hdrChecksum;

bit<32> srcAddr;

bit<32> dstAddr;

varbit<320> options;

}

length : ihl * 4;

}

This header can be parsed and manipulated the same way fixed-length headers are,
with the exception that there are no language facilities to read or write data in the op-
tions field.

3.2 Header and Metadata Instances

While a header type declaration defines a header type, a packet may contain multiple
instances of a given type. P4 requires each header instance to be declared explicitly
prior to being referenced.

There are two sorts of header instances: packet headers and metadata. Usually, packet
headers are identified from the packet as it arrives at ingress while metadata holds in-
formation about the packet that is not normally represented by the packet data such as
ingress port or a time stamp.

Most metadata is simply per-packet state used like scratch memory while processing
a packet. However, some metadata may have special significance to the operation of
the forwarding element. For example, the queuing system may interpret the value of a
particular metadata field when choosing a queue for a packet. P4 acknowledges these
target specific semantics, but does not attempt to represent them.

Packet headers (declared with the header keyword) and metadata (declared with the
metadata keyword) differ only in their validity. Packet headers maintain a separate valid
indication which may be tested explicitly. Metadata is always considered to be valid.
This is further explained in Section 3.2.1. Metadata instances are initialized to 0 by
default, but initial values may be specified in their declaration.

The BNF for header and metadata instances is:

header_instance_declaration ::= header_instance | metadata_instance
header_instance ::= scalar_instance | array_instance
scalar_instance ::= header header_type_name instance_name ;

array_instance ::=

header header_type_name

instance_name "[" const_expr "]" ;

29

3.2 Header and Metadata Instances 3 HEADERS AND FIELDS

metadata_instance ::=

metadata header_type_name

instance_name [metadata_initializer] | ;

metadata_initializer ::= { [field_name : field_value ;] + }

Some notes:

• Only packet headers (not metadata instances) may be arrays (header stacks).

• header_type_name must be the name of a declared header type.

• Metadata instances may not be declared with variable length header types.

• The fields named in the initializer must be from the header type’s fields list.

• If an initializer is present, the named fields are initialized to the indicated values;
unspecified values are initialized to 0.

• The total length of all fields in a header instance must be an integral number of
bytes. The compiler may produce an error or insert padding at the end of the
header to resolve this issue.

• Only packet headers (not metadata instances) may be arrays (header stacks).

For example:

header vlan_t inner_vlan_tag;

This indicates that space should be allocated in the Parsed Representation of the packet
for a vlan_theader. It may be referenced during parsing and match+action by the name
inner_vlan_tag.

A metadata example is:

metadata global_metadata_t global_metadata;

This indicates that an global_metadata_t type object called global_metadata should
be allocated for reference during match+action.

3.2.1 Testing if Header and Metadata Instances are Valid

Packet headers and their fields may be checked for being valid (that is, having a defined
value). Validity and deparsing (see Section 6) are the only points where packet headers
and metadata headers differ.

30

3.2 Header and Metadata Instances 3 HEADERS AND FIELDS

A header instance, declared with the keyword header, is valid if it is extracted during
parsing (see Section 5) or if an action makes it valid (add or copy). A field (inside a
header instance) is valid if its parent header instance is valid.

All fields in a metadata instance are always valid. Testing a metadata field for validity
should raise a compiler warning and will always evaluate to True.

Explanation: The reason for this is best seen by examining the case
of a "flag"; for example, suppose a one bit metadata flag is used to
indicate that a packet has some attribute (say, is an IP packet, v4 or
v6). There is no practical difference between the flag having a value
of 0 and the flag itself being invalid. Similarly, many "index" meta-
data fields can be given a reserved value to indicate they are invalid
(hence support for initial values of metadata fields). While occasion-
ally it would be useful to have an independent valid bit for a metadata
field, defining a separate metadata flag to represent that field’s validity
is a reasonable work around.

Only valid packet header fields may result in a match (when a value is specified for
exact or ternary matches against the field), although a match operation may explicitly
check if a header instance (or field) is valid. Only valid packet headers are considered
for deparsing (see Section 6).

3.2.2 Header Stacks

P4 supports the notion of a header stack which is a sequence of adjacent headers of the
same type. MPLS and VLAN tags are examples that might be treated this way. Header
stacks are declared as arrays as shown in Section 3.2, and are of fixed length. Adding or
removing elements from the stack does not change the number of headers in the array
- it just changes the number of valid headers in the array.

Header stack instances are referenced using bracket notation and such references are
equivalent to a non-stack instance reference. Each element in the stack has its own
validity bit. The following special indices can be used to reference variable locations in
the stack:

• last: The largest-index element that is valid. Used primarily to refer the higher-
indexed end of the stack in match+action.

• next: The smallest-index element that is invalid. Used primarily for parsing header
data into a stack in a loop.

The special primitive actions push() and pop() are used to add and remove headers
from the stack inside a match+action table. See Section 10.1 for more details.

31

3.3 Header and Field References 3 HEADERS AND FIELDS

3.3 Header and Field References

For match, action and control flow specifications, we need to make references to header
instances and their fields. Headers are referenced via their instance names. For header
stacks, an index is specified in square brackets. The keyword last can be used as an
index to refer to the largest-index valid instance of a header stack, while next refers to
the smallest-index invalid instance.

Dotted notation is used to refer to a particular field inside of a header instance.

header_ref ::=

header_instance_name | header_instance_name "[" header_ref_index "]"

header_ref_index ::= const_expr | last | next

field_ref ::= header_ref . field_name

For example inner_vlan_tag.vid where inner_vlan_tag has been declared as an in-
stance of header type vlan_tag.

• Field names must be listed in the fields attribute of the header declaration.

• A field reference is always relative to its parent header. This allows the same field
name to be used in different header types without ambiguity.

• Each header instance may be valid or invalid at any given time. This state may be
tested in match+action processing.

• References at run time to a header instance (or one of its fields) which is not valid
results in a special “undefined” value. The implications of this depend on the
context.

3.4 Field Lists

In many cases, it is convenient to specify a sequence of fields. For example, a hash func-
tion may take a sequence of fields as input, or a checksum may be calculated based on
a sequence of fields. P4 allows such declarations. Each entry may be a specific field in-
stance reference, a header instance (which is equivalent to listing all the header’s fields
in order), or a fixed value. Packet headers and metadata may be referenced in a field list.
If a field list contains an invalid field (i.e., if the field’s parent header is invalid) when it is
evaluated (e.g., for hash calculation or checksum generation), then such an evaluation
may lead to an undefined behavior.

field_list_declaration ::=

field_list field_list_name {

32

4 CHECKSUMS AND HASH-VALUE GENERATORS

[field_list_entry ;] *
}

field_list_entry ::=

object_ref | field_value

The objects referenced in a field list must be either header instances, fields, or other
field lists. Recursive field list references are not supported.

4 Checksums and Hash-value generators

Checksums and hash value generators are examples of functions that operate on a
stream of bytes from a packet to produce an integer. These have many applications in
networking. The integer may be used, for example, as an integrity check for a packet or
as a means to generate a pseudo-random value in a given range on a packet-by-packet
or flow-by-flow basis.

P4 provides a means of associating a function with a set of fields and allowing the re-
sulting operation (a map from packets to integers) to be referenced in P4 programs.
These are called field list calculations or calculation objects. P4 does not support the
expression of the algorithm for computing the underlying function, treating these like
primitive actions. A set of known algorithms are identified for convenience.

The resulting functions – a field list calculation maps a packet to an integer – may be
configurable through run time APIs. Targets may vary in their support of these inter-
faces, but typically the seed value of the calculation may be configured, the algorithm
may have configurable parameters (such as the coefficients for a polynomial used in
the calculation) and possibly even the set of fields used may be configured.

The field list may be referenced as a field property for checksums, discussed in Sec-
tion 4.1, or referenced in a primitive action.

field_list_calculation_declaration ::=

field_list_calculation field_list_calculation_name {

input {

[field_list_name ;] +

}

algorithm : stream_function_algorithm_name ;

output_width : const_expr ;

}

33

4.1 Checksums 4 CHECKSUMS AND HASH-VALUE GENERATORS

Run time APIs allow the selection of one of the input field lists to be active at a time.
The first listed name is used as the default.

The output_width value is in bits.

A field instance is excluded from the calculation (i.e., it is treated as if the instance is not
listed in the input list) if the field’s header is not valid.

The algorithm is specified as a string. The following algorithms are defined with the
given names, and targets may support others.

• xor16: Simply the XOR of bytes taken two at a time.

• csum16: See the IPv4 header checksum description in
https://tools.ietf.org/html/rfc791#page-14.

• optional_csum16: See the UDP header checksum description in
https://tools.ietf.org/html/rfc768#page-2.

• crc16: See http://en.wikipedia.org/wiki/Crc16.

• crc32: See http://en.wikipedia.org/wiki/Crc32

• programmable_crc: This algorithm allows the specification of an arbitrary CRC
polynomial. See http://en.wikipedia.org/wiki/Cyclic_redundancy_check.

4.1 Checksums

Some fields, such as the IP checksum, hold the result of a stream calculation. P4 allows
the representation of these dependencies with the calculated field declaration. Calcu-
lated fields matter to the extent they are verified at packet ingress or are updated at
packet egress.

The syntax associates a sequence of update or verify directives to a specific field in-
stance, each of which may have a condition associated with it. The first entry with a
condition satisfied by the packet (or with no condition specified) determines the as-
sociation. This complexity allows the selection of different calculations based on the
packet’s format. For example, the calculation of a TCP checksum may vary slightly
based on whether the packet has an IPv4 or an IPv6 header.

Note that the conditions are evaluated at the point the verify or update operations are
carried out.

Currently only limited conditions are supported.

calculated_field_declaration ::=

calculated_field field_ref { update_verify_spec + }

34

https://tools.ietf.org/html/rfc791#page-14
https://tools.ietf.org/html/rfc768#page-2
http://en.wikipedia.org/wiki/Crc16
http://en.wikipedia.org/wiki/Crc32
http://en.wikipedia.org/wiki/Cyclic_redundancy_check

4.1 Checksums 4 CHECKSUMS AND HASH-VALUE GENERATORS

update_verify_spec ::=

update_or_verify field_list_calculation_name [if_cond] ;

update_or_verify ::= update | verify

if_cond ::= if (calc_bool_cond)

calc_bool_cond ::=

valid (header_ref | field_ref) |

field_ref == field_value

Here is an example declaration. It assumes field_list_calculation declarations for
tcpv4_calc and tcpv6_calc have been given and that ipv4 and ipv6 are packet header
instances.

calculated_field tcp.chksum {

update tcpv4_calc if (valid(ipv4));
update tcpv6_calc if (valid(ipv6));
verify tcpv4_calc if (valid(ipv4));
verify tcpv6_calc if (valid(ipv6));

}

For checksums, the field list calculation is intended to bind the field list and algorithm
to a specific field instance. This declaration indicates that the value stored in field_ref

is expected to be the value calculated by the given field set calculation on the packet.
Note that although this declaration may occur anywhere in the P4 program, the decla-
ration should be placed immediately after the header instance declaration for the field
referenced.

Fields with type varbit cannot be declared as calculated fields.

The verify option indicates that the parser should calculate the expected value and
check if that value is stored in the indicated field. If the value is not equal, then a p4_-

pe_checksum exception is generated; see Section 5.6.1. Standard Parser Exceptions. This
check occurs at the end of parsing and is performed only if field_ref is valid.

The update option indicates that the system should update the value of the field if
changes are made to any fields on which it depends. The update to the field occurs
when the packet is deparsed for egress. If no update clause applies, the field retains its
value from the match+action pipeline.

35

5 PARSER SPECIFICATION

5 Parser Specification

P4 models the parser as a state machine. This can be represented as a parse graph
with each state a node and the state transitions as edges. Figure 2 shows a very simple
example. Note that this figure identifies a header with each state. While P4 supports
this approach, it does not require it. A node in the parse graph may be purely a decision
node and not bound to a particular header instance, or a node may process multiple
headers at once.

Figure 2: Simple Parse Graph and mTag Parse Graph

Here are a few of the P4 parser functions for the mTag parser. The start function calls
ethernet directly.

parser ethernet {

extract(ethernet); // Start with the ethernet header

return select(latest.ethertype) {

0x8100: vlan;

0x800: ipv4;

default: ingress;

}

}

parser vlan {

extract(vlan);

36

5.1 Parsed Representation 5 PARSER SPECIFICATION

return select(latest.ethertype) {

0xaaaa: mtag;

0x800: ipv4;

default: ingress;

}

}

parser mtag {

extract(mtag);
return select(latest.ethertype) {

0x800: ipv4;

default: ingress;

}

}

The reference to ingress terminates parsing and invokes the ingress control flow func-
tion.

5.1 Parsed Representation

The parser produces the representation of the packet on which match+action stages
operate. This is called the Parsed Representation of the packet. It is the set of header
instances which are valid for the packet. The parser produces the initial Parsed Repre-
sentation as described below. Match+action may update the Parsed Representation of
the packet by modifying field values and by changing which header instances are valid;
the latter results in adding and removing headers.

The Parsed Representation holds packet headers as they are updated by match+action.
The original packet data may be maintained for special operations such as cloning, de-
scribed in Section 15.

Metadata is considered part of the Parsed Representation for the packet as it is generally
treated like other packet headers.

5.2 Parser Operation

The parser is fed the packet from the first byte. It maintains a current offset into the
packet which is a pointer to a specific byte in the header. It extracts headers from the
packet at the current offset into per-packet header instances and marks those instances
valid, updating the Parsed Representation of the packet. The parser then moves the cur-
rent offset forward (indicating the next valid byte of the packet to process) and makes a
state transition.

37

5.3 Value Sets 5 PARSER SPECIFICATION

The P4 program may examine metadata in making state transition decisions, though
targets may have limitations on this ability. For example, the ingress port may be used
to determine an initial parser state allowing of different packet formats. Similarly, the
metadata provided by cloning or recirculation can be used to change the parsing be-
havior for such packets; see Section 15.

In P4, each state is represented as a parser function. A parser function may exit in one
of four ways:

• A return statement specifying the name of a parser function is executed. This
parser function is the next state to which the machine must transition.

• A return statement specifying the name of a control function (as described in Sec-
tion 13) is executed. This terminates parsing and begins match-action processing
by calling the indicated control function.

• An explicit parse_error statement executes. See Section 5.6 for more informa-
tion.

• An implicit parser error occurs. These are described in Section 5.6.1.

Note that because of the first two points, parser function names and control function
names share a common namespace. The compiler must raise an error if two such func-
tions have the same name.

A select operation is defined to allow branching to different states depending on ex-
pressions involving fields or packet data.

If headers are to be extracted when entering a state, these are signaled explicitly by calls
to an extract function (defined in 5.5) at the beginning of the parser function definition
(defined in 5.4).

5.3 Value Sets

In some cases, the values that determine the transition from one parser state to another
need to be determined at run time. MPLS is one example where the value of the MPLS
label field is used to determine what headers follow the MPLS tag and this mapping may
change dynamically at run time. To support this functionality, P4 supports the notion
of a Parser Value Set. This is a named set of values with a run time API to add and
remove values from the set. The set name may be referenced in parse state transition
conditions (the value list in a case entry).

Parser Value Sets contain values only, no header types or state transition information.
All values in a value set must correspond to the same transition. For example, all MPLS
labels corresponding to an IPv4 transition would exist in one set, while all MPLS labels
corresponding to an IPv6 transition would exist in a different set.

38

5.4 Parser Function BNF 5 PARSER SPECIFICATION

Value sets are declared at the top level of a P4 program, outside of parser functions.
There is a single global namespace for value sets. They should be declared before being
referenced in parser functions.

value_set_declaration ::= parser_value_set value_set_name;

The width of the values is inferred from the place where the value set is referenced. If the
set is used in multiple places and they would infer different widths, then the compiler
must raise an error.

The run time API for updating parser value sets must allow value and mask pairs to be
specified together.

