
Scaling Distributed Machine
Learning

with In-Network Aggregation
Jacob Nelson with

Amedeo Sapio*, Marco Canini*, Chen-Yu Ho*, Panos Kalnis*, Changhoon Kim‡,
Arvind Krishnamurthy◊, Masoud Moshref‡, Dan R. K. Ports, Peter Richtárik*

Microsoft Research *KAUST ‡Barefoot Networks ◊University of Washington

Machine
Learning

Increasingly
sophisticated

models

Increasingly
larger

datasets

Increasingly
faster

accelerators

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,

each with many HW accelerators (GPUs)

Training models is still time-consuming: hours, days or even weeks!

Scaling
Machine
Learning

A KAUST
collaboration

with

Can the network be
the ML accelerator?

Outline
• The distributed training process
• In-network aggregation design
• Evaluation
• Future work and conclusion

Data-parallel distributed training

Worker 1 Worker 2

Local copy of model Local copy of model

A2A1

Phase 1: Workers learn independently

Worker 1 Worker 2

A2A1

U2U1

Phase 2: Workers exchange what they’ve learned

Worker 1 Worker 2

A2A1

U2U1

Aggregation is communication-intensive

Worker 1 Worker 2

A2A1

U2U1

~100 ms ~100 ms

100s of MBs
in

each iteration
à ~800-1000ms

~100’s of MB

Aggregation is communication-intensive

Worker 1 updates Worker 2 updates
…

Worker N updates
9

Problem:
Intensive, all-to-all

communication!

Faster GPUs push training
speed bottleneck to the

network!

If only I could
help…

Programmable data plane
switches to the rescue!

6.5 Tbps

100 Gbps
line rate

processing

SwitchML: the network is the ML accelerator

Switch

Worker 1 Worker 4Worker 2 Worker 3

Aggregate model
updates in-network

Co-design ML and networking for efficiency

6.5 Tbps
programmable

data plane

Challenges
Limited storage
Limited computation
No floating point
Packet loss

Design
• Pool-based streaming aggregation
• Combined switch-host architecture
• Quantized integer operations
• Failure-recovery protocol

Streaming aggregation with a pool

Switch

U2U1

A2A1

Worker 1 Worker 2

Pool

~100’s of MB

~10’s – 100’s of KB

SWITCH
WORKER

NIC

Combined switch-host architecture

Thread

Thread

Thread

Thread

Te
ns

or
 U

pd
at

e

METADATA

UPDATE 1

UPDATE 2

UPDATE 3

UPDATE 4

UPDATE 5

UPDATE 6

UPDATE 7

…

UPDATE 32

SWITCH POOL

SLOT
SELECTION

Stage

+

+

+

+

+

+

+

+

+

Stage
Stage

Switch Responsibilities

• Integer vector addition (32
elements per packet)

• Counting and comparison
to detect complete slots

Worker Responsibilities

• Chunking up vectors
• Quantization and scaling

• Detecting and recovering from
packet drops

Quantization
• Convert floating point to 32-bit fixed-point values
• Updates are scaled by multiplying for a scaling factor !"
• Approach 1: (restricted) 16-bit floating point ↔ 32-bit fixed point conversion

→ Directly in the switch
• Approach 2: 32-bit floating point ↔ 32-bit fixed point conversion

→ At workers with AVX instructions
With single scaling factor obtained by profiling

This quantization allows training to similar accuracy in
a similar number of iterations as an unquantized
network for a large range of scaling factors

#$%& = ()*+, !" ∗ $%&
#.%& = /.%& !"

Packet loss tolerance
• Packet loss can happen in two directions
• Workers detect losses using timers
• Lost packets are retransmitted
• A model update must not be applied twice
• A model update must not be applied to a “full” slot

• Workers’ per-slot contributions tracked with a bitmap
• Ignores duplicates

• Shadow copy of the previous result for a slot
• Retransmits a dropped result packet

Implementation

• Switch program written in P4 for Barefoot Tofino

• End-host C++ library providing a familiar all-reduce API
• Kernel bypass

• We have integrated SwitchML with:
• TensorFlow using Horovod,
• PyTorch/Caffe2 using Gloo

Evaluation
Testbed:
• 16 servers (8 w/ P100 GPUs)

10 Gbps (Intel 82599ES)
100 Gbps (Mellanox Connect-X 5)

• 64 x 100 Gbps switch (Barefoot Tofino)

• Models:
• 9 standard CNN benchmarks
• Training on ImageNet

(except synthetic data with AlexNet)
• Compared with TensorFlow using the Nvidia

Collective Comm. Library (NCCL)

How much faster is SwitchML?

SwitchML provides a speedup from 20% to 300%
compared to Tensorflow/NCCL (with direct GPU memory access)

How does SwitchML scale with the number of workers?

SwitchML performance does not
depend on the number of workers

How does SwitchML perform with packet losses?

SwitchML has a lower inflation than TCP Reasonable packet loss rates have no
impact on performance

Future work
• Multi-rack
• Can we use multiple switches to implement hierarchical SwithML?

• Multiple jobs, multiple tenants
• Can we support the multiple jobs in the same rack by partitioning slots?

• Better numeric representations
• Can we quantize without having to choose a scaling factor?

• More data per packet
• Full MTU packets would provide ~31% better performance.

Summary

• SwitchML uses in-network aggregation to
synchronize model updates
• Reduce network traffic volume and latency

• SwitchML speeds up training up to 300%
with real-world DNN benchmarks

• Aggregation time does not depend on the
number of workers

• Preprint on arXiv: https://aka.ms/switchml

∑

https://aka.ms/switchml

How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers

Aggregation
000

Packet loss tolerance

Aggregation

Result Distribution

Result Distribution

Aggregation
Pool 0

Pool 1
time

w1 w3w2

(ignored) (ignored) (retransmission)

100110

w1 w2 w3

111 111

w1 w2
w3 w3

w1 w2

000100110

w3

w3

111 111

000

w1 w2 w3

• Workers contribution per-slot tracked with a bitmap
• Ignores duplicates

• Shadow copy of the previous result for a slot
• Retransmits a dropped result packet

How does SwitchML perform with packet losses?

SwitchML has a lower inflation than TCP

Reasonable packet loss rates have no
impact on performance

Does quantization affects aggregation speed?

Tensor Aggregation Time unaffected by quantization thanks to AVX instructions

How much does packet size affect performance?

SwitchML reaches line rate with small packets
Would have ~30% better performance if the switch could support MTU-sized packets

Quantization
• Convert floating point to 32-bit fixed-point values
• Updates are scaled by multiplying for a scaling factor !"

#$%& = ()*+, !" ∗ $%& #.%& = /.%& !"

• 32-bit floating point ↔ 32-bit fixed point conversion → At workers with AVX instructions
• 16-bit floating point ↔ 32-bit fixed point conversion → Directly in the switch

• Scaling is still done by the worker using AVX instructions

This quantization allows training to similar accuracy in
a similar number of iterations as an unquantized
network for a large range of scaling factors

Aggregation is communication-intensive

Worker 1 Worker 2

A2A1

U2U1

Problem:
Very intensive communication in all-to-all fashion!

Network increasingly the bottleneck to training speed

