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Machine 
Learning

Increasingly
sophisticated

models

Increasingly
larger

datasets

Increasingly 
faster 

accelerators

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,

each with many HW accelerators (GPUs)

Training models is still time-consuming: hours, days or even weeks!



Scaling 
Machine 
Learning

A KAUST 
collaboration 

with

Can the network be 
the ML accelerator?



Outline
• The distributed training process
• In-network aggregation design
• Evaluation
• Future work and conclusion



Data-parallel distributed training

Worker 1 Worker 2

Local copy of model Local copy of model

A2A1



Phase 1: Workers learn independently

Worker 1 Worker 2

A2A1

U2U1



Phase 2: Workers exchange what they’ve learned

Worker 1 Worker 2

A2A1

U2U1



Aggregation is communication-intensive

Worker 1 Worker 2

A2A1

U2U1

~100 ms ~100 ms

100s of MBs
in

each iteration
à ~800-1000ms

~100’s of MB



Aggregation is communication-intensive

Worker 1 updates Worker 2 updates
…

Worker N updates
9

Problem:
Intensive, all-to-all 

communication!

Faster GPUs push training 
speed bottleneck to the 

network!

If only I could 
help…



Programmable data plane 
switches to the rescue!

6.5 Tbps

100 Gbps 
line rate 

processing



SwitchML: the network is the ML accelerator

Switch

Worker 1 Worker 4Worker 2 Worker 3

Aggregate model 
updates in-network



Co-design ML and networking for efficiency

6.5 Tbps
programmable 

data plane

Challenges
Limited storage
Limited computation
No floating point
Packet loss

Design
• Pool-based streaming aggregation
• Combined switch-host architecture
• Quantized integer operations
• Failure-recovery protocol



Streaming aggregation with a pool

Switch

U2U1

A2A1

Worker 1 Worker 2

Pool

~100’s of MB

~10’s – 100’s of KB



SWITCH
WORKER

NIC

Combined switch-host architecture
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Switch Responsibilities

• Integer vector addition (32 
elements per packet)

• Counting and comparison 
to detect complete slots

Worker Responsibilities

• Chunking up vectors
• Quantization and scaling

• Detecting and recovering from 
packet drops



Quantization
• Convert floating point to 32-bit fixed-point values
• Updates are scaled by multiplying for a scaling factor !"
• Approach 1: (restricted) 16-bit floating point ↔ 32-bit fixed point conversion 

→ Directly in the switch
• Approach 2: 32-bit floating point ↔ 32-bit fixed point conversion

→ At workers with AVX instructions
With single scaling factor obtained by profiling

This quantization allows training to similar accuracy in 
a similar number of iterations as an unquantized 
network for a large range of scaling factors

#$%& = ()*+, !" ∗ $%&
#.%& = /.%& !"



Packet loss tolerance
• Packet loss can happen in two directions
• Workers detect losses using timers
• Lost packets are retransmitted
• A model update must not be applied twice 
• A model update must not be applied to a “full” slot

• Workers’ per-slot contributions tracked with a bitmap
• Ignores duplicates

• Shadow copy of the previous result for a slot
• Retransmits a dropped result packet



Implementation

• Switch program written in P4 for Barefoot Tofino 

• End-host C++ library providing a familiar all-reduce API
• Kernel bypass

• We have integrated SwitchML with:
• TensorFlow using Horovod,
• PyTorch/Caffe2 using Gloo



Evaluation
Testbed:
• 16 servers (8 w/ P100 GPUs)

10 Gbps (Intel 82599ES)
100 Gbps (Mellanox Connect-X 5)

• 64 x 100 Gbps switch (Barefoot Tofino)

• Models:
• 9 standard CNN benchmarks
• Training on ImageNet

(except synthetic data with AlexNet)
• Compared with TensorFlow using the Nvidia 

Collective Comm. Library (NCCL)



How much faster is SwitchML?

SwitchML provides a speedup from 20% to 300% 
compared to Tensorflow/NCCL (with direct GPU memory access)



How does SwitchML scale with the number of workers? 

SwitchML performance does not 
depend on the number of workers



How does SwitchML perform with packet losses?

SwitchML has a lower inflation than TCP Reasonable packet loss rates have no 
impact on performance



Future work
• Multi-rack
• Can we use multiple switches to implement hierarchical SwithML?

• Multiple jobs, multiple tenants
• Can we support the multiple jobs in the same rack by partitioning slots?

• Better numeric representations
• Can we quantize without having to choose a scaling factor?

• More data per packet
• Full MTU packets would provide ~31% better performance.



Summary

• SwitchML uses in-network aggregation to 
synchronize model updates
• Reduce network traffic volume and latency

• SwitchML speeds up training up to 300% 
with real-world DNN benchmarks

• Aggregation time does not depend on the 
number of workers

• Preprint on arXiv: https://aka.ms/switchml

∑

https://aka.ms/switchml




How does SwitchML scale with the number of workers? 

SwitchML performance does not depend on the number of workers



Aggregation
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Packet loss tolerance

Aggregation
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• Workers contribution per-slot tracked with a bitmap
• Ignores duplicates

• Shadow copy of the previous result for a slot
• Retransmits a dropped result packet



How does SwitchML perform with packet losses?

SwitchML has a lower inflation than TCP 

Reasonable packet loss rates have no 
impact on performance



Does quantization affects aggregation speed?

Tensor Aggregation Time unaffected by quantization thanks to AVX instructions



How much does packet size affect performance?

SwitchML reaches line rate with small packets
Would have ~30% better performance if the switch could support MTU-sized packets



Quantization
• Convert floating point to 32-bit fixed-point values
• Updates are scaled by multiplying for a scaling factor !"

#$%& = ()*+, !" ∗ $%& #.%& = /.%& !"

• 32-bit floating point ↔ 32-bit fixed point conversion → At workers with AVX instructions
• 16-bit floating point ↔ 32-bit fixed point conversion → Directly in the switch

• Scaling is still done by the worker using AVX instructions

This quantization allows training to similar accuracy in 
a similar number of iterations as an unquantized 
network for a large range of scaling factors



Aggregation is communication-intensive

Worker 1 Worker 2

A2A1

U2U1

Problem:
Very intensive communication in all-to-all fashion!

Network increasingly the bottleneck to training speed