5.4 Parser Function BNF

Here is the BNF for declaring a parser function:

parser_function_declaration ::=

parser parser_state_name { parser_function_body }

parser_function_body ::=

parser_body_call*
return_statement

parser_body_call ::=

extract_statement |

set_statement |

extern_method_call ;

extract_statement ::= extract (header_extract_ref);

header_extract_ref ::=

header_instance_name |

header_instance_name "[" header_extract_index "]"

header_extract_index ::= const_expr | next

set_statement ::= set_metadata (field_ref, general_expr) ;

return_statement ::=

return_value_type |

return select (select_exp) { case_entry + }

return_value_type ::=

39

5.4 Parser Function BNF 5 PARSER SPECIFICATION

return parser_state_name ; |

return control_function_name ; |

parse_error parser_exception_name ;

case_entry ::= value_list : case_return_value_type ;

value_list ::= value_or_masked [, value_or_masked]* | default

case_return_value_type ::=

parser_state_name |

control_function_name |

parse_error parser_exception_name

value_or_masked ::=

field_value | field_value mask field_value | value_set_name |

(value_or_masked [, value_or_masked] *)

select_exp ::= field_or_data_ref [, field_or_data_ref] *
field_or_data_ref ::=

field_ref |

latest.field_name |

current(const_expr , const_expr)

The extract function can only extract to packet headers, not to metadata.

Select functions take a comma-separated list of fields and concatenate their values,
with the left-most field forming the most-significant bits of the concatenated value. The
select operation then compares the values in the order they occur in the program to the
entries to find a matching one.

The mask operator is used to indicate a ternary match should be performed using the
indicated mask value. The comparison between the select expression and the case’s
value is limited to the bits set in the mask; that is, the select expression and value are
each ANDed with the mask before the comparison is made.

Allowing masked matches and value sets means that more than one of the cases could
match. The order of cases determines which takes precedence: the first case in the list
that matches is used.

The header reference latest refers to the most recently extracted header instance within
the parse function. It is an error to reference latest without a preceding extract oper-
ation in the same function.

The field reference current(...) allows the parser to reference bits that have not yet
been parsed into fields. Its first argument is the bit offset from the current offset and its

40

5.5 The extract Function 5 PARSER SPECIFICATION

second argument is the bit width. The result is treated as an unsigned field-value of the
given bit width. It is converted to the metadata field according to the conversion rules
described in Section 2.6.2.

In a set_metadata statement, the first argument (field_ref) is the destination of the
operation, and the second the source. The destination argument must be a metadata
instance. If the evaluated value of the second argument has a different width than the
destination metadata field, then conversion occurs as described in Section 2.6.2. Tar-
gets may introduce limitations to the level of complexity they support for the general_-
expr argument.

5.5 The extract Function

The extract function takes a header instance as a parameter. The header instance can-
not be metadata. Extract copies data from the packet at the current offset into that
header instance and moves the current parsing location to the end of that header.

Note that we use the special identifier next (rather than last) for header stacks as we
are extracting into the next available free location.

5.6 Parser Exceptions

There are two possible treatments for errors that occur during parsing: drop or process.
In the drop case, the packet may be immediately dropped by the parser. No match+

action processing is done on the packet. An implementation should provide one or
more counters for such events.

For the alternative, process, the parsing operation is halted, special metadata is set to
indicate that a parser error occurred and the packet is passed to a control function for
match+action processing. The packet is processed according to the installed match+

action rules like any other packet, but those rules may check for a parser error and
apply policies such as forwarding the packet to the control plane.

There are a number of error conditions recognized by P4 which may be triggered im-
plicitly. These are listed in the table below. In addition, the programmer may signal
errors with the parse_error exception in a parser function. They are both handled in
the same manner.

Parser exception handlers may be explicitly declared by the programmer as follows.
Multiple metadata set calls may be invoked followed by a directive either to return to
a control function or to drop the packet. Note that setting metadata will only have an
effect if return is executed.

parser_exception_declaration ::=

parser_exception parser_exception_name {

41

5.6 Parser Exceptions 5 PARSER SPECIFICATION

set_statement *
return_or_drop ;

}

return_or_drop ::= return_to_control | parser_drop

return_to_control ::= return control_function_name

5.6.1 Standard Parser Exceptions

A set of standard exception names are defined as follows. The prefix "pe" stands for
parser exception.

Identifier Exception Event
p4_pe_index_out_of_bounds A header stack array index exceeded the declared

bound.
p4_pe_out_of_packet There were not enough bytes in the packet to com-

plete an extraction operation.
p4_pe_header_too_long A calculated header length exceeded the declared

maximum value.
p4_pe_header_too_short A calculated header length was less than the min-

imum length of the fixed length portion of the
header.

p4_pe_unhandled_select A select statement had no default specified but the
expression value was not in the case list.

p4_pe_checksum A checksum error was detected.
p4_pe_default This is not an exception itself, but allows the pro-

grammer to define a handler to specify the default
behavior if no handler for the condition exists.

Table 11: Standard Parser Exceptions

When an exception passes the packet for match+action processing, the exception type
is indicated as metadata; see Section 7.

5.6.2 Default Exception Handling

If a handler for p4_pe_default is defined and an exception occurs for which no
parser_exceptionhandler was defined by the programmer, the p4_pe_defaulthandler
is invoked.

42

7 STANDARD INTRINSIC METADATA

If an exception occurs, no parser_exception handler was defined for that exception,
and no p4_pe_defaulthandler is defined, then the packet is dropped by the parser.

6 Deparsing

At some points, the forwarding element may need to convert the Parsed Represen-
tation (as updated by match+action) back to a serial stream of bytes (for example, at
egress transmission). This process is called deparsing as it reverses the process of pars-
ing.

P4 takes the approach that any format which should be generated on egress should be
represented by the parser used on ingress. Thus, the parse graph represented in the P4
program is used to determine the algorithm used to produce the serialized packet from
the Parsed Representation. Note the following considerations:

• Only headers which are valid are serialized.

• For some parse graphs it is impossible to infer a deparser that produces headers
in the same order as they may appear in the input packets. For example, consider
the case when two headers A and B may appear in either order in the input packet.
The exact deparsing behavior in such a case is currently un-defined6.

• Metadata fields are not serialized directly (as they are not parsed). Metadata fields
may be copied to packet header fields in match+action processing, allowing them
to be serialized for egress.

7 Standard Intrinsic Metadata

Metadata is state associated with each packet. It can be treated like a set of variables
associated with each packet, read and written by actions executed by tables. However,
some metadata has special significance to the operation of the target. This is called
intrinsic metadata as it has semantics intrinsic to the operation of the target machine.
Examples include the ingress port number or the egress selection. The first is an exam-
ple of read only data which is set by the target when the packet arrives; the second is
set by table actions, but then is processed by the Buffer Mechanism and results in the
packet being sent to a particular egress port or ports.

This specification identifies standard intrinsic metadata fields for which support is manda-
tory for P4 compliant targets. Although these fields are mandatory, the format of these

6We recognize this problem and intend address it in the upcoming spec release by introducing an
optional feature via which one can specify the desired deparsing behavior explicitly.

43

7 STANDARD INTRINSIC METADATA

fields may be target specific. The definition for these formats must be provided by the
target, either as a header to be automatically included by a compiler, or internally in the
compiler’s implementation.

Standard intrinisic metadata is called out in this section either because it is automati-
cally populated (ingress_port for instance) or because it is necessary to describe how
the abstract machine operates (egress_port for instance).

Targets may provide their own definitions of intrinsic metadata in addition to the stan-
dard intrinsic metadata, although programs which depend on such definitions may not
be portable.

This table shows the fields defined for the metadata instance standard_metadata7.

7We will thoroughly specify the details of these metadata – including their exact meaning and specific
availability scope (within a target) – in the next spec revision. See Section 17.7 for our current tentative
approach.

44

7 STANDARD INTRINSIC METADATA

Field Notes
ingress_port The port on which the packet arrived. Set prior to

parsing. Always defined. Read only.
packet_length The number of bytes in the packet. For Ethernet,

does not include the CRC. Set prior to parsing. Can-
not be used for matching or referenced in actions if
the switch is in "cut-through" mode. Read only.

egress_spec Specification of an egress. Undefined until set by
match+action during ingress processing. This is
the “intended” egress as opposed to the committed
physical port(s) (see egress_port below). May be a
physical port, a logical interface (such as a tunnel, a
LAG, a route, or a VLAN flood group) or a multicast
group.

egress_port The physical port to which this packet instance is
committed. Read only. This value is determined
by the Buffering Mechanism and so is valid only for
egress match+action stages. See Section 14 below.
Read only.

egress_instance An opaque identifier differentiating instances of a
replicated packet. Read only. Like egress_port, this
value is determined by the Buffering Mechanism
and is valid only for egress match+action stages. See
Section 14 below.

instance_type Represents the type of instance of the packet:
• normal
• ingress clone
• egress clone
• recirculated

parser_status Result of the parser. 0 means no error. Otherwise,
the value indicates what error occurred during pars-
ing. Specific representation is TBD.

parser_error_location If a parser error occurred, this is an indication of the
location in the parser program where the error oc-
curred. Specific representation is TBD.

Table 12: Standard Intrinsic Metadata Fields

45

8 COUNTERS, METERS AND REGISTERS

8 Counters, Meters and Registers

Counters, meters and registers maintain state for longer than one packet. Together they
are called stateful memories. They require resources on the target and hence are man-
aged by a compiler.

In this section, we refer to an individual counter, meter or register as a cell. In P4, state-
ful memories are organized into named arrays of cells (all of the same type of object).
A cell is referenced by its array name and index. Cells are accessed or updated by the
actions applied by a table. Targets may have limitations on the amount of computation
that can be done to determine the index of the cell being accessed. They may also have
limitations on the updates that can be done to the cell’s contents.

For example:

counter ip_pkts_by_dest {

type : packets;
direct : ip_host_table;

}

declares a set of counters attached to the table named ip_host_table. It allocates one
counter cell for each entry in that table.

Another example:

meter customer_meters {

type : bytes;
instance_count : 1000;

}

declares an array of 1000 meters named customer_meters. These may be referenced
from the actions of any table (though usually only one or two tables will be likely to
reference them).

P4 allows stateful memory resources to be global – that is, referenced by any table – or to
be static – bound to one table instance. Normally, multiple table entries, whether or not
they are in the same table, may refer to the same cell. This is called indirect access. P4
also allows direct access where the stateful memory resource is bound to one table and
each entry in the table is allocated its own dedicated cell in that memory. An example
of this is where every table entry has its own counter.

A compiler will attempt to allocate the resources required by the program according
to availability on the target. However, target constraints may make this impossible;
for example, a target may not allow references to the same global resource in both the

46

8.1 Counters 8 COUNTERS, METERS AND REGISTERS

ingress and egress pipelines.

Counters and meters are referenced in special primitive actions as defined in Section 10.1.
Registers may be used as arguments to the same primitive actions that modify header
fields.

8.1 Counters

Counters are declared as follows.

counter_declaration ::=

counter counter_name {

type : counter_type ;

[direct_or_static ;]

[instance_count : const_expr ;]

[min_width : const_expr ;]

[saturating ;]

}

counter_type ::= bytes | packets | bytes_and_packets

direct_or_static ::= direct_attribute | static_attribute
direct_attribute ::= direct : table_name

static_attribute ::= static : table_name

The min_width attribute indicates the minimum number of bits required for each cell.
The compiler or target may allocate more bits to each cell.

The saturating attribute indicates that the counter will stop counting if it reaches its
maximum value (based on its actual bit-width). Otherwise the counter will wrap.

If the counter is declared with the direct attribute, one counter is associated with each
entry in the named table. In this case, no count action needs to be given for the table
actions; they are automatically updated whenever the corresponding entry is applied.
As a result, counter names declared as direct are not allowed to be referenced in the
count primitive and a compiler must raise an error if this occurs.

Run time APIs should be provided to indicate the actual width of a given counter. This
is necessary for calculating the maximum value a counter may take (which is necessary
for properly managing saturation or roll over).

If the counter is not declared direct, actions must reference the counter by name and
index.

If the counter is declared with the static attribute, the counter resource is dedicated to
the indicated table. The compiler must raise an error if the counter name is referenced

47

8.2 Meters 8 COUNTERS, METERS AND REGISTERS

by actions used in another table.

The instance_count attribute indicates the number of instances (cells) of the counter
to allocate. The instance_count attribute is required if the counter is not declared
with the direct attribute. The compiler should raise an error if both instance_count

and direct are specified together, or if neither direct nor instance_count are speci-
fied.

A bytes type counter gets incremented by the packet length in bytes whenever the
count action is executed either implicitly (in case of direct) or explictly (in case of
static) for the counter. A packets type counter gets incremented by just one when-
ever the count action is executed for the counter. A bytes_and_packets type counter is
comprised of two sub-counters internally, and each sub-counter is incremented by the
packet length and by one respectively.

8.2 Meters

Meter declarations follow those of counters.

meter_declaration ::=

meter meter_name {

type : meter_type ;

[result : field_ref ;]

[direct_or_static ;]

[instance_count : const_expr ;]

}

meter_type ::= bytes | packets

Meters are stateful objects that measure the data rate, either in packets or bytes per
second, and output the result as one of three colors: red, yellow or green, which are
encoded as a 2-bit-wide field.

The encoding of these values is target-specific. It is, however, expected that each target
will define the appropriate constants: P4_METER_COLOR_RED, P4_METER_COLOR_YELLOW,
and P4_METER_COLOR_GREEN, which are understood by the compiler and hence can be
used in a portable P4 program.

P4 specification does not currently mandate any specific metering algorithm for the
meter implementations, and hence ascribing the detailed semantics of the colors is be-
yond the scope of P4. While the three-color marking algorithms, specified in RFC 2697
and RFC 2698 serve as good references, other options are also possible. Subsequently,

48

8.3 Registers 8 COUNTERS, METERS AND REGISTERS

meter configuration also remains target-specific and not defined in P48.

If the meter is declared with the direct attribute, one meter is associated with each
entry in the named table. In this case, no meter action needs to be given for the ta-
ble actions; the meters are automatically updated whenever the corresponding entry is
applied, and the meter result (i.e., color) is stored in the field specified by the result at-
tribute. Hence, the result attribute is required if a meter is declared with the direct at-
tribute. Consequently meter names declared as direct are not allowed to be referenced
in the execute_meter primitive, and a compiler must raise an error if this occurs.

If the meter is declared with the static attribute, it may only be referenced by actions
invoked in the indicated table via the execute_meterprimitive. The compiler must raise
an error if a different table attempts to invoke an action with this meter.

The instance_count attribute indicates the number of instances (cells) of the meter to
allocate. The instance_count attribute is required if the meter is not declared with the
direct attribute.

8.3 Registers

Registers are stateful memories whose values can be read and written in actions. They
are like counters, but can be used in a more general way to keep state.

A simple example use might be to verify that a "first packet" was seen for a particular
type of flow. A register cell would be allocated to the flow, initialized to "clear". When
the protocol signalled a "first packet", the table would match on this value and update
the flow’s cell to "marked". Subsequent packets in the flow could would be mapped to
the same cell; the current cell value would be stored in metadata for the packet and a
subsequent table could check that the flow was marked as active.

Register declarations are similar to those of meters and counters. Registers may be de-
clared either with a width or with a header type layout.

register_declaration ::=

register register_name {

width_or_layout ;

[direct_or_static ;]

[instance_count : const_expr ;]

[attribute_list ;]

}

width_or_layout ::= width_declaration | layout_declaration
width_declaration ::= width : const_expr

8In general, any run-time configuration aspects related to the control plane are currently out of scope
of this P4 spec. In future, the P4 community may address these issues in a separate spec.

49

9 MATCH+ACTION TABLE OVERVIEW

layout_declaration ::= layout : header_type_name

attribute_list ::= attributes : attr_entry
attr_entry ::= signed | attr_entry , attr_entry

Field names must be listed in the fields attribute of the header declaration.

The instance_count attribute indicates the number of instances (cells) of the register
to allocate. The instance_count attribute is required if the register is not declared with
the direct attribute.

