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The End of an Era

* 40 years of stunning progress in microprocessor design
*  1.4x annual performance improvement for 40+ years ~ 10° x faster (throughput)!
* Three architectural innovations:
*  Width: 8->16->64 bit (~4x)
* Instruction level parallelism:
*  4-10 cycles per instruction to 4+ instructions per cycle (~10-20x)

*  Multicore: one processor to 32 cores (~32x)

* Clock rate: 3 MHz to 4 GHz (through technology & architecture)

* Made possible by IC technology:
*  Moore’s Law: growth in transistor count
* Dennard Scaling: power/transistor shrinks as speed & density increase

*  Power = frequency x CV2

. Energy expended per computation was reducing
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THREE CHANGES CONVERGE

* Technology

* End of Dennard scaling: power becomes the key constraint
* Slowdown in Moore’s Law: transistors cost (even unused)

* Architectural

* Limitation and inefficiencies in exploiting instruction level
parallelism end the uniprocessor era.

* Amdahl’s Law and its implications end the “easy” multicore era

* Application focus shifts

* From desktop to individual, mobile devices and ultrascale cloud
computing, loT: new constraints.

Future processors 2



UNIPROCESSOR PERFORMANCE
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MoOORE’S LAW IN DRAMS
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THE TECHNOLOGY SHIFTS

MOORE’S LAW SLOWDOWN IN INTEL PROCESSORS
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TECHNOLOGY, POWER, AND

DENNARD SCALING
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ENERGY EFFICIENCY IS THE NEW METRIC

Battery lifetime determines effectiveness!
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END OF DENNARD SCALING IS A CRISIS

* Energy consumption has become more important to users
* For mobile, loT, and for large clouds

* Processors have reached their power limit
* Thermal dissipation is maxed out (chips turn off to avoid overheating!)
* Even with better packaging: heat and battery are limits.

* Architectural advances must increase energy efficiency
* Reduce power or improve performance for the same power

* But, most architectural techniques have reached limits in energy efficiency!
e 1982-2005: Instruction level parallelism
* Compiler and processor find parallelism

e 2005-2017: Multicore
* Programmer identifies parallelism

* Caches: diminishing returns (small incremental improvements).
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Instruction Level Parallelism Era

1982-2005

* Instruction level parallelism achieves significant
performance advantages

* Pipelining: 5 stages to 15+ stages to allow faster clock
rates (energy neutralized by Dennard scaling)

* Multiple issue: <1 instruction/clock to 4+
instructions/clock

e Significant increase in transistors to increase issue rate

* Why did it end?
* Diminishing returns in efficiency
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Getting More ILP

* Branches and memory aliasing are a major limit:

* 4 instructions/clock x 15 deep pipeline=» need more than 60
instructions “in flight”

* Speculation was introduced to allow this

e Speculation involves predicting program behavior
* Predict branches & predict matching memory addresses
* |If prediction is accurate can proceed
* [f the prediction is inaccurate, undo the work and restart

* How good must branch prediction be—very good!
* 15-deep pipeline: ~4 branches 94% correct = 98.7%
* 60-instructions in flight: ~15 branches 90% = 99%

Future processors 11



WASTED WORK ON THE INTEL CORE I7
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The Multicore Era

2005-2017

* Make the programmer responsible for identifying
parallelism via threads

* Exploit the threads on multiple cores

* Increase cores if more transistors: easy scaling!
* Energy = Transistor count = Active cores

* So, we need Performance = Active cores

* But, Amdahl’s Law says that this is highly unlikely

Future processors 13



AMDAHL'S LAW LIMITS PERFORMANCE GAINS FROM

PARALLEL PROCESSING

Speedup versus % "Serial” Processing Time
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SECOND CHALLENGE TO HIGHER PERFORMANCE FROM

MULTICORE: END OF DENNARD SCALING

* End of Dennard scaling means multicore scaling ends
* Full scaling will mean “dark silicon,” with cores OFF.

* Example

* Today: 14 nm process, largest Intel multicore

* Intel E7-8890: 24-core, 2.2 GHz, TDP = 165W (power limited)
* Turbo (one core): 3.4 GHz. All cores @ 3.4 GHz = 255 W.
* A7 nm process could yield (estimates)
* 64 cores; power unconstrained: 6 GHz & 365 W.
* 64 cores; power constrained: 4 GHz & 250 W.

