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Increasingly
sophisticated
models

Machine
Learning

Increasingly Increasingly
faster larger
accelerators datasets

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,
each with many HW accelerators (GPUs)

Training models is still time-consuming: hours, days or even weeks!
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Can the network be
the ML accelerator?



Outline

* The distributed training process
* In-network aggregation design
* Evaluation

 Future work and conclusion



Data-parallel distributed training

Worker 1

Local copy of model

Worker 2

Local copy of model




Phase 1: Workers learn independently

Worker 1 Worker 2
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Phase 2: Workers exchange what they’ve learned

Worker 1 Worker 2
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Aggregation is communication-intensive

~100 ms Worker 1 Worker 2 "’100 ms
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~100’s of MB

100s of MBs
in
each iteration
- ~800-1000ms




Aggregation is communication-intensive

If only | could o
Problem: help... h training
Intensive, all-to-all eneck to the

|
communication! by network!
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Worker 1 updates Worker 2 updates Worker N updates
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SwitchML: the network is the ML accelerator

Worker 1

<

Worker 2

Worker 3
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Switch

Worker 4

Aggregate model
updates in-network




Co-design ML and networking for efficiency

Challenges Design
</ > Limited storage * Pool-based streaming aggregation
i' Limited computation * Combined switch-host architecture
%% No floating point * Quantized integer operations
@ Packet loss * Failure-recovery protocol
T

" 6.5 Tbps
y, programmable
| data plane



Streaming aggregation with a pool

Worker 1
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Pool

~10’s — 100’s of KB




Combined switch-host architecture
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Worker Responsibilities

* Chunking up vectors
e Quantization and scaling
* Detecting and recovering from
packet drops

Thread J NIC\

SWITCH

SLOT
SELECTION

Switch Responsibilities

* Integer vector addition (32
elements per packet)
* Counting and comparison
to detect complete slots
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Quantization

Convert floating point to 32-bit fixed-point values Z}Jf _ round(sf . Uji)

Updates are scaled by multiplying for a scaling factor sf ZJZ _ A]i-/sf

Approach 1: (restricted) 16-bit floating point <= 32-bit fixed point conversion
— Directly in the switch

Approach 2: 32-bit floating point < 32-bit fixed point conversion
— At workers with AVX instructions

With single scaling factor obtained by profiling
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network for a large range of scaling factors e

Scaling factor



Packet loss tolerance

* Packet loss can happen in two directions

* Workers detect losses using timers [ %)

* Lost packets are retransmitted = ~
* A model update must not be applied twice

* A model update must not be applied to a “full” slot

* Workers’ per-slot contributions tracked with a bitmap
* Ignores duplicates

* Shadow copy of the previous result for a slot
e Retransmits a dropped result packet




Implementation

e Switch program written in P4 for Barefoot Tofino p

* End-host C++ library providing a familiar all-reduce API

e Kernel bypass
2)DPDK
R

&
* We have integrated SwitchML with: I.
e TensorFlow using Horovod, Tensor O QA orover A @

* PyTorch/Caffe2 using Gloo Q Caffe?2




Evaluation

Testbed:

e 16 servers (8 w/ P100 GPUs)
10 Gbps (Intel 82599ES)
100 Gbps (Mellanox Connect-X 5)

* 64 x 100 Gbps switch (Barefoot Tofino)

* Models:
9 standard CNN benchmarks

* Training on ImageNet
(except synthetic data with AlexNet)

* Compared with TensorFlow using the Nvidia
Collective Comm. Library (NCCL)




How much faster is SwitchML?

SwitchML provides a speedup from 20% to 300%
compared to Tensorflow/NCCL (with direct GPU memory access)
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How does SwitchML scale with the number of workers?

SwitchML performance does not
depend on the number of workers
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How does SwitchML perform with packet losses?

TAT inflation

SwitchML has a lower inflation than TCP

Reasonable packet loss rates have no
impact on performance
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Future work

* Multi-rack
e Can we use multiple switches to implement hierarchical SwithML?

* Multiple jobs, multiple tenants
e Can we support the multiple jobs in the same rack by partitioning slots?

* Better numeric representations
* Can we quantize without having to choose a scaling factor?

* More data per packet
* Full MTU packets would provide ~31% better performance.



Summary

* SwitchML uses in-network aggregation to L DY

synchronize model updates
* Reduce network traffic volume and latency
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How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers
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Packet loss tolerance
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* Workers contribution per-slot tracked with a bitmap

* Ignores duplicates

e Shadow copy of the previous result for a slot
* Retransmits a dropped result packet




How does SwitchML perform with packet losses?
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TAT [ms]

Does quantization affects aggregation speed?

Tensor Aggregation Time unaffected by quantization thanks to AVX instructions
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How much does packet size affect performance?

SwitchML reaches line rate with small packets

Would have ~30% better performance if the switch could support MTU-sized packets
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Quantization

Convert floating point to 32-bit fixed-point values

Updates are scaled by multiplying for a scaling factor sf

U} = round(sf * U}) Al = A /sf

32-bit floating point <» 32-bit fixed point conversion — At workers with AVX instructions

16-bit floating point «<» 32-bit fixed point conversion — Directly in the switch
* Scaling is still done by the worker using AVX instructions

This quantization allows training to similar accuracy in
a similar number of iterations as an unquantized
network for a large range of scaling factors

Scaling factor



Aggregation is communication-intensive

Worker 1 Worker 2
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Problem: \-/

Very intensive communication in all-to-all fashion!
Network increasingly the bottleneck to training speed




