
Random Linear Network Coding on
Programmable Switches

D. Gonçalves1, S. Signorello1, F. M. V. Ramos1, M. Médard2

1 Faculdade de Ciençias, University of Lisbon, Portugal.
2 Massachusetts Institute of Technology. (MIT), USA.

EuroP4 2nd European workshop on P4 at ANCS’19, 23th Sep Cambridge, UK.

A Primer on Network Coding &
Motivation

3

Network Coding with an example

a

b

a b⊕bb

a a b⊕b

a b⊕b a b

Network codingTraditional routing solution

Instead of simply forwarding data, nodes may recombine several input packets
into one or several output packets.

Benefits over different scenarios:
 Throughput, Robustness, Security.

4

How far research on NC goes?

Theoretical research
 On
 Network Coding

“Network Information Flow” ~ 10K citations

5

Deployed NC-based systems?

Software running in end-hosts: e.g. the Kodo C++ Library

Overlay systems: e.g. the Avalanche P2P system (Microsoft)

Software and Overlay, but not in the network data-plane, why?
● Payload processing,
● Complex arithmetic.

6

Linear Network Coding

Data Pi interpreted as numbers over some finite field GF(2
s)

Coefficients carefully chosen in GF(2s)!

Downside: pre-defined Centralized computation of coefficients.

7

Random Linear Network Coding

Input Packet

Input Packet

Input Packet

Output Packet

Coefficients randomly chosen in GF(2s)!

Coefficients (packet header) + coded symbols in output packet

Coefficients randomly chosen in GF(2s)!

8

Practical RLNC

-1
Decoding means:

 To reduce complexity,
data are divided in smaller blocks
over which coding/decoding is perfomed.

P1

P2

P3

Generation x1

Pn

Pn+1

Pn+2

P4

P5

P6

Generation x2

Generation xn

a.k.a. generation-based RLNC

9

Change in Networks’ Status Quo

TCP
RTP

VLAN
IPv4/6

Future: Programmable Switching Chips

 Past: Fixed-Function Switching Chips

Custom Protocol

IETF st
andards

DIY data plane

10

Practical RLNC in production

“This work proposes a random linear network coding data plane written in P4, as
first step towards a production level platform for network coding.”

Goal: Understanding the trade-offs for running RLNC functions
in the data-plane of the latest programmable switching chips.

Architecture of our Network Coding
Switch

12

RLNC target data plane behavior(s)

1° behavior – coding generations

 Sender
Sends uncoded
data split
in generations

 Receiver
Acks a generation when that
is successfully decoded

 Switch
Buffers entire generation,
creates and forwards linear
 combinations of symbols

2° behavior – recoding generations

 Sender
Sends coded data split
in generations &
Related coefficients

 Switch
Buffers entire generation & coefficients,
creates and forwards linear combinations of symbols and
recoded coefficients

 Receiver
Acks a generation when that
is successfully decoded

13

Practical generation-based RLNC

 Buffering
 to store all the symbols of a
 generation before coding/recoding.

 Packet Format
To encode symbols/coefficients
 And coding parameters

 Finite Field (GF) arithmetic
 To compute linear combinations
 Of the symbols

14

Packet format

 Symbol representation draft at:
https://datatracker.ietf.org/doc/draft-heide-nwcrg-rlnc/

Coding parameters
 header

Rcv-based Ack mechanism
 for generations

 Coefficients and symbols
Extracted as P4 packet headers

15

Buffering

An entire generation must be received and stored before coding can be performed.

State (symbols and coefficients) across packets which must be dynamically indexed
by generation id in packet headers.

G1 G2

Generation size

Where a generation starts (head) and where is the next empty slot (offset).

All implemented with P4 externs (registers).

16

Galois Field Arithmetic

Y 1
1
=c1∗X 1

1
+c2∗X 1

2
+c3∗X 1

3

 Addition in GF
Equals simple bit-xor

 Multiplication in GF
Reducing, through mod, the product of two elements
By an irreducible polynomial

 Random selection of coefficients ci in GF

 Alg1 Compute Intensive

Shift and add operations
 performed bit-by-bit

 Alg2 Memory Intensive

mul(a ,b)=antilog((log (a)+ log(b))modQ)

3 table look-ups, 1 add, 1 mod

Y ~ output symbol
X ~ input symbols
c ~ coefficients

17

RLNC.p4 on the Target Architecture

Ingress MATs Egress MATs Deparser

Symbols and coefficients
 buffering

Linear combinations of the same generation are carried over multiple packets
through the target Packet Replication Engine (e.g., using multicast primitives)

Emitting Coded Symbols &
related Coefficients.

Parser

Symbols and coefficients extraction
2°1° GF arithmetic on

symbols & coefficients
1° 2°

Lessons & Evaluation

19

Set-up for preliminary evaluation

P4-target: bmv2’s simple-switch

Application: python library for network coding and Scapy for custom pkt header

Finite Field: GF(2^8) with variable generation size, # packet symbols, # lin comb

Objective to gain some preliminary insights about:

● Impact of coding parameters on the P4 program,
● Performance of the tested target with regard to generation size and recoding.

Correctness: for every experiment, we check decoding at the receiver side
is correct!

20

On Code Size & GF arithmetic

Coding parameters(generation size, field size, # symbols in coded packets…)
and GF multiplication algorithm affect code size.

Solution: code-generating template

Output:

Alg2 (lookup tables) produces less verbose code & more compact binaries.

mul(a ,b)=antilog((log (a)+ log(b))modQ)

+ is less resource-intensive (%CPU) on the test target.

21

RLNC Switch Performance

Increasing generation size &
Recoding => :

● ++buffering
● ++GF arithmetic

Take-away: performance drop due to bigger gen sizes and recoding can be addressed

Conclusion and Future Work

23

Optimizations & Targets & Apps

P4 code and testing suite available soon at: https://github.com/netx-ulx/NC

Sparse coding to reduce:
packet overhead

&
of operations

Measuring
Packet overhead
Latency
Network throughput
 in
Network settings
With
Real applications

Exploring architectural/
Language support for
this data-plane behaviors

Thank you! Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