180 W 46/64
200 W 51/64
220 W 56/64
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PUTTING THE CHALLENGES TOGETHER

DENNARD SCALING + AMDAHL'S LAW

Speedup versus % "Serial” Processing Time
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SIDEBAR: INSTRUCTION SET EFFICIENCY

* RISC ideas were about improving efficiency:

* 1980s: efficiency in use of transistors

* Less significant in CPUs in 1990s: processors dominated by
other things & Moore/Dennard in full operation

* RISC comeback: driven by mobile world in 2000s:

* Energy efficiency crucial: small batteries, all day operation
* Sj efficiency important for cost!

e 2020 and on: Add Design Efficiency

* With growing spectrum of designs targeted to specific
applications, efficiency of design/verification increasing.
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What OPPORTUNITIES Left?

= SW-centric
- Modern scripting languages are interpreted,
dynamically-typed and encourage reuse
- Efficient for programmers but not for execution
= HW-centric
- Only path left is Domain Specific Architectures
- Just do a few tasks, but extremely well
= Combination
- Domain Specific Languages & Architectures
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WHAT’S THE OPPORTUNITY?

Matrix Multiply: relative speedup to a Python version (18 core Intel)

Matrix Multiply Speedup Over Native Python
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DOMAIN SPECIFIC ARCHITECTURES (DSAS)

* Achieve higher efficiency by tailoring the architecture to
characteristics of the domain

* Not one application, but a domain of applications
* Different from strict ASIC

* Requires more domain-specific knowledge then GP processors
need

* Design DSAs and processors for targeted environments
* More variability than in GP processors

e Examples:
* Neural network processors for machine learning
* GPUs for graphics, virtual reality

* Good news: demand for performance focused on such domains
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WHERE DOES THE ENERGY GO IN GP CPUs?
CAN DSAs Do BETTER?

8-bit add 0.03
32-bit add 0.1

FP Multiply 16-bit 1.1

FP Multiply 32-bit 3.7
Register file access* 6
Control (per instruction, superscalar) 20-40

L1 cache access 10

L2 cache access 20

L3 cache access 100
Off-chip DRAM access 1,300-2,600

* Increasing the size or number of ports, increases energy roughly proportionally.

From Horowitz [2016].

Future processors 2l



INSTRUCTION ENERGY BREAKDOWN

Load Register (from L1 Cache)

L1 I-cache
access
18% Register fil
access

: - 12%
Register file

access

11%

Control
53% Control

60%

Future processors 2

FP Multiply (32-bit) from registers

L1 cache

access
20%



WHY DSAs CAN WIN (NO MAGIC)

TAILOR THE ARCHITECTURE TO THE DOMAIN

* Simpler parallelism for a specific domain (less control HW):
e SIMD vs. MIMD
* VLIW vs. Speculative, out-of-order

* More effective use of memory bandwidth (on/off chip)
* User controlled versus caches
* Processor + memory structures versus traditional
* Program prefetching to off-chip memory when needed

* Eliminate unneeded accuracy

* |EEE replaced by lower precision FP
* 32-bit,64-bit integers to 8-16 bits

* Domain specific programming model matches application to the
processor architecture
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DOMAIN SPECIFIC LANGUAGES

DSAs require targeting high level operations to architecture
® Hard to start with C or Python-like language and recover
structure
® Need matrix, vector, or sparse matrix operations
® Domain Specific Languages specify these operations:
o OpenGL, TensorFlow, P4
e If DSL programs retain architecture-independence,

interesting compiler challenges will exist
o XLA

“XLA - TensorFlow, Compiled”, XLA Team, March 6, 2017
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https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html

ML Arxiv Papers

Deep learning is causing
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a machine learning revolution

From “A New Golden Age in
Computer Architecture:

Empowering the Machine-

Learning Revolution.” Dean,
J., Patterson, D., & Young, C.
(2018). IEEE Micro, 38(2),
21-29.



https://ieeexplore.ieee.org/abstract/document/8259424/

TPU 1: High-level Chip Architecture

for DNN Inference

Matrix Unit: 65,536 (256x256) 8-
bit multiply-accumulate units

700 MHz clock rate
Peak: 92T operations/second

= 65,536 *2* 700M
>25X as many MACs vs. GPU
>100X as many MACs vs. CPU
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How IS SiLICON UseD: TPU-1 vs. CPU?

