Scaling Distributed Machine
Learning
with In-Network Aggregation

Jacob Nelson with

Amedeo Sapio”, Marco Canini*, Chen-Yu Ho", Panos Kalnis*, Changhoon Kim?*,
Arvind Krishnamurthy®, Masoud Moshref*, Dan R. K. Ports, Peter Richtarik”

Microsoft Research *KAUST *Barefoot Networks “University of Washington

. alllasc Ellall deala

m~ Microsoft cntomes BAREFCOET YA s

Science and Technology NETWORKS WAS H I NGTO N

(@

Increasingly
sophisticated
models

Machine
Learning

Increasingly Increasingly
faster larger
accelerators datasets

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,
each with many HW accelerators (GPUs)

Training models is still time-consuming: hours, days or even weeks!

. 4 — s
Scaling g oo

1314 1315 159,

Machine
Learning

Can the network be
the ML accelerator?

Outline

* The distributed training process
* In-network aggregation design
* Evaluation

 Future work and conclusion

Data-parallel distributed training

Worker 1

Local copy of model

Worker 2

Local copy of model

Phase 1: Workers learn independently

Worker 1 Worker 2

A

1
| B

Phase 2: Workers exchange what they’ve learned

Worker 1 Worker 2

AAVAVA | |~ AV
N | IIII

C—)

3
=

Aggregation is communication-intensive

~100 ms Worker 1 Worker 2 "’100 ms

EEE-| - DEEE .

~100’s of MB

100s of MBs
in
each iteration
- ~800-1000ms

Aggregation is communication-intensive

If only | could o
Problem: help... h training
Intensive, all-to-all eneck to the

|
communication! by network!

i

(A4 27 [N 2%

Worker 1 updates Worker 2 updates Worker N updates

- . : e = \‘
A
4 My S 1\
) ,"" / ", (1 ‘|'J ',“ [| |] H | .)
111l VI'.""!“ ! /] -

/] "‘.s . - /] Ui / ,’}7 ’ | d ‘ ! 4 -4#:-. ”
. i '; fo- J.l-:.. -y 0 }!; T f I" , | | u —\é.
%‘, fHiee L] T - W
o, /r f ” . ‘.g 7Y
? 9
' PPy — - —
4 .__ — -
= 3’: e
= .ﬁ: e = e = === -
- - aw — m———
- = - - =
I :
>

e %
1/00/ Gbps

line rate
6.5 Thps

processing

Programmable data plane | <5
switches to the rescue! \

SwitchML: the network is the ML accelerator

Worker 1

<

Worker 2

Worker 3

\\} /¥

Switch

Worker 4

Aggregate model
updates in-network

Co-design ML and networking for efficiency

Challenges Design
</ > Limited storage * Pool-based streaming aggregation
i' Limited computation * Combined switch-host architecture
%% No floating point * Quantized integer operations
@ Packet loss * Failure-recovery protocol
T

" 6.5 Tbps
y, programmable
| data plane

Streaming aggregation with a pool

Worker 1

A

1
| B

~100’s of MB :

Wor

Ker 2

(

Pool

~10’s — 100’s of KB

Combined switch-host architecture

-

4 WORKER

Worker Responsibilities

* Chunking up vectors
e Quantization and scaling
* Detecting and recovering from
packet drops

Thread J NIC\

SWITCH

SLOT
SELECTION

Switch Responsibilities

* Integer vector addition (32
elements per packet)
* Counting and comparison
to detect complete slots

SWITCH POO

)

Quantization

Convert floating point to 32-bit fixed-point values Z}Jf _ round(sf . Uji)

Updates are scaled by multiplying for a scaling factor sf ZJZ _ A]i-/sf

Approach 1: (restricted) 16-bit floating point <= 32-bit fixed point conversion
— Directly in the switch

Approach 2: 32-bit floating point < 32-bit fixed point conversion
— At workers with AVX instructions

With single scaling factor obtained by profiling

;\370
S
This quantization allows training to similar accuracy in g0]

5 40 A

9]

a similar number of iterations as an unquantized <30 |
network for a large range of scaling factors e

Scaling factor

Packet loss tolerance

* Packet loss can happen in two directions

* Workers detect losses using timers [%)

* Lost packets are retransmitted = ~
* A model update must not be applied twice

* A model update must not be applied to a “full” slot

* Workers’ per-slot contributions tracked with a bitmap
* Ignores duplicates

* Shadow copy of the previous result for a slot
e Retransmits a dropped result packet

Implementation

e Switch program written in P4 for Barefoot Tofino p

* End-host C++ library providing a familiar all-reduce API

e Kernel bypass
2)DPDK
R

&
* We have integrated SwitchML with: I.
e TensorFlow using Horovod, Tensor O QA orover A @

* PyTorch/Caffe2 using Gloo Q Caffe?2

Evaluation

Testbed:

e 16 servers (8 w/ P100 GPUs)
10 Gbps (Intel 82599ES)
100 Gbps (Mellanox Connect-X 5)

* 64 x 100 Gbps switch (Barefoot Tofino)

* Models:
9 standard CNN benchmarks

* Training on ImageNet
(except synthetic data with AlexNet)

* Compared with TensorFlow using the Nvidia
Collective Comm. Library (NCCL)

How much faster is SwitchML?