Although registers cannot be used directly in matching, they may be used as the source
of a modify_field action allowing the current value of the register to be copied to a
packet’s metadata and be available for matching in subsequent tables.

If a register is declared with a layout declaration, the header type must be fixed length
(no varbit fields).

A register reference is done with array syntax.

register_ref ::=

register_name "[" const_expr "]" [.field_name]

If the register is declared with a layout, then the reference can be refined with a field
name as indicated.

9 Match+Action Table Overview

P4 allows the specification of table instances with the table declaration. This declara-
tion defines the exact set of fields that should be examined to find a match (a "hit"). As-
sociated with each entry is an indication of an action to take should the entry match.

If no entry is found that matches the current packet, the table is said to "miss"; in this
case a default action for the table may be applied.

Each entry in a match+action table has the following parts:

• The match values for comparison with the Parsed Representation of the packet.
The format of these values determined by the table declaration.

• A reference to an action function, if the entry should match. The set of allowed
action functions is specified in the table declaration.

• Parameter values to pass to the action when the action function is called. The for-
mat of these parameters is determined by the particular action function selected

50

10 ACTIONS

by the entry.

10 Actions

In P4, actions are declared imperatively as functions. These function names are used
when populating the table at run time to select the action associated with each entry.
These are called compound actions to differentiate them from primitive actions, or sim-
ply actions when the context is clear.

Action functions take typed and annotated parameters. P4 assumes the copy-in copy-
out evaluation semantics for the action parameters. When action parameters alias one
another in a P4 program, the target may introduce undefined behaviors. Hence, the P4
authors are recommended not to introduce parameter aliasing. In addition, a compiler
may generate an error upon detecting parameter aliasing.

The values passed to these parameters are programmed into the table entry by the run-
time API. When that entry is selected due to a match, those parameters are passed to the
action. The P4 table declarations might be used to generate run-time APIs which would
have parameters corresponding to the action parameters for the entry’s action. Typi-
cally, the compiler would be responsible for ensuring that the values in the run-time
APIs are properly mapped to and consistent with the P4 program specification.

In addition to values from the matching table entry, the action operation has access to
headers and metadata in the Parsed Representation.

Action functions are built from primitive actions. A standard set of primitive actions are
listed in the following section, although a target may support additional target-specific
primitive actions. Using target-specific primitive actions limits the portability of the
resulting program.

Here are two example functions from the mTag example. The first indicates a copy of
the packet should be sent to the CPU. The parameters cpu_code and bad_packet are
exposed to the run time API and will be set according to the values provided when a
table entry is added.

// Copy the packet to the CPU;

action common_copy_pkt_to_cpu(in bit<8> cpu_code, in bit bad_packet) {

modify_field(local_metadata.copy_to_cpu, 1);

modify_field(local_metadata.cpu_code, cpu_code);

modify_field(local_metadata.bad_packet, bad_packet);

}

This function sets up the mTag. It would only be invoked on an edge switch.

51

10.1 Primitive Actions 10 ACTIONS

// Add an mTag to the packet; select egress spec based on up1

action add_mTag(in bit<8> up1, in bit<8> up2,

in bit<8> down1, in bit<8> down2)

add_header(mtag);

// Copy VLAN ethertype to mTag

modify_field(mtag.ethertype, vlan.ethertype);

// Set VLAN’s ethertype to signal mTag

modify_field(vlan.ethertype, 0xaaaa);

// Add the tag source routing information

modify_field(mtag.up1, up1);

modify_field(mtag.up2, up2);

modify_field(mtag.down1, down1);

modify_field(mtag.down2, down2);

// Set the destination egress port as well from the tag info

modify_field(standard_metadata.egress_spec, up1);

}

10.1 Primitive Actions

P4 supports an extensible set of primitive actions. Not all targets may support all prim-
itive actions. Target switches may have limits on when variables are bound and what
combinations of parameter types are allowed.

Here is a brief summary of primitive actions. More detailed documentation is below.

52

10.1 Primitive Actions 10 ACTIONS

primitive name Summary
add_header Add a header to the packet’s Parsed Repre-

sentation
copy_header Copy one header instance to another.
remove_header Mark a header instance as invalid.
modify_field Set the value of a field in the packet’s Parsed

Representation.
modify_field_with_hash_based_offset Apply a field list calculation and use the re-

sult to generate an offset value.
truncate Truncate the packet on egress.
drop Drop a packet (in the egress pipeline).
no_op Placeholder action with no effect.
push Push all header instances in an array down

and add a new header at the top.
pop Pop header instances from the top of an ar-

ray, moving all subsequent array elements
up.

count Update a counter.
meter Execute a meter operation.
generate_digest Generate a packet digest and send to a re-

ceiver.
resubmit Resubmit the original packet to the parser

with metadata.
recirculate Resubmit the packet after all egress modifi-

cations.
clone_ingress_pkt_to_ingress Send a copy of the original packet to the

parser. Alias: clone_i2i.
clone_egress_pkt_to_ingress Send a copy of the egress packet to the

parser. Alias: clone_e2i.
clone_ingress_pkt_to_egress Send a copy of the original packet to the

Buffer Mechanism. Alias: clone_i2e.
clone_egress_pkt_to_egress Send a copy of the egress packet to the

Buffer Mechanism. Alias: clone_e2e.

Table 13: Primitive Actions

Parameters of the primitive actions are typed as follows:

53

10.1 Primitive Actions 10 ACTIONS

Notation Type Description
HDR The literal name of a header instance.
ARR The name of a header instance array, with no subscript.
FLD A field reference of form header_instance.field_name which

refers to the Parsed Representation.
FLDLIST A field list instance declared with field_list.
VAL An immediate value or a value from a table entry’s action pa-

rameters. The latter is represented as a parameter from the
enclosing function (see examples below).

C-REF The name of a counter array; determined at compile time.
M-REF The name of a meter array; determined at compile time.
R-REF The name of a register array; determined at compile time.
FLC-REF Field list calculation reference; determined at compile time.

Table 14: Action Parameter Types

Here is the API specification for standard primitive actions.

add_header(header_instance)

Summary
Add a header to the packet’s Parsed Representation

Parameters
header_-

instance

(HDR) The name of the header instance to add.

Description
If the header_instance is not an element in a header stack, the indicated
header instance is set valid. If the header instance was invalid, all its
fields are initialized to 0. If the header instance is already valid, it is not
changed.
If header_instance is an element in a header stack, the effect is to push
a new header into the stack at the indicated location. Any existing valid
instances from the given index or higher are copied to the next higher
index. The given instance is set to valid. If the array is fully populated
when this operation is executed, then no change is made to the Parsed
Representation.

54

10.1 Primitive Actions 10 ACTIONS

copy_header(destination, source)

Summary
Copy one header instance to another.

Parameters
destination (HDR) The name of the destination header instance.
source (HDR) The name of the source header instance.

Description
Copy all the field values from the source header instance into the des-
tination header instance. If the source header instance was invalid, the
destination header instance becomes invalid; otherwise the destination
will be valid after the operation. The source and destination instances
must be of the same type.

remove_header(header_instance)

Summary
Mark a header instance as invalid.

Parameters
header_-

instance

(HDR) The name of the header instance to remove.

Description
If the header_instance is not an element in a header stack, then the
indicated header instance is marked invalid. It will not be available for
matching in subsequent match+action stages. The header will not be se-
rialized on egress. All field values in the header instance become unini-
tialized.
If the header_instance is an element in a header stack, the effect is to
pop the indicated element from the stack. Any valid instances in the
stack at higher indices are copied to the next lower index.

55

10.1 Primitive Actions 10 ACTIONS

modify_field(dest, value [, mask])

Summary
Set the value of the given field in packet’s Parsed Representation

Parameters
dest (FLD or R-REF) The name of the field instance to

modify (destination).
value (VAL, FLD or R-REF) The value to use (source).
mask (VAL) An optional mask to use identifying the bits to

change.
Description

Update the indicated field’s value. The value parameter may be any of:
• An immediate value (a number).
• A value from the matching entry’s action parameter data; in this

case, the name of a parameter from the enclosing function is used.
• A Parsed Representation field reference.
• A register reference.

This allows the programmer to copy one field to another. An implicit
cast is inserted by the compiler if the types of the source and destination
differ, as described in Section 2.4.
If the parent header instance of dest is not valid, the action has no ef-
fect. If value is a field reference and its parent header is not valid, the
operation has no effect.
If mask is specified, then the field becomes (current_value & ∼ mask)

| (value & mask). If mask is not specified, the operation has the effect
of a "set", modifying all bits of the destination.

56

10.1 Primitive Actions 10 ACTIONS

modify_field_with_hash_based_offset(dest, base, field_list_calc, size)

Summary
Add a value to a field.

Parameters
dest (FLD or R-REF) The name of the field instance to be

modified (destination)
base (VAL) The base value to use for the index.
field_list_-

calc

(FLC-REF) The field list calculation to use to generate
the hash value.

size (VAL) The maximum value to use for the index if > 0.
Description

The field list calculation is executed to generate a hash value. If size is
not zero, the hash value is used to generate a value between base and
(base + size - 1) by calculating (base + (hash_value % size)).
If size is 0 then the value used is (base + hash_value).
Normal value conversion takes place when setting dest to the result.

truncate(length)

Summary
Truncate the packet on egress.

Parameters
length (VAL) The number of bytes to transmit.

Description
Indicate that the packet should be truncated on egress. The number of
bytes to transmit from the packet is indicated in the parameter to the
action. If the packet has fewer bytes than length, then it will not be
changed.
Normally this action would be specified on the egress pipeline, though
this is not required.

57

10.1 Primitive Actions 10 ACTIONS

drop()

Summary
Drop the packet on egress.

Description
Indicate that the packet should not be transmitted. This primitive is in-
tended for the egress pipeline where it is the only way to indicate that the
packet should not be transmitted. On the ingress pipeline, this primitive
is equivalent to setting the egress_spec metadata to a drop value (spe-
cific to the target).
If executed on the ingress pipeline, the packet will continue through
the end of the pipeline. A subsequent table may change the value of
egress_spec which will override the drop action. The action cannot be
overridden in the egress pipeline.

no_op()

Summary
Take no action.

Description
This indicates that no action should be taken on the packet. Control
flow continues as per the current control function specification.

push(array [, count])

Summary
Push all header instances in an array down and add a new header at the
top.

Parameters
array (ARR) The name of the instance array to be modified.
count (VAL) An optional value indicating the number of el-

ements to push, by default 1.
Description

This primitive is used to make room for a new element in an array of
header instances without knowing in advance how many elements are
already valid. An element at index N will be moved to index N+1, and
the element at index 0 will be zeroed out and set valid.
If a count is specified, elements will be shifted by count instead of 1 and
count header instances will be zeroed and set valid.
This primitive leaves the array’s size constant; if an array is already full,
elements pushed to indices beyond the static array size will be lost.

58

10.1 Primitive Actions 10 ACTIONS

pop(array [, count])

Summary
Pop header instances from the top of an array, moving all subsequent
array elements up.

Parameters
array (ARR) The name of the instance array to be modified.
count (VAL) An optional value indicating the number of el-

ements to pop, by default 1.
Description

This primitive is used to remove elements from an array of header in-
stances without knowing in advance how many elements are already
valid. An element at index N will be moved to index N-1, and the ele-
ment at index 0 will be lost. The bottom-most elements that had noth-
ing shifted into them are invalidated.
If a count is specified, elements will be shifted by count instead of 1.
Popping from an empty array (or popping more elements than are in the
array) results in an empty array.

count(counter_ref, index)

Summary
Update a counter.

Parameters
counter_ref (C-REF) The name of the counter array.
index (VAL) The offset in the array to get a counter refer-

ence.
Description

The given counter is incremented by 1, if it is a packet counter, or by the
packet length, if it is a byte counter. The counter array is determined at
compile time. The index may be a table entry parameter or determined
at compile time. It is an error to reference a direct-mapped counter ar-
ray from this action.

59

10.1 Primitive Actions 10 ACTIONS

execute_meter(meter_ref, index, field)

Summary
Execute a meter operation.

Parameters
meter_ref (M-REF) The name of the meter array.
index (VAL) The offset in the array to get a meter reference.

Applicable only if the meter type is indirect.
field (FLD) A field reference to store the meter state.

Description
The given meter, determined by meter_ref and index, is executed. If
the meter is direct, then index is ignored as the table entry determines
which cell to reference. The length of the packet is passed to the me-
ter. The state of meter is updated and the meter returns information
(a "color") which is stored in field. If the parent header of field is not
valid, the meter state is updated, but the color of the packet is discarded.

generate_digest(receiver, field_list)

Summary
Generate a digest of a packet and send to a receiver.

Parameters
receiver (VAL) An opaque value identifying the receiver.
field_list (FLDLIST) A list of field references.

Description
The indicated field list is populated with the packet’s data and sent by
a target-specific mechanism to an agent capable of processing the ob-
ject. The specification of receivers is outside of the scope of P4. Example
receivers might be the CPU through a channel parallel to that for trans-
ferring packets, or a co-processor connected by a bus dedicated to this
operation.
This function might also be used to represent a self-updating operation
such as address learning.

60

10.1 Primitive Actions 10 ACTIONS

resubmit([field_list])

Summary
Applied in the ingress pipeline, mark the packet to be resubmitted to the
parser.

Parameters
field_list (FLDLIST) An optional list of metadata field refer-

ences.
Description

Only valid on the ingress pipeline.
The packet is marked for resubmission. It will complete the ingress
pipeline to generate any necessary metadata values. Then, the original
packet data will be resubmitted to the parser with values of the fields
in field_list from the ingress processing on the packet. These values
replace the normal initial values of the metadata fields indicated in the
initializer of the instance declaration.
If multiple resubmit actions get executed on one packet, the union of all
the fields in the field lists should be resubmitted with the packet.
See Section 15 for more details.

recirculate([field_list])

Summary
On egress, mark the packet to be resubmitted to the parser.

Parameters
field_list (FLDLIST) An optional list of metadata field refer-

ences.
Description

Only valid on the egress pipeline.
The packet is marked for resubmission. It will complete the egress
pipeline and be deparsed. This version of the packet is then resubmitted
to the parser with values of the fields in field_list from the process-
ing on the packet. These values replace the normal initial values of the
metadata fields indicated in the initializer of the instance declaration.
See Section 15 for more details.

61

10.1 Primitive Actions 10 ACTIONS

clone_ingress_pkt_to_ingress(clone_spec, [field_list])

Summary
Generate a copy of the original packet and submit it to the ingress
parser.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) An optional list of metadata field refer-

ences.
Description

This action indicates that the switch should generate a copy of the orig-
inal packet (prior to any modifications from match+action) and submit
it to the parser as an independent packet instance. This may occur im-
mediately when the action executes or be deferred until the the original
packet is buffered.
The original packet continues to be processed as though the clone had
not been produced.
The clone_spec is used to allow the configuration of other target spe-
cific characteristics of the clone operation. It may be a simple identi-
fier indicating a session. For instance, the clone operation may support
truncating the cloned instance. The truncation length would be a prop-
erty of the session. The concept of session is optional and the parameter
may be ignored on some targets.
The cloned instance will have instance_type set to indicate that it is an
ingress clone.
The fields indicated in field_list are copied to the Parsed Representa-
tion of the clone instance. These values replace the normal initial values
of the metadata fields indicated in the initializer of the instance decla-
ration (which occurs before parsing).
The function may also be referred to as clone_i2i.
See the Section 15 for more details.

62

10.1 Primitive Actions 10 ACTIONS

clone_egress_pkt_to_ingress(clone_spec [, field_list])

Summary
Generate a duplicate of the egress packet and submit it to the parser.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) An optional list of metadata field refer-

ences.
Description

The packet is marked for cloning at egress. Once the original packet
completes the egress pipeline, a copy of the deparsed packet (including
all modifications due to match+action) is passed to the parser as an in-
dependent packet instance. The original packet is forwarded as normal.
The clone_spec is used to allow the configuration of other target specific
characteristics of the clone operation as described in clone_ingress_-

pkt_to_ingress.
The fields indicated in field_list are copied to the clone instance.
These values replace the normal initial values of the metadata fields in-
dicated in the initializer of the instance declaration.
The cloned instance will have instance_type set to indicate that it is an
ingress clone.
The function may also be referred to as clone_e2i.
See the Section 15 for more details.

