
Mario Baldi
Politecnico di Torino (Technical University of Turin)

Department of Control and Computer Engineering

Data Plane
Incremental Programming

Environment

daPIPE

To set the context

Let’s look into deployment
options for programmable
switches

Whitebox Deployment

• Maximum flexibility

• Maximum disruption/risk/work

NOS (e.g., Cumulus)

PD API/P4Runtime

Remote controller/NOS

(e.g., ONOS)

PD API/P4Runtime PD API/P4Runtime

Platform vendor (Cisco)
Chip vendor (Barefoot)
Customer/open source

3

Programmable chip

customer.p4 customer.p4 customer.p4

• Deployment as usual

• Familiar features and interfaces

• Resource optimization

• Future proof

• Feature agility

• Streaming telemetry

Turn-key Deployment

• No flexibility

• No custom feature and protocol
support

Programmable chip

profile1.p4 profile3.p4

profile2.p4

NetOS Profiles

Platform vendor (Cisco)
Chip vendor (Barefoot)
Customer/open source

4

Hybrid Deployment

• Best of breed

• Deployment as usual

• Familiar features and interfaces

• Minimum development effort

• Leverage existing functions in building new
features

vendor.p4

NetOS

Custom

App

cu.p4

PD API/

P4Runtime

Platform vendor (Cisco)
Chip vendor (Barefoot)
Customer/open source/

5

Challenges

6

Do not break what works

• Vendor data plane code is well tested

• … and we don’t want to need regression testing

Don’t want to show, don’t want to see

• Vendor code and custom code may be confidential

• Not practical to familiarize with a lot of vendor code to just write a few lines

Resource availability

• Still “limited” on current chips

Data/control plane dependence

• Net OS should keep working

• Net OS should not be aware of custom data plane functions

6

In a nutshell

7

We need to explicitly support

8

© 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public

Challenges

33

Do not break what works

• Vendor data plane code is well tested

• … and we don’t want to need regression testing

Don’t want to show, don’t want to see

• Vendor code and custom code may be confidential

• Not practical to familiarize with a lot of vendor code to just write a few lines

Resource availability

• Still “ limited” on current chips

Data/control plane dependence

• NXOS should keep working

• NXOS should not be aware of custom data plane functions

How can we address these challenges?

Identify constraints
on new code

Enforce those
constraints on
custom code

9

Do’s and Don’t’s

• Do add new

• Headers, parsers, tables, actions

• Do not modify existing

• Headers, tables, actions

• Modify in a controlled way parsers and control flow

10

No API

changes
NetOS

unaffecte

d

Isolation from

existing P4 program

HW pipelined

architecture

Compiler mapping of

tables on HW

Customer Programming Workflow

11

Development

environment

Cu.p4

vendor.p4

P4

Compiler
Data_plane.binConstraint

Checker

11

PD-API.o

NetOS

Cu.c

NxAPI

Favorite

SDE
Cu.exe

Incremental
Programming

Data
Plane

Environment

daPIPE

Support developers
and streamline their task
(while enforcing constraints)

13

Components of the Solution

#define

FLOW_PORT_HASH_WID

TH

#define

EMPTY_FLOW_PORT_EN

TRY 0header_type

metadata_t {

: set_active_port

modify_field(md.in

gress_port,ig_intr

_md.ingress_port);

}

daPIPE Graphical

User Interface

daPIPE build

environment

Nexus 34180YC

Nexus 3464C

Control

program

Sample Usecase
Fox Networks Advanced Technology Group

0-20 sec

20-45 sec

45-60 sec

https://github.com/FOXNEOAdvancedTechnology/ts_switching_P4

Specification

Timestamp 0-2 and 5-F

Timestamp 3-4

• A switch shall forward packets

based on the RTP timestamp

they contain

• If sent to 239.1.1.1, change

destination address to 239.3.3.3

when RTP timestamp is

• Between 0 and 2

• Between from 5 and F

• If sent to 239.2.2.2, change

destination address to 239.3.3.3

when RTP timestamp is

• Between 3 and 4

Incremental Programming Unique Advantage

• Leverage existing features

• Protocol parsing up to UDP messages

• Layer 2-3 forwarding, including multicast packet forwarding

• Multicast routing (offered by the operating system)

• Focus on new feature

• Write just a few lines of P4 code and control code

17

daPIPE bonus feature:

no need to deal with the complexity of pre-existing code

Development Workflow

• Browse available (stock) metadata

• Define custom headers and metadata

• Specify parser(s) and their hook(s) in existing (stock) parsers

• Define custom tables and actions

• Specify control flow

• Compile and load on chip

• Develop control plane functionalities

18

Main window

19

Existing
header
view

20

Adding
RTP
header

21

Adding
RTP
parser

22

Resulting Parsing Code
...

header_type ethernet_t {

fields {

dstAddr : 48;

srcAddr : 48;

etherType : 16;

}

}

header ethernet_t ethernet;

...

header_type rtp_t {

fields {

version : 2;

padding : 1;

...

sequence_number : 16;

timestamp : 32;

SSRC : 32;

}

}

header rtp_t rtp;

...

Stock code

Custom code

Autom. code

...

parser parse_ethernet {

extract(ethernet);

return select(latest.etherType)

{

ETHERTYPE_IPV4 : parse_ipv4;

default: ingress;

}

}

parser parse_udp {

extract(udp);

return parse_rtp;

}

...

parser parse_rtp {

extract(rtp);

return ingress;

}

...

24

Add
action

25

Adding a
table

26

Define
control
flow

28

Compile
and upload to
switch

29

Control Plane and NetOS Support

HW data
plane

Customer AppsCisco Apps

SW (mostly)
control

plane

Cisco.p4 Cu.p4

HAL

Infrastructure

Programmable

ASIC

NXOS

APIs generated

by compiling P4

BGP OSPF Cfg

Ctrl

plane Guest Shell

(container)

Controlled data

plane API access

30

Open Challenges

• On the customer side

• Debugging

• Access to the right level of knowledge on the stock P4 program

• On switching system vendor side

• Support model

• Troubleshooting issues

• Identify whether related to stock code of customer code

• On programmable ASIC vendor side

• Offer technical support directly to the end customer for chip/compiler related
problems

31