TPU-1 (—pads)
« Memory: 44%
 Compute: 39%
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Matrix Unit Systolic Array

(Kung & Leiserson)

Computing Y = WX

3x3 systolic array
W = 3x3 matrix

28 Systolic slides courtesy of Cliff Young @ Google.
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mBgts

weights
A

Matrix Unit Systolic Array
Computing Y = WX
with W = 3x3, batch-size(X) =
3
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mBgts
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Matrix Unit Systolic Array

Computing Y = WX
with W = 3x3, batch-size(X) =
3
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mBgts

weights
A

Matrix Unit Systolic Array

Computing Y = WX
with W = 3x3, batch-size(X) =

3

outputs
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Matrix Unit Systolic Array

Computing Y = WX
with W = 3x3, batch-size(X) =
3

outputs

accumulation
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weights

Advantages: Matrix Unit Systolic Array in TPU-1

* Each operand is used up to 256 times!

* Nearest-neighbor communication replaces RF access:

* Eliminate many reads/writes; reduce long wire delays
* For 64K Matrix Unit:

* Energy from eliminating register access > energy of Matrix Unit!

outputs
AN
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Yo = Wy Xgq + WpoXss + WpsXss

Y3z = Wp1Xpq + W

accumulation

\ 4

Y33 = W3 X3¢ + W3 X35 + W33X33

Yoz = Wiy Xpq + W5oX5, + Wi3Xo3

Y13 = W3 Xqq + W
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Performance/Watt on Inference TPU-1 vs CPU & GPU
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Log Rooflines for CPU, GPU, TPU

Log-Log Scale
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Training: A Much More Intensive Problem

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

e AlphaGo Zero

FP operations/second « AlphaZero
tO train in 3-5 months ¢ Noural Machine Translation

e Neural Architecture Search

= OXr_wplmn.1I" Dota vl

e DeeopSpeech2
’

. " & e ResNots
® Seq2Seq ResNet

¢ GoogleNet
- e AlexNet & Visualizing and Understanding Conv Nets

Q. * Dropout

«DON
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Rapid Innovation

TPU vl
(deployed 2015)

Cloud TPU
(v2, Cloud GA 2017,
Pod Alpha 2018)

Cloud TPU
(v3, Cloud Beta 2018)

Future processors
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92 teraops
Inference only

180 teraflops

64 GB HBM

Training and inference
Generally available (GA)

420 teraflops

128 GB HBM

Training and inference
Beta



Enabling Massive Computing Cycles for Training

11.5 petaflops (64xTPU v2)
4 TB HBM

2-D toroidal mesh network
Training and inference
Alpha

> 100 petaflops! (256xTPU v3)

32 TB HBM

Liquid cooled

New chip architecture + larger-scale system

-

TPU v3 Pod (2018)

40



CHALLENGES AND OPPORTUNITIES

* Design of DSAs and DSLs
* Optimizing the mapping to a DSA for portability & performance.
* DSAs & DSLs for new fields

* Open problem: dealing with sparse data
"  Make HW development more like software:
"  Prototyping, reuse, abstraction
" Open HW stacks (ISA to IP libraries)
"  Role of ML in CAD?
"  Technology:
"  Silicon: Extend Dennard scaling and Moore’s Law
"  Packaging: use optics, enhance cooling
" Beyond Si: Carbon nanotubes, Quantum?

Future processors 41



CONCLUDING THOUGHTS:

EVERYTHING OLD IS NEW AGAIN

* Dave Kuck, software architect for llliac IV (circa 1975)

“What I was really frustrated about was the fact, with
Iliac IV, programming the machine was very difficult
and the architecture probably was not very well suited
to some of the applications we were trying to run. The
key idea was that I did not think we had a very good
match in Iliac IV between applications and
architecture.”

* Achieving cost-performance in this era of DSAs will
require matching the applications, languages ,
architecture, and reducing design cost.
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WHY DRAMS ARE HARD AND CRITICAL!

DRAM Challenge : Capacitor

DRAM({3xnm) Capacitor Burj Khalifa

‘.ﬁWVNR:ZS | AR:6
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INTEL CORE I7: Theoretical CPl = 0.25

Achieved CPI

2.5

0.5 +— -
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