63

10.1 Primitive Actions 10 ACTIONS

clone_ingress_pkt_to_egress(clone_spec [, field_list])

Summary
Generate a copy of the original packet and submit it to the Buffering
Mechanism.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) An optional list of metadata field refer-

ences.
Description

This action indicates that the switch should generate a copy of the orig-
inal packet. The clone’s Parsed Representation will match the original’s
immediately after parsing, with the exception that the fields listed in
field_list are replaced with the original packet’s values after being
processed by the ingress pipeline.
The clone of the packet is submitted directly to the Buffering Mecha-
nism as an independent packet instance. It does not go through ingress
match+action processing.
The original packet continues to be processed as though the clone had
not been produced.
The clone_spec is used to allow the configuration of other target specific
characteristics of the clone operation as described in clone_ingress_-

pkt_to_ingress. In addition to other session attributes, clone_spec de-
termines the egress specification (standard metadata egress_spec) that
is presented to the Buffering Mechanism.
The cloned instance will have instance_type set to indicate that it is an
egress clone.
The function may also be referred to as clone_i2e.
See the Section 15 for more details.

64

10.1 Primitive Actions 10 ACTIONS

clone_egress_pkt_to_egress(clone_spec [, field_list])

Summary
Duplicate the egress version of the packet and submit it to the Buffering
Mechanism.

Parameters
clone_spec (VAL) An opaque identifier indicating additional run

time characteristics of the clone operation.
field_list (FLDLIST) An optional list of metadata field refer-

ences.
Description

The packet is marked for cloning at egress. Once the original packet
completes the egress pipeline, the packet and its Parsed Representa-
tion of packet headers (including all modifications due to match+action)
along with the metadata fields specified in field_listare submitted to
the Buffering Mechanism as a new packet instance.
The original packet is forwarded as normal.
The clone_specis used to allow the configuration of other target specific
characteristics of the clone operation as described in clone_ingress_-

pkt_to_ingress. In addition to other session attributes, clone_-

specdetermines the egress specification (standard metadata egress_-

spec) that is presented to the Buffering Mechanism.
The cloned instance will have instance_typeset to indicate that it is an
egress clone.
The function may also be referred to as clone_e2e.
See the Section 15 for more details.

10.1.1 Parameter Binding

In several primitive actions above, a parameter may take one of:

• An immediate value; or

• A value from a table entry’s action parameter data; or

• A reference to a field instance whose current value is used; or

• A reference to a counter, meter, or register cell whose current value is used.

The P4 language does not specify limits on the specification of which of these may be
exercised at a given time. However, it should be noted that there is a qualitative differ-
ence (in the sense that it imposes different functional requirements on the underlying
target) between specifying a particular field instance in a P4 program and allowing a run
time API to specify the field instance to reference when the table entry is added.

65

10.2 Action Definitions 10 ACTIONS

This is a binding-time issue; the first binds the field reference at compile time while
the second allows run time binding. Targets may impose constraints on the flexibility
allowed for such parameter binding. The difference must also be reflected in the run
time interfaces that are generated.

10.2 Action Definitions

Compound actions are declared as functions.

compound_action_function_declaration ::=

action action_name ([action_param_list]) { action_statement * } |

action action_name ([action_param_list]) ;

action_param_list ::= action_param [, action_param]*
action_param ::= param_qualifier* data_type param_name

param_qualifier ::= in | inout

action_statement ::=

action_name ([arg_list]) ; |

extern_method_call ;

arg_list ::= general_expr [, general_expr]*

Action function declarations must obey the following conventions:

• The body of the function contains only:

– Calls to other action functions (primitive or compound).

– Calls to extern methods.

• Recursion is not allowed.

• The usage of an action parameter must conform to any qualifiers specified before
the parameter’s type:

– in: This parameter is effectively readonly and must not be modified by the
code enclosed by the parameter list.

– inout: This parameter has no read/write usage restrictions. If a directional-
ity is not otherwise specified, this is assumed by default.

• Compound actions must be declared with bodies, even if those bodies are empty.
Primitive actions must be declared without bodies.

Not all targets will support all forms of action expression. In particular:

66

10.2 Action Definitions 10 ACTIONS

• there might be limits on whether specific parameters have to be bound at compile
time or can be chosen by a table at run time.

• there might be limits on the complexity of expressions bound to an action’s pa-
rameters when calling it

Target architectures should document such limitations accordingly.

In the following example, the parameters dst_mac, src_mac and vid would be exposed
via a run time API for adding entries to the table which used this action. The values
passed to that API would then be set in the table entry being added so that they could
be passed to this action for packets that hit that entry.

action route_ipv4(

in bit<48> dst_mac,

in bit<48> src_mac,

in bit<16> vid

) {

modify_field(ethernet.dst_addr, dst_mac);

modify_field(ethernet.src_addr, src_mac);

modify_field(vlan_tag.vid, vid);

modify_field(ipv4.ttl, ipv4.ttl-1);

}

10.2.1 Sequential Execution Semantics

Actions across different tables are assumed to execute sequentially, where the sequence
is determined by the control flow, described in Section 13. As an example, consider the
code fragment given below, repeated from Section 13.

control main {

apply(check_mtag);
apply(identify_port);

}

Here, the check_mtag table and its associated actions are applied first, followed by the
identify_port table and its actions.

The body of a compound action is also assumed to execute sequentially – i.e. the
first primitive action executes to completion, and then the second executes to com-
pletion. Concretely, consider the two primitive actions modify_field(hdr.fieldA, 1)

and modify_field(hdr.fieldB, hdr.fieldA) appearing within the compound action
compound as shown below.

67

11 ACTION PROFILE DECLARATIONS

action compound1() {

modify_field(hdr.fieldA, 1);

modify_field(hdr.fieldB, hdr.fieldA);

}

Let’s say hdr.fieldA started with a value of 0. The first statement is completed first,
leaving 1 in fieldA. Then, the second instruction is executed, propagating 1 to fieldB.

While the language permits arbitrarily-long dependency chain of primitive actions within
a compound action, each target can choose to impose its own restrictions for perfor-
mance. For instance, a target might introduce a limit to the maximum length of a de-
pendency chain it supports. In such cases, the target compiler must infer dependencies
between primitive actions and reject compound actions that strictly require primitive
actions to be sequenced one after another longer than the target’s limit.

As an example, action compound1 above might be rejected by a target compiler on the
grounds that there is no capability to write a header field (fieldA) and then read it into
another header field within the same table. At the same time, the compiler could accept
the action below (action compound2) because there is no dependency between the two
primitive actions and both can execute in parallel.

action compound2() {

modify_field(hdr.fieldX, hdr.fieldY);

modify_field(hdr.fieldB, hdr.fieldC);

}

The compiler may also choose to rewrite code while preserving correctness to remove
spurious dependencies. For instance, the code in action compound1 is equivalent to the
code in action compound3 below, which has no dependencies between primitive actions
and hence can be run on a constrained target.

action compound3() {

modify_field(hdr.fieldA, 1);

modify_field(hdr.fieldB, 1);

}

11 Action profile declarations

In some instances, action parameter values are not specific to a match entry but could
be shared between different entries. Some tables might even want to share the same set

68

11 ACTION PROFILE DECLARATIONS

of action parameter values. This can be expressed in P4 with action profiles. Action pro-
files are declarative structures specifying a list of potential actions, and possibly other
attributes.

Entries are inserted at run time to specify the single action to be run if that entry is
chosen - among the candidates included in the action profile declaration-, as well as
the action parameter values to use.

Instead of statically binding one particular action profile entry to each match entry,
one might want to associate multiple action profile entries with a match entry and let
the system (i.e., data plane logic) dynamically bind one of the action profile entries to
each class of packets. The dynamic_action_selection attribute enables such behav-
ior. When dynamic_action_selection is specified, action profile entries can be bun-
dled into groups by the run time, and a match entry can then tied to a group of action
profile entries. To dictate a specific data-plane mechanism that chooses a particular ac-
tion profile entry in a group, one should provide an action selector. An action selector
chooses a particular action profile entry for each packet by either pseudo-randomly or
predictably deriving a decision from header fields and/or metadata.

Here is the BNF for an action profile declaration:

action_profile_declaration ::=

action_profile action_profile_name {

action_specification
[size : const_expr ;]

[dynamic_action_selection : selector_name ;]

}

action_specification ::=

actions { [action_name ;] + }

action_selector_declaration ::=

action_selector selector_name {

selection_key : field_list_calculation_name ;

}

Action profiles are declared and applied with the following conventions:

• The size attribute indicates the number of entries required for the action pro-
file. If this cannot be supported, an error will be signaled when the declaration is
processed. If this attribute is omitted, there is no guarantee as to the number of
entries that the action profile will be able to accomodate at run time.

69

12 TABLE DECLARATIONS

12 Table Declarations

Tables are declarative structures specifying match and action operations, and possibly
other attributes. The action specification in a table indicates which action functions are
available to this table’s entries.

Note that masks may be specified for the match fields (i.e., lookup keys) in the table dec-
laration. This enables table lookup with arbitrary sub-fields, rather than only with the
whole fields. These masks are applied statically to the fields prior to the table-lookup
operation and hence should not be confused with the value mask for a field with the
field-match type ternary.

The table key matches an entry if the conjunction (AND) of all fields in the key match
their corresponding values in the table entry.

Here is the BNF for a table declaration:

table_declaration ::=

table table_name {

[reads { field_match + }]

table_actions
[min_size : const_expr ;]

[max_size : const_expr ;]

[size : const_expr ;]

[support_timeout : bool_value ;]

}

field_match ::= field_or_masked_ref : field_match_type ;

field_or_masked_ref ::=

header_ref | field_ref | field_ref mask const_expr

field_match_type ::= exact | ternary | lpm | index | range | valid

table_actions ::=

action_specification | action_profile_specification

action_profile_specification ::=

action_profile : action_profile_name ;

This example is from the mTag edge switch program. It maps the packet’s L2 destination
to an mTag. If it fails to find a map, it may copy the packet to the CPU.

// Check if the packet needs an mtag and add one if it does.

table mTag_table {

70

12 TABLE DECLARATIONS

reads {

ethernet.dst_addr : exact;

vlan.vid : exact;

}

actions {

add_mTag; // Action called if pkt needs an mtag.

common_copy_pkt_to_cpu; // If no mtag, send to the CPU

no_op;

}

max_size : 20000;

}

For an implementation of ECMP using an action profile with an action selector, please
see 17.6.3.

Match types have the following meanings.

• exact: The field value is matched against the table entry and the values must be
identical for the entry to be considered.

• ternary: A mask provided with each entry in the table. This mask is ANDed with
the field value before a comparison is made. The field value and the table entry
value need only agree on the bits set in the entry’s mask. Because of the possi-
bilities of overlapping matches, a priority must be associated with each entry in a
table using ternary matches.

• lpm: This is a special case of a ternary match. Each entry’s mask selects a prefix by
having a divide between 1s in the high order bits and 0s in the low order bits. The
number of 1 bits gives the length of the prefix which is used as the priority of the
entry.

• index: The field value is used as the index of a table entry.

• range: Each entry specifies a low and high value for the entry and the field matches
only if it is in this range. Range end points are inclusive. Signedness of the field is
used in evaluating the order.

• valid: Only applicable to packet header fields or header instances (not metadata
fields), the table entry must specify a value of true (the field is valid) or false (the
field is not valid) as match criteria.

Tables are defined and applied with the following conventions:

• Header references for matching may only be used with the valid match type.

• Exactly one of the actions indicated in either the action_specification or the
action_profile_specification will be run when a table processes a packet.

71

12 TABLE DECLARATIONS

– Entries are inserted at run time and each rule specifies the single action to
be run if that entry is matched.

– Actions in the list should be compound actions.

• At run time, the table entry insert operation (not part of P4) must specify:

– Values for all fields specified in the reads entry along with optional value
masks, prefix lengths, and an entry priority, depending on the field-match
type. The value mask and entry priority are necessary for the ternary match
type, and the prefix length for the lpm match type.

– The name of the action from the action_specification or the action_-

profile_specification and the parameters to be passed to the action func-
tion when it is called.

• A table must not have entries with the same key. In other words, looking up a table
must lead to either one or zero match entry. This means, for an exact match-type
key, a table is not allowed to have more than one entry with the same key value.
Similarly, for a ternary (lpm respectively) match-type key, a table is not allowed
to have more than one entry with the same key value and mask (prefix length
respectively).

• A default action is taken when no table entry matches. This action is specified at
run time. If no default action is specified and no entry matches, the table does not
affect the packet, and processing continues according to the imperative control
flow.

• If reads is not present, the table will always execute the default action. If no de-
fault action has been specified, the table has no effect on the packet.

• The keyword mask may be used for a field to indicate that only the indicated bits
should be used in the match. This mask is applied once to the Parsed Representa-
tion’s field prior to any comparisons (compared to the per-entry mask which may
differ from entry to entry).

• The match type valid indicates that the field’s parent header (or, in the case of
metadata, the field itself) should be tested for validity. The value of 1 will match
when the header is valid; 0 will match when the header is not valid. Note that
metadata fields are always valid.

• Using an invalid field or header as a match key may lead to an undefined behavior.

• The match type index cannot be used with other match types. A table with the
match type index can still lead to a miss if the table is not fully populated or the
index is out of range. For a table with the index match type, targets may or may
not support a default action even upon a miss.

72

13 PACKET PROCESSING AND CONTROL FLOW

• The min_size attribute indicates the minimum number of entries required for the
table. If this cannot be supported, an error will be signaled when the declaration
is processed.

• The max_size attribute is an indication that the table is not expected to grow
larger than this size. If, at run time, the table has this many entries and another
insert operation applied, it may be rejected.

• The size attribute is equivalent to specifying min_size and max_size with the
same value.

• Although size and min_size are optional, failing to specify at least one of them
may result in the table being eliminated as the compiler attempts to satisfy the
other requirements of the program.

• The support_timeout attribute is used to enable ageing on a table. It is optional
and its default value is false.

A no-op primitive action, no_op, is defined in P4 in Section 10.1. It may be used to
indicate that a match should result in no change to the packet.

13 Packet Processing and Control Flow

A packet is processed by a sequence of match+action tables. At configuration time,
the control flow (in what order the tables are to be applied) may be expressed with an
imperative program. The imperative program may apply tables, call other control flow
functions or test conditions.

The execution of a table is indicated with the apply instruction. The apply instruction
itself can affect the control flow to which the packet is subject by specifying a set of
control blocks from which one is selected to be executed. The choice of which block is
selected may be determined by the action used on the packet or by whether a match
was found at all.

The apply instruction has three modes of operation.

• Sequential: Control flow moves to the next statement unconditionally.

• Action Selection: The action that was applied to the packet determines the block
of instructions to execute.

• Hit/Miss Check: Whether or not a match was found determines the block of in-
structions to execute.

Examples of each mode are given below, following the BNF. In conjunction with the
if-else statement, this provides the mechanism for expressing control flow.

73

13 PACKET PROCESSING AND CONTROL FLOW

control_function_declaration ::=

control control_fn_name control_block
control_block ::= { control_statement * }

control_statement ::=

apply_call |

apply_and_select_block |

extern_method_call ; |

if_else_statement |

control_fn_name () ; |

return ;

apply_call ::= apply (table_name) ;

apply_and_select_block ::= apply (table_name) { [case_list] }

case_list ::= action_case + | hit_miss_case +

action_case ::= action_or_default control_block
action_or_default ::= action_name | default

hit_miss_case ::= hit_or_miss control_block
hit_or_miss ::= hit | miss

if_else_statement ::=

if (bool_expr) control_block
[else_block]

else_block ::= else control_block | else if_else_statement

Tables are invoked on the packet with the apply operator as described at the beginning
of this section. If the same table is invoked in multiple places from the control flow,
those invocations all refer to the same table instance; that is, there is only one set of
match+action entries for the table. Targets may impose limitations on these table in-
vocations such as disallowing recursion, only allowing tables to be referenced once, or
only allowing control flow functions to be referenced once.