SwitchML provides a speedup from 20% to 300%
compared to Tensorflow/NCCL (with direct GPU memory access)

4
B 10 Gbps == 100 Gbps
3 2.6 P PS 3,4 .8 28 2726
o 2.2 2.2
gg)_Z 1314 1315 15,5, L2 L
1 i - — - — — -
N
T \ \ | |
\9 X G Y Q © 9
2 \Z o® 0(\ ® g Q\ g'\‘
\et et o O et o \|Q NI SINTe\
° (300(; \ (\CeQ \ (\C Q (6(\

model

How does SwitchML scale with the number of workers?

SwitchML performance does not
depend on the number of workers

o 200 S ———————— N s S
o - = T X
— B SwitchML
‘>'<’ :: o e Gloo
v 100 == P g - EEE NCCL
LL] > .
|<_t 1
0

How does SwitchML perform with packet losses?

TAT inflation

SwitchML has a lower inflation than TCP

Reasonable packet loss rates have no
impact on performance

10.0 -

=

o
H

&
|

|mmm SwitchML m=m Gloo

mm NCCL ==

0.1%
Loss rate

1%

Future work

* Multi-rack
e Can we use multiple switches to implement hierarchical SwithML?

* Multiple jobs, multiple tenants
e Can we support the multiple jobs in the same rack by partitioning slots?

* Better numeric representations
* Can we quantize without having to choose a scaling factor?

* More data per packet
* Full MTU packets would provide ~31% better performance.

Summary

* SwitchML uses in-network aggregation to L DY

synchronize model updates
* Reduce network traffic volume and latency

I [T EEEE

P .. o

SvyltchML speeds up training up to 300% TN AT

with real-world DNN benchmarks amEn | | e DDDlllnz
* Aggregation time does not depend on the E

number of workers

N I T i”l
* Preprint on arXiv: https://aka.ms/switchm| o=+ =~ 3 b O gxe g@
a\e*‘\g og\e“ 9‘\0:@9‘ 0:\ 5(\@‘ ey NS IGINTS)

model

https://aka.ms/switchml

How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers

N
o
o

ATE/s (x10°)
—
o
o

ATE/s (x10°)
-]
(@]
o
o

10 Gbps
------ SRR EE S
- l T N f
; 8 16
100 Gbps
- - -
; 3 16

Number of workers

SwitchML

Gloo

NCCL

Dedicated PS
Colocated PS
ATE/s at line rate

ATE/s at line rate
(ring all-reduce)

Packet loss tolerance

wl w2 w3wl w2 w3

wlw2 w3

W\ AN RN/

(ignored) (ignored)

(retransmission)

Aggregation Result Distribution Aggregation
Pool O 111 000
Aggregation Result Distribution
Pool 1 111

/] / \\\

wlw2 w3

wl w2 w3

time

* Workers contribution per-slot tracked with a bitmap

* Ignores duplicates

e Shadow copy of the previous result for a slot
* Retransmits a dropped result packet

How does SwitchML perform with packet losses?

5 mE SwitchML Gloo mmm NCCL =
£10.0 1 = | L
g 100 — F _ SwitchML has a lower inflation than TCP
- o —_
< l0f = == = L .
0.01% 0.1% 1%
Loss rate
vw T _—_—_—,———
£ 60000 HAEEEEEEEEERY 130 ms —— 0% ideal packet rate
S —8— 0691%_*_ O(.)})l% resent
- —=— 1 —— 1% resent
Reasonable packet loss rates have no | @ 40000 138 ms : 0
impact on performance N
© 20000 424 ms
QO
((v)
Q 0 -

0 50 100 150 200 250 300 350 400
time [ms]

TAT [ms]

Does quantization affects aggregation speed?

Tensor Aggregation Time unaffected by quantization thanks to AVX instructions

2000 - B SwitchML Gloo mmm SwitchML (16)
------- TAT at line rate
1000 v+—+F—7——+ e TAT at line rate (16)
) ——— BA———————S——
INt32 float32 floatl6

Data type

How much does packet size affect performance?

SwitchML reaches line rate with small packets

Would have ~30% better performance if the switch could support MTU-sized packets

B SwitchML |
B SwitchML (MTU) 4
600 {mmm Dedicated PS (MTU) T — e

[T — TAT at line rate
S TAT at line rate (MTU) | | L L
- 400 - —
< | I
I'— == ke

200 +—m—m——— e =l

TR
50 MB 100 MB 250 MB 500 MB

Tensor size

Quantization

Convert floating point to 32-bit fixed-point values

Updates are scaled by multiplying for a scaling factor sf

U} = round(sf * U}) Al = A /sf

32-bit floating point <» 32-bit fixed point conversion — At workers with AVX instructions

16-bit floating point «<» 32-bit fixed point conversion — Directly in the switch
* Scaling is still done by the worker using AVX instructions

This quantization allows training to similar accuracy in
a similar number of iterations as an unquantized
network for a large range of scaling factors

Scaling factor

Aggregation is communication-intensive

Worker 1 Worker 2

|| A
DEN:| -DOEEEC
—)

Problem: \-/

Very intensive communication in all-to-all fashion!
Network increasingly the bottleneck to training speed

