
Pegasus: Load-Aware Selective
Replication with an In-Network

Coherence Directory
Jialin Li, Jacob Nelson, Ellis Michael,

Xin Jin, and Dan R. K. Ports

Many workloads are
skewed and dynamic

Skewed workloads lead to
load imbalance

One approach: use caching
to handle skewed workloads

Caching Layer

GETGETGET

Limitations of Caching

• Caching layer needs to be magnitude-faster [Fan et
al. ’11]

• Building such a layer for fast in-memory storage systems is
challenging!

• Only effective for read-heavy workloads

Pegasus’ Approach

network
primitive

distributed
protocol

Selective
Replication

In-Network
Coherence Directory

provable load balancing for both read-heavy
and write-heavy workloads

Selective Replication
GETGETGETGETGETGET

Q: How many objects
should we replicate?

Replicate
More Objects

Replicate
Fewer Objects

Storage
Overhead High

Load
Balancing Strong

Storage
Overhead Low

Load
Balancing Weak

We only need to replicate the most popular
O(nlogn) objects

n is the number of storage servers

(generalization of previous result [Fan et al. ’11])

Forward request to the least-loaded server

Challenges of Selective
Replication

• How to track the most popular O(nlogn) objects?

• Object popularity changes constantly

• How to manage the replica set?

• How to route requests to the least loaded server?

• How to ensure consistency?

Our Solution:
In-Network Coherence Directory

What is a
coherence directory?

• Widely used in multi-processor architectures and
distributed shared memory systems

• Tracks state of each cache block and location of
shared copies

• Coordinates coherence protocol

Coherence directory applies
nicely to selective replication

Coherence Directory

Obj ID Replica Set

A1

B4

D2

S1

S2 S1 S0

S0 S2

READ D2

forward to
S2can be implemented efficiently on

programmable switches

Implementing coherence directory
in the network

Match pkt.obj = A1 pkt.obj = B4 pkt.obj = D2

Action index = 0 index = 1 index = 2

Lookup
Table

S1 S2 S0

0 1 2

S1 S2

S0

Reg Array 0

Reg Array 1

Reg Array 2

Replica
Set

Match server ID = S0 server ID = S1 server ID = S2

Action pkt.dst = 10.0.0.1 pkt.dst = 10.0.0.5 pkt.dst = 10.0.0.7

Forwarding
Table

READ D2

Challenges of In-Network
Coherence Directory

• Track which server has the minimum load
• Switch-based load prediction

• Track most popular O(nlogn) objects

• Balance load for writes
• Dynamic replica set

• Ensure strong consistency
• Version-based coherence protocol

99
%

 L
at

en
cy

 (u
s)

0

500

1000

1500

2000

2500

Zipf Skewness

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Load balancing under highly
skewed workloads

Consistent Hashing

Pegasus

more than 60x median,
drops 40% requests

more than 30x
improvement

NetCache

<10% increase
vs uniform
workload

Load balancing under
different read/write ratios

Th
ro

ug
hp

ut
 (M

op
s/

s)

0

3.5

7

10.5

14

Write Ratio

0 0.2 0.4 0.6 0.8 1.0
Consistent Hashing

NetCache

Pegasus

throughput
drop by > 90%

more than 9x
improvement

Summary
• Use programmable switch to improve load

balancing of storage systems

• Selectively replicate the most popular objects

• Build in-network coherence directories to manage
replicated objects

• 9x throughput improvement compared to
consistent hashing