Return statements are not mandated, but can be used to exit early from a control flow
back to its caller.

The simplest control flow is to execute a sequence of tables with the applyoperator.

// The ingress pipeline ’main’ control function

control main {

// Verify mTag state and port are consistent

apply(check_mtag);
apply(identify_port);

74

13 PACKET PROCESSING AND CONTROL FLOW

apply(select_output_port);
}

The apply operator can be used to control the instruction flow based on whether a
match was found in the table. This is done by specifying a block enclosed in braces
following the apply operation with hit and/or miss as the case selection labels. The
mTag edge program includes the following example:

// Apply egress_meter table; if hit, apply meter policy

apply(egress_meter) {

hit {

apply(meter_policy);
}

}

Alternatively, the apply operator can control the instruction flow based on the action
applied by the table to the packet. Here is an example.

apply(routing_table) {

ipv4_route_action { // IPv4 action was used

apply(v4_rpf);
apply(v4_acl);

}

ipv6_route_action { // IPv6 action was used

apply(v6_option_check);
apply(v6_acl);

}

default { // Some other action was used

if (packet_metadata.ingress_port == 1) {

apply(cpu_ingress_check);
}

}

}

Note that the two modes (match selection versus action selection) cannot be inter-
mixed. They are differentiated due to the fact that hit and miss are reserved words
and cannot be used as action function names.

75

14 EGRESS PORT SELECTION, REPLICATION AND QUEUING

14 Egress Port Selection, Replication and Queuing

In P4, the egress_spec metadata field is used to specify the destination or destinations
of a packet. In addition, for devices supporting priority queuing, egress_specmay indi-
cate the queue associated with each destination. An egress_spec value may represent
a physical port, a logical port (e.g., a tunnel, a LAG, a route, or a VLAN flood group), or
a multicast group.

P4 assumes that the Buffering Mechanism implements a function that maps egress_-
spec to a collection of packet instances represented as triples:

(packet, egress_port, egress_instance).

The Buffering Mechanism is responsible for generating each packet instance along with
these metadata fields and sending it as necessary to reach its egress port through the
egress match+action tables.

This mapping of egress_spec values to sets of packet instances is currently outside the
scope of P4; a forwarding element may statically map values to destinations or may
allow configuration of the map through a management interface. The run time table
programing interfaces must have access to this information to properly program the
tables declared in the P4 program.

The flow of packets through a forwarding element is as follows. Recall that, as depicted
in Figure 1, processing is divided between ingress and egress with the packet possibly
being buffered between the two. The parser normally terminates by indicating the con-
trol function used to begin processing. Upon completion of that control function, the
packet is submitted to the buffering system.

The buffers are assumed to be organized into one or more queues per egress port. The
details of queue structure and dequeuing disciplines is considered to be target specific,
though targets may use P4 to expose configuration (and even to define actions resulting
from data plane events) related to queuing behavior.

A single copy of each packet traverses the Ingress Pipeline. At the completion of ingress
processing, the switch determines the queue(s) to place the packet in based upon the
egress_spec value. A packet that is sent to multiple destinations may be placed in mul-
tiple queues.

When the packet is dequeued, it is processed in the Egress Pipeline by the control func-
tion egress. A separate copy of the packet is sent through the Egress Pipeline for each
destination, requiring the Buffering Mechanism to replicate the packet. The physical
egress port is known at the time the packet is dequeued; this value is passed through the
Egress Pipeline as an immutable metadata field named egress_port. To support mul-
tiple copies of packets being sent to the same physical port (e.g., sending to multiple
VLANs on one port), the immutable metadata field egress_instance contains a unique

76

15 RECIRCULATION AND CLONING

value for each copy. The semantics of egress_instance are target specific.

15 Recirculation and Cloning

Many standard networking functions, such as mirroring and recursive packet process-
ing, require more complicated primitives than setting or testing fields. To support such
operations, P4 provides primitive actions that allow a packet to be recirculated (sent
back to the start of the processing pipeline) or cloned (a second instance of the packet
is created).

Note that cloning is not intended to be the mechanism by which multicast is normally
implemented. That is expected to be done by the Buffering Mechanism in conjunction
with the egress specification. See Section 14.

Here is a table that summarizes the different operations. The first four (clone) op-
erations create an entirely new instance of the packet. The last two, resubmit and
recirculate, operate on the original packet and do not, by themselves, result in the
generation of a new packet.

Name Source Insertion Point
clone_ingress_pkt_to_ingress Original ingress pkt Ingress parser
clone_egress_pkt_to_ingress Post deparsed pkt Ingress parser
clone_ingress_pkt_to_egress Original ingress pkt Buffering Mechanism
clone_egress_pkt_to_egress Post deparsed pkt Buffering Mechanism
resubmit Original ingress pkt Ingress parser
recirculate Post deparsed pkt Ingress parser

Table 15: Clone and Recirculation Primitives

15.1 Clone

The clone operations generate a new version of the packet. The original version con-
tinues to be processed as if the clone operation did not take place. We use the term
clone (rather than mirror) to emphasize that this action is only responsible for generat-
ing a new version of the packet. Mirroring requires additional configuration. The clone
mechanism may have additional applications.

The source of the clone may be the original instance of the packet (an ingress clone), or
the packet as it would exit the switch (an egress clone). The processing of the new in-
stance may be limited to the egress pipeline ("to egress") or it may start with the ingress
pipeline ("to ingress"). Hence we have four different clone operations.

77

15.1 Clone 15 RECIRCULATION AND CLONING

For cloned packets, the instance_type metadata field is used to distinguish between
the original and cloned packet instances.

If multiple clone actions are executed on one packet, that many clone instances should
be generated. However, specific targets may impose limits on the number of clone in-
stances supported.

15.1.1 Clone to Ingress

Figure 3: Cloning to Ingress, from Ingress or Egress

Figure 3 shows the paths for a cloned packet submitted to the ingress. The source may
be from the ingress itself, indicating that a copy of the original packet is given to the
parser, or from the egress, in which case a copy of the packet as it is transmitted is
created and submitted to the parser.

15.1.2 Clone to Egress

Figure 4 shows the paths for a cloned packet submitted to the egress pipeline. The
source may be from the ingress, indicating that a copy of the original packet as parsed is
submitted to the Buffering Mechanism; or the source may be from the egress, in which
case a copy of the packet (and some of its Parsed Representation) just prior to deparsing
is created and submitted to the Buffering Mechanism.

78

15.1 Clone 15 RECIRCULATION AND CLONING

Figure 4: Cloning to Egress, from Ingress or Egress

Since the Buffering Mechanism requires an egress specification (metadata.egress_-
spec) to determine how to handle the packet, an egress specification should be asso-
ciated with the clone_spec associated with the instance by the primitive operation. In
fact, the clone_spec could simply be an egress_spec for some targets.

15.1.3 Mirroring

Mirroring, or port monitoring, is a standard networking function described, for exam-
ple, at http://en.wikipedia.org/wiki/Port_mirroring. In this section we describe
one approach to implementing mirroring with P4.

Mirroring involves the following:

• Identifying the packets to be mirrored.

• Generating the mirrored instances of those packets

• Specifying what actions should be done on the mirrored instances

Normally, these functions are logically grouped together into a mirror session.

Assuming minimal additional target support (for example, a target might provide in-
trinsic metadata that would directly execute everything necessary for mirroring) a P4
program might include the following to support ingress mirroring of packets which are

79

http://en.wikipedia.org/wiki/Port_mirroring

15.1 Clone 15 RECIRCULATION AND CLONING

selected based on a combination of ingress port, VLAN ID, L3 addresses and IP proto-
col.

In this example, the Buffering Mechanism is assumed to provide a programmable map
from the clone_spec parameter passed to clone_i2e to an egress_port number.

First, a table that matches on these characteristics would be declared. It would refer-
ence an action like the following:

action mirror_select(in int<8> session) { // Select packets; map to session

modify_field(local_metadata.mirror_session, session);

clone_i2e(session, mirror_fld_list);

}

where

field_list mirror_field_list {

local_metadata.mirror_session;

}

indicates that the mirror session must be preserved in the cloned packet.

This action results in a new copy of the ingress packet to be submitted to the egress. The
run time APIs allow the specification of exactly which packets get mirrored. They also
have the flexibility to select the mirror session ID associated with each such packet. The
mirror_select table would be introduced into the control flow for the ingress pipeline,
probably early in processing.

A table matching on local_metadata.mirror_sessionwould be introduced in the egress
pipeline. Assume a value of 0 means "not mirrored", so the table could be applied to all
packets but only select the actions related to mirroring for those marked with a mirror
session. This table would exercise an action like:

action mirror_execute(in int<16> trunc_length) {

truncate(trunc_length);

}

For this example, the only action taken is the truncation of the mirrored packet. How-
ever the function could include the data used for an encapsulation header allowing
each mirror session to be sent to a different remote monitoring session. The encapsu-
lation header values would be programmed at run time.

Egress mirroring would follow a similar pattern with the primary difference being the
primitive action used would be clone_e2e.

80

15.2 Resubmit and Recirculate 16 EXTERN OBJECTS

15.2 Resubmit and Recirculate

Figure 5: Resubmit and Recirculate

Figure 5 shows the paths for resubmitting a packet to the parser for processing. The top
path shows a resubmit process. The resubmit action is signalled in the ingress pipeline.
Upon completing that pipeline, the original packet seen on ingress is resubmitted to
the parser along with additional metadata as specified by the action. The parser may
use the new metadata to make different parsing decisions than on the original pass
through the parser.

The lower path shows the path for recirculation. After the packet has completed both
ingress and egress processing, it is deparsed and sent back to the parser. The new packet
is reparsed, possibly with metadata preserved from the original packet, and passed to
the ingress pipeline as usual.

For resubmit and recirculate, the instance_type metadata field distinguishes be-
tween first and later times the packet is being processed.

16 Extern objects

Although P4 uses match+action tables and actions to express basic forwarding logic, P4
programs might require functionality built out of components whose behavior is not

81

16.1 Extern types 16 EXTERN OBJECTS

expressible in P4 itself. Examples of this include stateful metering operations and pa-
rameterizable hash calculations. For this purpose, P4 allows the specification of extern
object types that the user can instantiate in their P4 program.

Extern types are provided by both standardized and target-specific libraries. P4 pro-
grammers are not supposed to define their own extern types, so much as use the set of
supported extern types as a palette of components from which to compose their pro-
grams.

16.1 Extern types

An extern type definition is intended to be used by both the programmer and compiler
front-end to specify how extern instances of that type must be instantiated and where
they may be used.

An extern type may specify both attributes and methods. Attributes are properties of
the extern object that are bound inside the object instantiation. Methods are functions
that can be called on a given extern instance at various places in the P4 program.

extern_type_declaration ::=

extern_type type_name {

member_declaration*
}

member_declaration ::= attribute_declaration | method_declaration

method_declaration ::=

method method_name ([method_param_list]);

method_param_list ::= method_param [, method_param]*
method_param ::= param_qualifier* type_spec param_name

attribute_declaration ::=

attribute attribute_name {

type : attribute_type ;

[optional ;]

}

identifier_list ::= variable_name ;

attribute_type ::= type_spec

The extern type indicates that the P4 programmer can instantiate objects of type type_-

82

16.2 Extern Instances 16 EXTERN OBJECTS

name. Each attribute declaration inside the extern type indicates an attribute its in-
stances contain, and the attribute’s expected type.

Attributes marked with the optional property are not required to appear in object in-
stantiations, though the compiler backend may impose further rules as to when an at-
tribute truly is or is not optional.

Each method declaration inside the extern type indicates a method that can be called
on its instances, with standard object.method(parameters) notation. Methods may have
optional parameters, but may not be overloaded (that is, method names within an ex-
tern type must be unique).

While a P4 extern_type object describes the interface by which an extern instance inter-
acts with the code around it, it (by design) does not express anything about the object’s
actual behavior. For target-specific libraries of extern types, human language docu-
mentation is likely sufficient to fully specify an extern’s behavior. For standardized li-
braries, however, it is strongly recommended that the P4 extern_type is accompanied
with pseudocode written in a general-purpose programming language to rigorously
document the behavior and semantics of the type and its methods.

16.2 Extern Instances

The P4 programmer can declare instances of these extern types the same way they de-
clare tables and other standard P4 objects.

extern_instance_declaration ::=

extern type_name instance_name ; |

extern type_name instance_name {

extern_attribute_binding +

}

extern_attribute_binding ::=

attribute_name : object_ref | general_expr;

extern_method_call ::=

object_ref . method_name ([arg_list])

If an expression that is used as an attribute value for an extern instance cannot be eval-
uated at compile time, the compiler should generate an error.

Method calls must include arguments for all parameters specified by the extern type
definition. If the method includes any optional parameters, their arguments may follow
the required arguments (similar to optional arguments in primitive actions).

83

17 APPENDICES

Extern methods take typed and annotated parameters. P4 assumes the copy-in and
copy-out evaluation semantics for the extern-method parameters. When extern-method
parameters alias one another, the target may introduce undefined behaviors. Hence,
the P4 authors are recommended not to introduce parameter aliasing. In addition, a
compiler may generate an error upon detecting parameter aliasing.

17 Appendices

17.1 Programming Conventions

The following is a list of conventions suggested for P4 programs.

• Parsing begins with the parser state function named start.

• Control flow begins with the control function ingress.

17.2 Revision History

Release Release Date Summary of Changes
1.0.0-rc1 2014-09-08 First public version.
1.0.0-rc2 2014-09-09 Minor typos.
1.0.0-rc3 2014-12-30 Fixed some missing tildes (negations). Drop in

parser is now parser_drop. Added add primitive ac-
tion. Added errata section.

1.0.1 2015-01-28 Added action profiles and action selectors. Added
attribute support_timeout to tables.

1.0.2 2015-03-03 Added push and pop primitive actions.
1.1.0-rc1 2016-11-12 Added preliminary designs for strong typing, expres-

sions, typed action parameters, sequential action-
execution semantics, and extern types.

1.1.0 2016-1-27 See 17.2.1 for details.

Table 16: Revision History

17.2.1 Summary of changes introduced in 1.1.0

• New typing syntax (Sections 2.3 & 2.4)

– Action parameters take types and directionality annotations. This helps the
compiler disambiguate parameter types.

84

17.2 Revision History 17 APPENDICES

– New data types. This helps the compiler disambiguates data types. It also
lays foundation for strong typing.

– New width specification syntax for constant (’ –> w).

• Support for expression (Sections 2.8, 5.4, and 10.1)

– set_metadata() takes expressions. This enables TLV-style header parsing
and improves code readability.

– modify_field() takes expressions. This enables supports for various arith-
metic operations while avoiding the proliferation of additional primitive ac-
tions.

• Support for extern (Section 16)

– Support for extern_type and extern instances. This allows P4 to embrace
functional heterogeneity in a unified and well-defined fashion.

• Strong typing (Sections 2.4 – 2.6)

– Specification of type conversion rules, along with legitimate operators for
each supported type. This improves the safety of the language.

• Sequential action-execution semantics (Section 10.2.1)

– This improves code readability and understandability without hampering
capabilities for performance optimization (e.g., parallelization).

• Miscallenous

– execute_meter() replaces meter(), avoiding ambiguity in parsing (Section
10.1).

– A new counter type bytes_and_packets (Section 8.1).

85

17.3 Terminology (Incomplete) 17 APPENDICES

17.3 Terminology (Incomplete)

Term Definition
Control Flow The logic that selects which tables are applied to a packet

when it is processed by a pipeline. Used to resolve order de-
pendencies.

Egress Queuing An abstract P4 functional block logically separating ingress
and egress processing. Implementations may expose queu-
ing and buffer resource management interfaces for this
block, but this not specified by P4.

Egress Specification Metadata set by the ingress pipeline which determines the set
of destination ports (and number of instances on each port)
to which the packet should be sent

Order Dependency A sequence of match and action operations whose result de-
pends on the order of execution. For example, one table may
set a field which another table uses for a match. The control
flow is used to determine which of the possible effects is in-
tended.

Parsed Representation A representation of a packet’s header as a set of header in-
stances, each of which is composed of fields.

Parser A functional block which maps a packet to a Parsed Repre-
sentation

Pipeline A sequence of match+action tables.
Run time When a switch is processing packets. This is distinguished

from configuration time, though these operations may occur
at the same time in some implementations.

Target A packet-processing machine that can be programmed in P4.

Table 17: Terminology

17.4 Summary of P4 BNF

p4_program ::= p4_declaration +

p4_declaration ::=

header_type_declaration |

header_instance_declaration |

field_list_declaration |

field_list_calculation_declaration |

calculated_field_declaration |

value_set_declaration |

86

17.4 Summary of P4 BNF 17 APPENDICES

parser_function_declaration |

parser_exception_declaration |

counter_declaration |

meter_declaration |

register_declaration |

primitive_action_declaration |

action_function_declaration |

action_profile_declaration |

action_selector_declaration |

table_declaration |

extern_type_declaration |

extern_instance_declaration |

control_function_declaration |

const_value ::=

bool_value |

["+" | -] [width_spec] unsigned_value

unsigned_value ::=

binary_value |

decimal_value |

hexadecimal_value

bool_value ::= true | false

binary_value ::= binary_base binary_digit+
decimal_value ::= decimal_digit+
hexadecimal_value ::= hexadecimal_base hexadecimal_digit+

binary_base ::= 0b | 0B

hexadecimal_base ::= 0x | 0X

binary_digit ::= _ | 0 | 1

decimal_digit ::= binary_digit | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

hexadecimal_digit ::=

decimal_digit | a | A | b | B | c | C | d | D | e | E | f | F

width_spec ::=

decimal_digit+ w |

decimal_digit+ s

field_value ::= const_value

type_spec ::=

87

17.4 Summary of P4 BNF 17 APPENDICES

header [header_type_name] |

metadata [header_type_name] |

field_list |

field_list_calculation |

parser |

parser_exception |

parser_value_set |

counter |

meter |

register |

action |

action_profile |

table |

control |

extern [extern_type_name] |

data_type

data_type ::=

bit |

bit < decimal_digit+ > |

varbit < decimal_digit+ > |

int < decimal_digit+ >

object_ref ::=

instance_name |

header_ref |

field_ref

general_expr ::=

bool_expr | arith_expr | const_expr | object_ref

bool_expr ::=

valid (object_ref) | bool_expr bool_op bool_expr |

not bool_expr | (bool_expr) | arith_expr rel_op arith_expr |

bool_value

arith_expr ::=

object_ref | const_value |

max (arith_expr , arith_expr) | min (arith_expr , arith_expr) |

(arith_expr) | arith_expr bin_op arith_expr | un_op arith_expr |

(data_type) arith_expr

const_expr ::= const_value |

88

17.4 Summary of P4 BNF 17 APPENDICES

max (const_expr , const_expr) | min (const_expr, const_expr) |

(const_expr) | const_expr bin_op const_expr | un_op const_expr

bin_op ::= "+" | "*" | - | << | >> | & | "|" | ^

un_op ::= ~ | -

bool_op ::= or | and

rel_op ::= > | >= | == | <= | < | !=

p4_pragma ::= @pragma pragma_name pragma_text

header_type_declaration ::=

header_type header_type_name { header_dec_body }

header_dec_body ::=

fields { field_dec * }

[length : length_exp ;]

field_dec ::= data_type field_name ;

length_bin_op ::= "+" | - | "*" | << | >>

length_exp ::=

const_expr |

field_name |

length_exp length_bin_op length_exp |

(length_exp)

header_instance_declaration ::= header_instance | metadata_instance
header_instance ::= scalar_instance | array_instance
scalar_instance ::= header header_type_name instance_name ;

array_instance ::=

header header_type_name

instance_name "[" const_expr "]" ;

metadata_instance ::=

metadata header_type_name

instance_name [metadata_initializer] | ;

metadata_initializer ::= { [field_name : field_value ;] + }

header_ref ::=

header_instance_name | header_instance_name "[" header_ref_index "]"

header_ref_index ::= const_expr | last | next

89

17.4 Summary of P4 BNF 17 APPENDICES

field_ref ::= header_ref . field_name

field_list_declaration ::=

field_list field_list_name {

[field_list_entry ;] *
}

field_list_entry ::=

object_ref | field_value
field_list_calculation_declaration ::=

field_list_calculation field_list_calculation_name {

input {

[field_list_name ;] +

}

algorithm : stream_function_algorithm_name ;

output_width : const_expr ;

}

calculated_field_declaration ::=

calculated_field field_ref { update_verify_spec + }

update_verify_spec ::=

update_or_verify field_list_calculation_name [if_cond] ;

update_or_verify ::= update | verify

if_cond ::= if (calc_bool_cond)

calc_bool_cond ::=

valid (header_ref | field_ref) |

field_ref == field_value
value_set_declaration ::= parser_value_set value_set_name;

parser_function_declaration ::=

parser parser_state_name { parser_function_body }

parser_function_body ::=

parser_body_call*
return_statement

parser_body_call ::=

extract_statement |

set_statement |

extern_method_call ;

extract_statement ::= extract (header_extract_ref);

90

17.4 Summary of P4 BNF 17 APPENDICES

header_extract_ref ::=

header_instance_name |

header_instance_name "[" header_extract_index "]"

header_extract_index ::= const_expr | next

set_statement ::= set_metadata (field_ref, general_expr) ;

return_statement ::=

return_value_type |

return select (select_exp) { case_entry + }

return_value_type ::=

return parser_state_name ; |

return control_function_name ; |

parse_error parser_exception_name ;

case_entry ::= value_list : case_return_value_type ;

value_list ::= value_or_masked [, value_or_masked]* | default

case_return_value_type ::=

parser_state_name |

control_function_name |

parse_error parser_exception_name

value_or_masked ::=

field_value | field_value mask field_value | value_set_name |

(value_or_masked [, value_or_masked] *)

select_exp ::= field_or_data_ref [, field_or_data_ref] *
field_or_data_ref ::=

field_ref |

latest.field_name |

current(const_expr , const_expr)

parser_exception_declaration ::=

parser_exception parser_exception_name {

set_statement *
return_or_drop ;

}

return_or_drop ::= return_to_control | parser_drop

return_to_control ::= return control_function_name

91

17.4 Summary of P4 BNF 17 APPENDICES

counter_declaration ::=

counter counter_name {

type : counter_type ;

[direct_or_static ;]

[instance_count : const_expr ;]

[min_width : const_expr ;]

[saturating ;]

}

counter_type ::= bytes | packets | bytes_and_packets

direct_or_static ::= direct_attribute | static_attribute
direct_attribute ::= direct : table_name

static_attribute ::= static : table_name

meter_declaration ::=

meter meter_name {

type : meter_type ;

[result : field_ref ;]

[direct_or_static ;]

[instance_count : const_expr ;]

}

meter_type ::= bytes | packets

register_declaration ::=

register register_name {

width_or_layout ;

[direct_or_static ;]

[instance_count : const_expr ;]

[attribute_list ;]

}

width_or_layout ::= width_declaration | layout_declaration
width_declaration ::= width : const_expr
layout_declaration ::= layout : header_type_name

attribute_list ::= attributes : attr_entry
attr_entry ::= signed | attr_entry , attr_entry
register_ref ::=

register_name "[" const_expr "]" [.field_name]

compound_action_function_declaration ::=

action action_name ([action_param_list]) { action_statement * } |

action action_name ([action_param_list]) ;

92

17.4 Summary of P4 BNF 17 APPENDICES

action_param_list ::= action_param [, action_param]*
action_param ::= param_qualifier* data_type param_name

param_qualifier ::= in | inout

action_statement ::=

action_name ([arg_list]) ; |

extern_method_call ;

arg_list ::= general_expr [, general_expr]*
action_profile_declaration ::=

action_profile action_profile_name {

action_specification
[size : const_expr ;]

[dynamic_action_selection : selector_name ;]

}

action_specification ::=

actions { [action_name ;] + }

action_selector_declaration ::=

action_selector selector_name {

selection_key : field_list_calculation_name ;

}

table_declaration ::=

table table_name {

[reads { field_match + }]

table_actions
[min_size : const_expr ;]

[max_size : const_expr ;]

[size : const_expr ;]

[support_timeout : bool_value ;]

}

field_match ::= field_or_masked_ref : field_match_type ;

field_or_masked_ref ::=

header_ref | field_ref | field_ref mask const_expr

field_match_type ::= exact | ternary | lpm | index | range | valid

table_actions ::=

action_specification | action_profile_specification

93

17.4 Summary of P4 BNF 17 APPENDICES

action_profile_specification ::=

action_profile : action_profile_name ;

control_function_declaration ::=

control control_fn_name control_block
control_block ::= { control_statement * }

control_statement ::=

apply_call |

apply_and_select_block |

extern_method_call ; |

if_else_statement |

control_fn_name () ; |

return ;

apply_call ::= apply (table_name) ;

apply_and_select_block ::= apply (table_name) { [case_list] }

case_list ::= action_case + | hit_miss_case +

action_case ::= action_or_default control_block
action_or_default ::= action_name | default

hit_miss_case ::= hit_or_miss control_block
hit_or_miss ::= hit | miss

if_else_statement ::=

if (bool_expr) control_block
[else_block]

else_block ::= else control_block | else if_else_statement
extern_type_declaration ::=

extern_type type_name {

member_declaration*
}

member_declaration ::= attribute_declaration | method_declaration

method_declaration ::=

method method_name ([method_param_list]);

method_param_list ::= method_param [, method_param]*
method_param ::= param_qualifier* type_spec param_name

attribute_declaration ::=

attribute attribute_name {

94

17.5 P4 Reserved Words 17 APPENDICES

type : attribute_type ;

[optional ;]

}

identifier_list ::= variable_name ;

attribute_type ::= type_spec
extern_instance_declaration ::=

extern type_name instance_name ; |

extern type_name instance_name {

extern_attribute_binding +

}

extern_attribute_binding ::=

attribute_name : object_ref | general_expr;

extern_method_call ::=

object_ref . method_name ([arg_list])

17.5 P4 Reserved Words

The following are reserved words in P4 and should not be used as identifiers.9

action

action_function_declaration

action_profile

action_selector

algorithm

and

apply

attribute

attributes

bit

bytes

bytes_and_packets

calculated_field

control

counter

direct

dynamic_action_selection

9There is an open issue whether all P4 keywords will in fact be reserved.

95

17.5 P4 Reserved Words 17 APPENDICES

else

extern

extern_type

extract

false

field_list

field_list_calculation

fields

header

header_type

hit

if

in

inout

input

instance_count

int

last

layout

mask

max

metadata

meter

method

min

min_width

miss

next

not

optional

or

output_width

packets

parse_error

parser

parser_drop

parser_exception

parser_value_set

primitive_action_declaration

range

register

result

96

17.6 Examples 17 APPENDICES

return

saturating

select

selection_key

set_metadata

signed

static

table

true

update

valid

varbit

verify

width

17.6 Examples

17.6.1 The Annotated mTag Example

This section presents the mTag example. The example describes two separate P4 pro-
grams, mtag-edge and mtag-aggregation, as described in the introduction in Section 1.2.

The code is written in P4 whose syntax allows the application of a C preprocessor to P4
files. Thus directives such as #define and #include are used in the program with the
same effects as if writing C code. This is a convention used by these examples; the P4
language does not mandate this syntax.

The example code is split into the following files

• headers.p4: The declaration of all header types used in both programs.

• parser.p4: The parser program shared by both programs.

• actions.p4: Common actions used by both programs.

• mtag-edge.p4: The main program for the edge switch

• mtag-aggregation.p4: The main program for any aggregation switch

The full source for all files is provided on the P4 website [2].

We start with header.p4.

//

// Header type definitions

//

97

17.6 Examples 17 APPENDICES

// Standard L2 Ethernet header

header_type ethernet_t {

fields {

bit<48> dst_addr;

bit<48> src_addr;

bit<16> ethertype;

}

}

// Standard VLAN tag

header_type vlan_t {

fields {

bit<3> pcp;

bit cfi;

bit<12> vid;

bit<16> ethertype;

}

}

// The special m-tag used to control forwarding through the

// aggregation layer of data center

header_type mTag_t {

fields {

bit<8> up1;

bit<8> up2;

bit<8> down1;

bit<8> down2;

bit<16> ethertype;

}

}

// Standard IPv4 header

header_type ipv4_t {

fields {

bit<4> version;

bit<4> ihl;

bit<8> diffserv;

bit<16> totalLen;

bit<16> identification;

bit<3> flags;

bit<13> fragOffset;

bit<8> ttl;

98

17.6 Examples 17 APPENDICES

bit<8> protocol;

bit<16> hdrChecksum;

bit<32> srcAddr;

bit<32> dstAddr;

varbit<320> options;

}

length : ihl * 4;

}

// Assume standard metadata from compiler.

// Define local metadata here.

//

// copy_to_cpu is an example of target specific intrinsic metadata

// It has special significance to the target resulting in a

// copy of the packet being forwarded to the management CPU.

header_type local_metadata_t {

fields {

bit<16> cpu_code // Code for packet going to CPU

bit<4> port_type // Type of port: up, down, local...

bit ingress_error // An error in ingress port check

bit was_mtagged // Track if pkt was mtagged on ingr

bit copy_to_cpu // Special code resulting in copy to CPU

bit bad_packet // Other error indication

bit<8> color // For metering

}

}

The parser function shared by the programs is as follows.

//

// Parser functions and related definitions

//

//

// Header instance definitions

//

// Header instances are usually defined with the parser as

// that is where they are initialized.

//

//

99

17.6 Examples 17 APPENDICES

header ethernet_t ethernet;

header vlan_t vlan;

header mTag_t mtag;

header ipv4_t ipv4;

// Local metadata instance declaration

metadata local_metadata_t local_metadata;

//

// Parser state machine description

//

// Start with ethernet always.

parser start {

return ethernet;

}

parser ethernet {

extract(ethernet); // Start with the ethernet header

return select(latest.ethertype) {

0x8100: vlan;

0x800: ipv4;

default: ingress;

}

}

// Extract the VLAN tag and check for an mTag

parser vlan {

extract(vlan);
return select(latest.ethertype) {

0xaaaa: mtag;

0x800: ipv4;

default: ingress;

}

}

// mTag is allowed after a VLAN tag only (see above)

parser mtag {

extract(mtag);
return select(latest.ethertype) {

0x800: ipv4;

100

17.6 Examples 17 APPENDICES

default: ingress;

}

}

parser ipv4 {

extract(ipv4);
return ingress; // All done with parsing; start matching

}

Here are the common actions for the two programs.

//

//

// actions.p4

//

// This file defines the common actions that can be exercised by

// either an edge or an aggregation switch.

//

//

//

// Actions used by tables

//

// Copy the packet to the CPU;

action common_copy_pkt_to_cpu(in bit<8> cpu_code, in bit bad_packet) {

modify_field(local_metadata.copy_to_cpu, 1);

modify_field(local_metadata.cpu_code, cpu_code);

modify_field(local_metadata.bad_packet, bad_packet);

}

// Drop the packet; optionally send to CPU and mark bad

action common_drop_pkt(in bit do_copy, in bit<8> cpu_code, in bit bad_packet) {

modify_field(local_metadata.copy_to_cpu, do_copy);

modify_field(local_metadata.cpu_code, cpu_code);

modify_field(local_metadata.bad_packet, bad_packet);

drop();

}

// Set the port type; see run time mtag_port_type.

// Allow error indication.

action common_set_port_type(in bit<4> port_type, in bit ingress_error) {

101

17.6 Examples 17 APPENDICES

modify_field(local_metadata.port_type, port_type);

modify_field(local_metadata.ingress_error, ingress_error);

}

Here are excerpts from the edge program.

//

//

// mtag-edge.p4

//

// This file defines the behavior of the edge switch in an mTag

// example.

//

//

//

// Include the header definitions and parser

// (with header instances)

#include "headers.p4"

#include "parser.p4"

#include "actions.p4" // For actions marked "common_"

#define PORT_COUNT 64 // Total ports in the switch

//

// Table definitions

//

// Remove the mtag for local processing/switching

action _strip_mtag() {

// Strip the tag from the packet...

remove_header(mtag);

// but keep state that it was mtagged.

modify_field(local_metadata.was_mtagged, 1);

}

// Always strip the mtag if present on the edge switch

table strip_mtag {

reads {

mtag : valid; // Was mtag parsed?

}

actions {

102

17.6 Examples 17 APPENDICES

_strip_mtag; // Strip mtag and record metadata

no_op; // Pass thru otherwise

}

}

//

// Identify ingress port: local, up1, up2, down1, down2

table identify_port {

reads {

standard_metadata.ingress_port : exact;

}

actions { // Each table entry specifies *one* action

common_set_port_type;

common_drop_pkt; // If unknown port

no_op; // Allow packet to continue

}

max_size : 64; // One rule per port

}

. . . // Removed code related to local switching

// Add an mTag to the packet; select egress spec based on up1

action add_mTag(in bit<8> up1, in bit<8> up2,

in bit<8> down1, in bit<8> down2) {

add_header(mtag);

// Copy VLAN ethertype to mTag

modify_field(mtag.ethertype, vlan.ethertype);

// Set VLAN’s ethertype to signal mTag

modify_field(vlan.ethertype, 0xaaaa);

// Add the tag source routing information

modify_field(mtag.up1, up1);

modify_field(mtag.up2, up2);

modify_field(mtag.down1, down1);

modify_field(mtag.down2, down2);

// Set the destination egress port as well from the tag info

modify_field(standard_metadata.egress_spec, up1);

}

103

17.6 Examples 17 APPENDICES

// Count packets and bytes by mtag instance added

counter pkts_by_dest {

type : packets;
direct : mTag_table;

}

counter bytes_by_dest {

type : bytes;
direct : mTag_table;

}

// Check if the packet needs an mtag and add one if it does.

table mTag_table {

reads {

ethernet.dst_addr : exact;

vlan.vid : exact;

}

actions {

add_mTag; // Action called if pkt needs an mtag.

// Option: If no mtag setup, forward to the CPU

common_copy_pkt_to_cpu;

no_op;

}

max_size : 20000;

}

// Packets from agg layer must stay local; enforce that here

table egress_check {

reads {

standard_metadata.ingress_port : exact;

local_metadata.was_mtagged : exact;

}

actions {

common_drop_pkt;

no_op;

}

max_size : PORT_COUNT; // At most one rule per port

}

// Egress metering; this could be direct, but we let SW

// use whatever mapping it might like to associate the

104

17.6 Examples 17 APPENDICES

// meter cell with the source/dest pair

meter per_dest_by_source {

type : bytes;
result : local_metadata.color;

instance_count : PORT_COUNT * PORT_COUNT; // Per source/dest pair

}

action meter_pkt(in int<12> meter_idx) {

execute_meter(per_dest_by_source, meter_idx, local_metadata.color);

}

// Mark packet color, for uplink ports only

table egress_meter {

reads {

standard_metadata.ingress_port : exact;

mtag.up1 : exact;

}

actions {

meter_pkt;

no_op;

}

size : PORT_COUNT * PORT_COUNT; // Could be smaller

}

// Apply meter policy

counter per_color_drops {

type : packets;
direct : meter_policy;

}

table meter_policy {

reads {

metadata.ingress_port : exact;

local_metadata.color : exact;

}

actions {

drop; // Automatically counted by direct counter above

no_op;

}

size : 4 * PORT_COUNT;

}

105

17.6 Examples 17 APPENDICES

//

// Control function definitions

//

// The ingress control function

control ingress {

// Always strip mtag if present, save state

apply(strip_mtag);

// Identify the source port type

apply(identify_port);

// If no error from source_check, continue

if (local_metadata.ingress_error == 0) {

// Attempt to switch to end hosts

apply(local_switching); // not shown; matches on dest addr

// If not locally switched, try to setup mtag

if (standard_metadata.egress_spec == 0) {

apply(mTag_table);
}

}

}

// The egress control function

control egress {

// Check for unknown egress state or bad retagging with mTag.

apply(egress_check);

// Apply egress_meter table; if hit, apply meter policy

apply(egress_meter) {

hit {

apply(meter_policy);
}

}

}

The key table for mtag-aggregation is shown below.

//

106

17.6 Examples 17 APPENDICES

//

// mtag-aggregation.p4

//

//

// Include the header definitions and parser (with header instances)

#include "headers.p4"

#include "parser.p4"

#include "actions.p4" // For actions marked "common_"

//

// check_mtag table:

// Make sure pkt has mtag; Apply drop or to-cpu policy if not

//

table check_mtag { // Statically programmed w/ one entry

. . . // Reads if mtag valid; drop or copy to CPU

}

//

// identify_port table:

// Check if up or down facing port as programmed at run time.

//

table identify_port {

. . . // Read ingress_port; call common_set_port_type.

}

//

// Actions to copy the proper field from mtag into the egress spec

action use_mtag_up1() { // This is actually never used on agg switches

modify_field(standard_metadata.egress_spec, mtag.up1);

}

action use_mtag_up2() {

modify_field(standard_metadata.egress_spec, mtag.up2);

}

action use_mtag_down1() {

modify_field(standard_metadata.egress_spec, mtag.down1);

}

action use_mtag_down2() {

modify_field(standard_metadata.egress_spec, mtag.down2);

107

17.6 Examples 17 APPENDICES

}

// Table to select output spec from mtag

table select_output_port {

reads {

local_metadata.port_type : exact; // Up, down, level 1 or 2.

}

actions {

use_mtag_up1;

use_mtag_up2;

use_mtag_down1;

use_mtag_down2;

// If port type is not recognized, previous policy applied

no_op;

}

max_size : 4; // Only need one entry per port type

}

//

// Control function definitions

//

// The ingress control function

control ingress {

// Verify mTag state and port are consistent

apply(check_mtag);
apply(identify_port);
apply(select_output_port);

}

// No egress function used in the mtag-agg example.

The following is an example header file that might be used with the mtag example
above. This shows the following:

• Type definitions for port types (mtag_port_type_t) meter levels
(mtag_meter_levels_t) and a table entry handle (entry_handle_t).

• An example function to add an entry to the identify_port table,
table_identify_port_add_with_set_port_type. The action to use with the en-
try is indicated at the end of the function name: set_port_type.

• Functions to set the default action for the identify_port table:

108

17.6 Examples 17 APPENDICES

table_indentify_port_default_common_drop_pkt and
table_indentify_port_default_common_set_port_type.

• A function to add an entry to the mTag table:
table_mTag_table_add_with_add_mTag

• A function to get a counter associated with the meter table:
counter_per_color_drops_get.

/**

* Run time header file example for CCR mTag example

*/

#ifndef MTAG_RUN_TIME_H

#define MTAG_RUN_TIME_H

/**

* @brief Port types required for the mtag example

*

* Indicates the port types for both edge and aggregation

* switches.

*/

typedef enum mtag_port_type_e {

MTAG_PORT_UNKNOWN, /* Uninitialized port type */

MTAG_PORT_LOCAL, /* Locally switch port for edge */

MTAG_PORT_EDGE_TO_AG1, /* Up1: edge to agg layer 1 */

MTAG_PORT_AG1_TO_AG2, /* Up2: Agg layer 1 to agg layer 2 */

MTAG_PORT_AG2_TO_AG1, /* Down2: Agg layer 2 to agg layer 1 */

MTAG_PORT_AG1_TO_EDGE, /* Down1: Agg layer 1 to edge */

MTAG_PORT_ILLEGAL, /* Illegal value */

MTAG_PORT_COUNT

} mtag_port_type_t;

/**

* @brief Colors for metering

*

* The edge switch supports metering from local ports up to the

* aggregation layer.

*/

typedef enum mtag_meter_levels_e {

109

17.6 Examples 17 APPENDICES

MTAG_METER_COLOR_GREEN, /* No congestion indicated */

MTAG_METER_COLOR_YELLOW, /* Above low water mark */

MTAG_METER_COLOR_RED, /* Above high water mark */

MTAG_METER_COUNT

} mtag_meter_levels_t;

typedef uint32_t entry_handle_t;

/* mTag table */

/**

* @brief Add an entry to the edge identify port table

* @param ingress_port The port number being identified

* @param port_type The port type associated with the port

* @param ingress_error The value to use for the error indication

*/

entry_handle_t table_identify_port_add_with_set_port_type(

uint32_t ingress_port,

mtag_port_type_t port_type,

uint8_t ingress_error);

/**

* @brief Set the default action of the identify port

* table to send the packet to the CPU.

* @param do_copy Set to 1 if should send copy to the CPU

* @param cpu_code If do_copy, this is the code used

* @param bad_packet Set to 1 to flag packet as bad

*

* This allows the programmer to say: If port type is not

* set, this is an error; let me see the packet.

*

* Also allows just a drop of the packet.

*/

int table_indentify_port_default_common_drop_pkt(

uint8_t do_copy,

uint16_t cpu_code,

uint8_t bad_packet);

/**

* @brief Set the default action of the identify port

110

17.6 Examples 17 APPENDICES

* table to set to the given value

* @param port_type The port type associated with the port

* @param ingress_error The value to use for the error indication

*

* This allows the programmer to say "default port type is local"

*/

int table_indentify_port_default_common_set_port_type(

mtag_port_type_t port_type,

uint8_t ingress_error);

/**

* @brief Add an entry to the add mtag table

* @param dst_addr The L2 destination MAC for matching

* @param vid The VLAN ID used for matching

* @param up1 The up1 value to use in the mTag

* @param up2 The up2 value to use in the mTag

* @param down1 The down1 value to use in the mTag

* @param down2 The down2 value to use in the mTag

*/

entry_handle_t table_mTag_table_add_with_add_mTag(

mac_addr_t dst_addr, uint16_t vid,

uint8_t up1, uint8_t up2, uint8_t down1, uint8_t down2);

/**

* @brief Get the number of drops by ingress port and color

* @param ingress_port The ingress port being queried.

* @param color The color being queried.

* @param count (output) The current value of the parameter.

* @returns 0 on success.

*/

int counter_per_color_drops_get(

uint32_t ingress_port,

mtag_meter_levels_t color,

uint64_t *count);

#endif /* MTAG_RUN_TIME_H */

111

17.6 Examples 17 APPENDICES

17.6.2 Adding Hysteresis to mTag Metering with Registers

In the previous section, the mtag-edge switch used metering between local ports and
the aggregation layer. Suppose that network simulation indicated a benefit if hysteresis
could be used with the meters. That is, once the meter was red, packets are discarded
until the meter returned to green (not just to yellow). This can be achieved by adding a
register set parallel to the meters. Each cell in the register set holds the "previous" color
of the meter.

Here are the changes to support this feature. The meter index is stored in local metadata
for convenience.

//

//

// headers.p4: Add the meter index to the local metadata.

//

//

header_type local_metadata_t {

fields {

bit<16> cpu_code; // Code for packet going to CPU

bit<4> port_type; // Type of port: up, down, local...

bit ingress_error; // An error in ingress port check

bit was_mtagged; // Track if pkt was mtagged on ingr

bit copy_to_cpu; // Special code resulting in copy to CPU

bit bad_packet; // Other error indication

bit<8> color; // For metering

bit<8> prev_color; // For metering hysteresis

bit<16> meter_idx; // Index used for metering

}

}

//

// mtag-edge.p4: Declare registers and add table to update them

//

// The register stores the "previous" state of the color.

// Index is the same as that used by the meter.

register prev_color {

width : 8;

// paired w/ meters above

instance_count : PORT_COUNT * PORT_COUNT;

112

17.6 Examples 17 APPENDICES

}

// Action: Update the color saved in the register

action update_prev_color(in bit<8> new_color) {

modify_field(prev_color[local_metadata.meter_idx], new_color);

}

// Action: Override packet color with that from the parameter

action mark_pkt(in bit<8> color) {

modify_field(local_metadata.color, color);

}

// Update meter packet action to save data

action meter_pkt(in int<12> meter_idx) {

// Save index and previous color in packet metadata

modify_field(local_metadata.meter_idx, meter_idx);

modify_field(local_metadata.prev_color, prev_color[meter_idx]);

execute_meter(per_dest_by_source, meter_idx, local_metadata.color);

}

//

// This table is statically populated with the following rules:

// color: green, prev_color: red ==> update_prev_color(green)

// color: red, prev_color: green ==> update_prev_color(red)

// color: yellow, prev_color: red ==> mark_pkt(red)

// Otherwise, no-op.

//

table hysteresis_check {

reads {

local_metadata.color : exact;

local_metadata.prev_color : exact;

}

actions {

update_prev_color;

mark_pkt;

no_op;

}

size : 4;

}

//

113

17.6 Examples 17 APPENDICES

// In the egress control function, check for hysteresis

//

control egress {

// Check for unknown egress state or bad retagging with mTag.

apply(egress_check);
apply(egress_meter) {

hit {

apply(hysteresis_check);
apply(meter_policy);

}

}

}

17.6.3 ECMP Selection Example

This example shows how ECMP can be implemented using an action profile with action
selector.

table ipv4_routing {

reads {

ipv4.dstAddr: lpm;

}

action_profile : ecmp_action_profile;

size : 16384; // 16K possible IPv4 prefixes

}

action_profile ecmp_action_profile {

actions {

nhop_set;

no_op;

}

size : 4096; // 4K possible next hops

dynamic_action_selection : ecmp_selector;

}

// list of fields used to determine the ECMP next hop

field_list l3_hash_fields {

ipv4.srcAddr;

ipv4.dstAddr;

ipv4.protocol;

114

17.7 Addendum for Version 1.1.0 17 APPENDICES

ipv4.protocol;

tcp.sport;

tcp.dport;

}

field_list_calculation ecmp_hash {

input {

l3_hash_fields;

}

algorithm : crc16;

output_width : 16;

}

action_selector ecmp_selector {

selection_key : ecmp_hash;

}

17.7 Addendum for Version 1.1.0

This addendum captures some of the technical discussions going on in the P4 Language
Design working group, for information about possible future directions. It does not con-
tain any official specifications of the P4 language. The working group may or may not
take the technical ideas proposed here into a future P4 specification.

17.7.1 Architecture-language separation

The current P4 specification defines the language relative to an abstract forwarding
model with a specific architecture, as described in Section 1.1. The P4 Language De-
sign group is working towards the separation of language features from architecture
features, and this addendum gives a summary preview of ideas under consideration.
The aim is to ensure that the P4 language specification itself is no longer bound to a par-
ticular target architecture. Instead, the intent is to allow target providers to introduce
different target architectures (which are heterogeneous compositions of programmable
and non-programmable regions) for their targets, while allowing the users of the tar-
gets to program any of the programmable regions in the targets in P4. In doing this,
an important goal is to make it possible to write portable P4 code, with ways to eas-
ily combine that portable code into programs for specific architectures. While target-
specific extensions will be allowed, the mission is to encourage portable programs and
portable implementations. To ensure portability, the P4 working groups will define one
or more standard architecture(s). A P4 program written for a standard architecture will

115

17.7 Addendum for Version 1.1.0 17 APPENDICES

be portable across all the targets conforming to the standard architecture. It is expected
that target vendors will implement extensions with the expectation of (some of) those
extensions may make their way into future versions of the standard architecture.

17.7.2 Targets

A machine that can run a P4 program is called target. While P4 provides a standard
language for describing the logic within programmable regions of a forwarding ele-
ment, the programmable regions that are actually available and the data flow between
those regions can vary from target to target. For example, one target may consist of a
parser, ingress match+action pipeline and egress match+action pipeline, connected in
sequence. Another target may consist of several parser-pipeline pairs, which the packet
may flow through in any order by setting appropriate control signals.

With architecture-language separation, the P4 language itself would address only the
contents of each programmable region. Then the overall P4 framework would provide
the setting for target providers and standards bodies to define architectures that com-
plement the standard architecture(s). To accomplish this, each target would conform
to a Target Architecture, specified partially as a collection of P4 code, and partially as a
set of specifications that describe the P4-programmable regions of the target and how
those regions interact with each other. The latter specifications may involve non-P4
(or possibly extended P4 in the future) rigorous written descriptions and/or simulation
models. Examples of programmable regions would be packet parsers, and pipelines of
tables and actions. The existing P4 abstract forwarding model would be one example of
a standard architecture.

In addition to the Target Architecture specification, there is a Target-Specific Library
specification. This provides definitions of available P4 extern object types (Section 16),
which represent the processing capabilities of the target beyond the standard P4 primi-
tive actions. The functional specifications of these objects may involve non-P4 (or pos-
sibly extended P4 in the future) rigorous written descriptions and/or simulation mod-
els. Examples of these capabilities could include arithmetic functions and checksum
generators.

17.7.3 Target Architecture Structure

The P4 portion of a target architecture description provides prototypes for the pro-
grammable regions of the target. These prototypes specify the input and output in-
terfaces to each region, including the format of metadata passed across each interface.
These interfaces form the connection between the region of P4 code in question and
the surrounding non-P4-programmable regions. For instance, a region of code may

116

17.7 Addendum for Version 1.1.0 17 APPENDICES

receive intrinsic metadata reporting a packet’s ingress port and length, and may write
intrinsic metadata controlling the packet’s egress port and queue priority.

Together with this P4-described portion, the additional non-P4 specification clarifies
the meaning of the context for the P4 portion of the architecture and explains how
these portions fit together. Initially, this is envisaged to be mostly human-language
documentation and visual diagrams to show the flow of data between programmable
regions, though it may also contain pseudocode or simulation models to specify rigor-
ously the behavior of logic not expressible in P4. Looking further out, there has already
been experimentation with some extension of P4 itself, to allow rigorous specification
of the interaction between regions in terms of established P4 mindset and terminol-
ogy.

17.7.4 Target Architecture Selection

A program’s target architecture is selected by including that architecture’s P4 prototypes
in the source code, and then writing structures that conform to the prototypes it spec-
ifies. These structures can make use of the extern object types that are provided in the
accompanying target-specific library.

No one architecture is mandated by the P4 spec, and a given physical target may sup-
port multiple architectures. Some architectures may be written by a target provider and
highly specialized to the underlying machinary, while others may be standardized and
intentionally abstract to allow greater portability and ease-of-use. A particular example
of the latter is that a standard architecture will be defined based on the existing abstract
forwarding model.

An important aspect is that all P4 programs written for a given architecture are portable
across all targets that faithfully implement that architecture (assuming that enough re-
sources are available). P4 conformance of a target is defined as follows: if a specific
target supports a given target architecture, then a program written to that architecture
and executed on the target must provide exactly the same behavior as the same pro-
gram executed on an abstract machine with infinite resources.

In general, P4 programs are not expected to be portable across different architectures.
For example, executing a P4 program that controls packet broadcast by writing special
intrinsic metadata will not work on a target that provides no such intrinsic metadata.
Further, particular targets may not support fully some P4 language constructs (for ex-
ample, some targets may not support features necessary for IPv4 options processing or
arbitrary-length stacked protocol headers). Ideally any restrictions on the P4 language
imposed by a specific target should be clearly documented by the target architecture.
At the very least, restrictions have to be conveyed to P4 programmers using clear com-
piler error messages when attempting to compile programs that use unsupported fea-

117

17.7 Addendum for Version 1.1.0 17 APPENDICES

tures.

17.7.5 Programmable blocks

Programmable blocks are user-defined blocks of P4 code that can be instantiated mul-
tiple times within a program, and interact with the enclosing target architecture by oc-
cupying its programmable regions. Each instance of a programmable block matches a
P4-described prototype in the architecture specification.

Programmable block types. A programmable block type is comprised of a signature
and code body. The body forms a new scope that can contain any normal P4 declara-
tion. The enclosed code is lexically scoped and additionally has access to the external
metadata parameters declared by its input-output signature.

Similarly to header types for example, the objects declared inside a programmable block
type do not actually "exist" inside the program until the block is instantiated. In this
sense, a programmable block type is declaring a "template" of P4 code that can be
stamped down into the program.

Programmable block instances. An instance of a programmable block type repre-
sents concrete resource declarations of the contents of the block. Because of this, blocks
cannot be instantiated dynamically at run time: they are static, compile-time declara-
tions.

When creating an instance, the programmer must bind all of the input-output param-
eters in the type’s signature either to constants or other object names that are currently
in scope.

Multiple instances of the same block type create completely separate instances of the
type’s component objects which the surrounding architecture and/or a runtime API can
refer to using dotted notation.

Programmable block prototypes. Target architectures use programmable blocks to
segment P4 code into the various programmable regions of the underlying target. The
architecture specifies the prototypes of the blocks it expects to be filled in by the pro-
gram. These prototypes specify the signature of a block but leave its implementation
undefined. They are expected to be paired with a concrete programmable block decla-
ration that has a matching signature.

Prototypes may also include type variables, which are resolved to concrete types when
the prototype is paired with its implementation. The identifiers in a prototype’s type
variable list are available as valid types for the parameters in the prototype’s signature.
These type variables provide a mechanism for architectures to pass user-defined types

118

17.7 Addendum for Version 1.1.0 17 APPENDICES

of header instances between P4 code blocks without mandating ahead of time what
those structs are.

A target architecture may specify several prototypes for identical underlying resources
(such as n prototypes for n separately programmable yet functionally identical hard-
ware parsers). A program may use different instances of the same programmable block
to satisfy all of the identical prototypes expected by the architecture.

While not explicitly disallowed, P4 programmers are unlikely to find much benefit from
writing their own prototypes. Their utility is in target architecture specification only.

17.7.6 Standard Library

The P4 portion of a target architecture description provides definitions of its extern ob-
ject types. To promote portability of P4 programs, alongside the standard set of prim-
itive actions, there is a standard library of extern object types for common packet pro-
cessing operations. While targets may provide target-specific libraries that offer more
specific and finely-tuned functionality, this library provides more generalized function-
ality that all targets should be able to support.

In addition, the definition of a standard library of extern object types assists in simplify-
ing the P4 language, since the function of many constructs currently in the language can
be delegated to extern objects, thus simplifying the core P4 language significantly.

Primitive Actions. The primitive actions are standard and expected to be supported
by all targets, regardless of the target architecture being used. The list of library actions
may be a subset of the current P4 list which is given in Section 10.1:

Name Summary
add_header Add a header to the packet’s Parsed Repre-

sentation
copy_header Copy one header instance to another.
remove_header Mark a header instance as invalid.
modify_field Set the value of a field in the packet’s Parsed

Representation.
no_op Placeholder action with no effect.
push Push all header instances in an array down

and add a new header at the top.
pop Pop header instances from the top of an ar-

ray, moving all subsequent array elements
up.

Table 18: Standard Primitive Actions

119

17.7 Addendum for Version 1.1.0 17 APPENDICES

Parser Exceptions. The parser exceptions are standard, regardless of target architec-
ture. The prefix "pe" stands for parser exception. The list of parser exceptions may be a
superset of the current P4 list which is given in Section 5.6:

Identifier Exception Event
p4_pe_index_out_of_bounds A header stack array index exceeded the declared

bound.
p4_pe_out_of_packet There were not enough bytes in the packet to com-

plete an extraction operation.
p4_pe_header_too_long A calculated header length exceeded the declared

maximum value.
p4_pe_header_too_short A calculated header length was less than the min-

imum length of the fixed length portion of the
header.

p4_pe_unhandled_select A select statement had no default specified but the
expression value was not in the case list.

p4_pe_data_overwritten A given header instance was extracted multiple
times.

p4_pe_checksum A checksum error was detected.
p4_pe_default This is not an exception itself, but allows the pro-

grammer to define a handler to specify the default
behavior if no handler for the condition exists.

Table 19: Standard Parser Exceptions

Stateful Objects. Counters, meters and registers maintain state for longer than one
packet. Together they are called stateful memories. These are described in Section 8.
They are accessed via respective extern object types in the standard library. Generic
method calls on these objects replace the earlier custom P4 syntax.

Checksums and Calculations. Checksums and hash value generators are examples of
functions that operate on a stream of bytes from a packet to produce an integer. These
are described in Section 4. They are accessed via respective extern object types in the
standard library. Generic method calls on these objects replace the earlier custom P4
syntax.

Action profiles. In some instances, action parameter values are not specific to a match
entry but could be shared between different entries. Some tables might even want to
share the same set of action parameter values. This can be expressed in P4 with action
profiles. These are described in Section 11. They are accessed via an extern object type
in the standard library. Generic method calls on these objects replace the earlier custom
P4 syntax. Action profiles are an example of a table modifier extern object type.

120

17.7 Addendum for Version 1.1.0 17 APPENDICES

Digests. Digests serve as a generic mechanism to send data from the middle of a
P4 block to an external non-P4 receiver. This receiver can be anything from a fixed-
function piece of hardware to a control-plane function. The generate_digest primitive
action is described in Section 10.1. This is accessed via an extern object type in the
standard library. A generic method call on such objects replaces the earlier custom P4
action.

17.7.7 Standard Switch Architecture

The Standard Switch Architecture defines a highly abstract packet forwarding architec-
ture geared towards packet switching. It serves as:

• An example P4 target architecture specification; and

• A widely supported architecture for simple yet portable P4 programs

While this architecture is designed primarily to allow the expression of packet switching
programs, it is flexible enough to implement more advanced behavior. Other simple ar-
chitectures geared towards different environments, such as NICs, could also be defined.
The architecture is described in Section 1.1. As for all targets, there is an associated
Standard Switch Library, containing extern type objects.

Programmable regions. The Standard Switch Architecture has three P4-programmable
regions: parser, ingress, and egress. It provides prototypes for these. Note that this gives
a more explicit meaning to the blocks declared in traditional P4 programs. A draft form
of the intrinsic metadata associated with the various interfaces to these regions is given
next, to give more detail on how this works. The metadata is defined using standard P4
header_type ojects.

Intrinsic Metadata. All three blocks receive a read-only metadata header containing
basic information about the packet:

header_type packet_metadata_t {

fields {

bit<16> ingress_port; // The port on which the packet arrived.

bit<16> length; // The number of bytes in the packet.

// For Ethernet, does not include the CRC.

// Cannot be used if the switch is in

// ’cut-through’ mode.

bit<8> type; // Represents the type of instance of

// the packet:

// - PACKET_TYPE_NORMAL

// - PACKET_TYPE_INGRESS_CLONE

// - PACKET_TYPE_EGRESS_CLONE

121

17.7 Addendum for Version 1.1.0 17 APPENDICES

// - PACKET_TYPE_RECIRCULATED

// Specific compilers will provide macros

// to give the above identifiers the

// appropriate values

}

}

The ingress block also receives the exit result of the parser:

header_type parser_status_t {

fields {

bit<16> return_code; // The final status of the parser.

// 0 if parser returned ’accept’

// TODO: Define other values

bit<8> user_error_data; // An opaque value written by

// user-defined parser exceptions

}

}

The ingress block’s output intrinsic metadata controls how the packet will be forwarded,
and possibly replicated:

header_type ingress_pipe_controls_t {

fields {

bit<16> egress_spec; // Specification of an egress.

// This is the ’intended’ egress as

// opposed to the committed physical

// port(s).

//

// May be a physical port, a logical

// interface (such as a tunnel, a LAG,

// a route, or a VLAN flood group) or

// a multicast group.

bit drop; // Do not send the packet on to the

// queueing system. Other functions

// like copy-to-cpu and clone will

// still occur.

bit copy_to_cpu; // Send a copy of the packet to the

// slow path.

bit<8> cpu_code; // Opaque identifier packaged with

// the packet, when sending to the

// slow path.

122

17.7 Addendum for Version 1.1.0 17 APPENDICES

}

}

The egress block receives further read-only information about the packet determined
while it was in the queueing system:

header_type egress_aux_packet_metadata_t {

fields {

bit<16> egress_port; // The physical port to which this

// packet instance is committed.

bit<16> egress_instance; // An opaque identifier differentiating

// instances of a replicated packet.

}

}

The egress block’s output intrinsic metadata no longer has access to the egress spec for
writing, since the packet has already been committed to a physical port:

header_type egress_pipe_controls_t {

fields {

bit drop; // Do not send the packet out of its

// egress port. Other functions

// like copy-to-cpu and clone will

// still occur.

bit copy_to_cpu; // Send a copy of the packet to the

// slow path.

bit<8> cpu_code; // Opaque identifier packaged with

// the packet, when sending to the

// slow path.

bit recirculate // If true, recirculate packet to

// ingress parser

}

}

Egress Port Selection, Replication and Queuing. The Standard Switch Architecture’s
egress mechanism is as described in Section 14. This is a mechanism that is provided
by this particular architecture, rather than something inherent to P4.

Cloning, Mirroring, Resubmission and Recirculation. The Standard Switch Archi-
tecture’s cloning, mirroring, and resubmission and recirculation mechanism are as de-
scribed in Section 15. These involve extern object types that are provided by the associ-
ated Standard Switch library, rather than actions inherent to P4.

123

17.8 References 17 APPENDICES

17.8 References

[1] Bosshart, et al. P4: Programming Protocol-Independent Packet Processors. Computer
Communication Review, July 2014. http://www.sigcomm.org/ccr/papers/2014/July/
0000000.0000004.

[2] The P4 Language Consortium web site. http://www.p4.org.

124

http://www.sigcomm.org/ccr/papers/2014/July/0000000.0000004
http://www.sigcomm.org/ccr/papers/2014/July/0000000.0000004
http://www.p4.org

	Introduction
	The P4 Abstract Model
	The mTag Example
	Specification Conventions

	Structure of the P4 Language
	Abstractions
	Value Specifications
	Types and declarations
	P4 data types
	Principles
	Base types
	Portability
	No saturated types
	Boolean
	Unsigned integers (bit-strings)
	Signed Integers
	Dynamically-sized bit-strings
	Infinite-precision integers
	Integer literal types

	Base type operations
	Computations on Boolean values
	Operations on unsigned fixed-width integers
	Operations on signed fixed-width integers
	A note about shifts
	varbit operations
	Operations on arbitrary-precision integers

	Casts
	Explicit casts
	Implicit casts
	Illegal expressions

	References
	Expressions
	Pragma

	Headers and Fields
	Header Type Declarations
	Header and Metadata Instances
	Testing if Header and Metadata Instances are Valid
	Header Stacks

	Header and Field References
	Field Lists

	Checksums and Hash-value generators
	Checksums

	Parser Specification
	Parsed Representation
	Parser Operation
	Value Sets
	Parser Function BNF
	The extract Function
	Parser Exceptions
	Standard Parser Exceptions
	Default Exception Handling

	Deparsing
	Standard Intrinsic Metadata
	Counters, Meters and Registers
	Counters
	Meters
	Registers

	Match+Action Table Overview
	Actions
	Primitive Actions
	Parameter Binding

	Action Definitions
	Sequential Execution Semantics

	Action profile declarations
	Table Declarations
	Packet Processing and Control Flow
	Egress Port Selection, Replication and Queuing
	Recirculation and Cloning
	Clone
	Clone to Ingress
	Clone to Egress
	Mirroring

	Resubmit and Recirculate

	Extern objects
	Extern types
	Extern Instances

	Appendices
	Programming Conventions
	Revision History
	Summary of changes introduced in 1.1.0

	Terminology (Incomplete)
	Summary of P4 BNF
	P4 Reserved Words
	Examples
	The Annotated mTag Example
	Adding Hysteresis to mTag Metering with Registers
	ECMP Selection Example

	Addendum for Version 1.1.0
	Architecture-language separation
	Targets
	Target Architecture Structure
	Target Architecture Selection
	Programmable blocks
	Standard Library
	Standard Switch Architecture

	References

