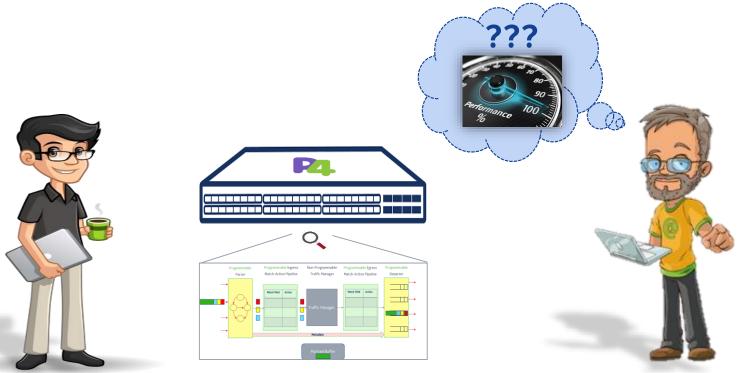


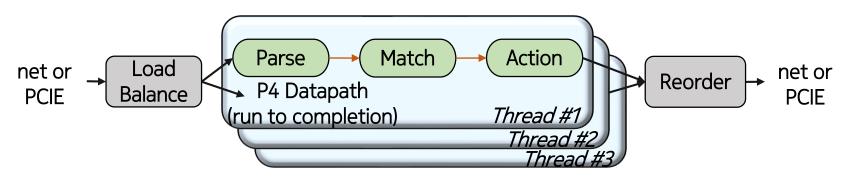
Towards Understanding the Performance of P4 Programmable Hardware


EuroP4 ' 19, Cambridge, UK September 23, 2019

Hasanin Harkous

Michael Jarschel, Mu He, Rastin Pries, Wolfgang Kellerer

1 © 2019 Nokia

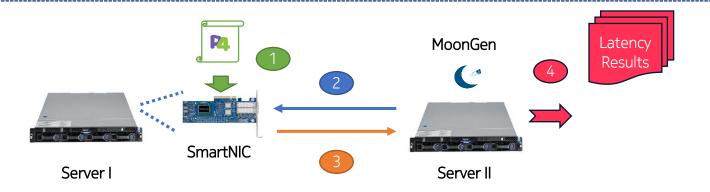


Background

- P4 abstracts the packet processing pipeline into stages:
 - Parser
 - Control Blocks
 - Deparser
- Netronome SmartNIC:

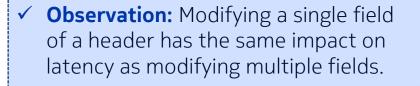
Introduction

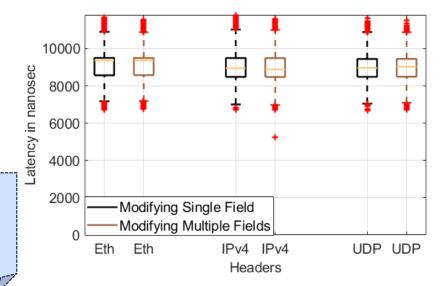
What is the relation between packet processing latency and a certain P4 pipeline structure? Analyze the impact of a basic set of P4 constructs on packet processing latency to derive the influential parameters. Propose a method for estimating the packet latency of P4-based network functions.



Experiments & Measurement Setup

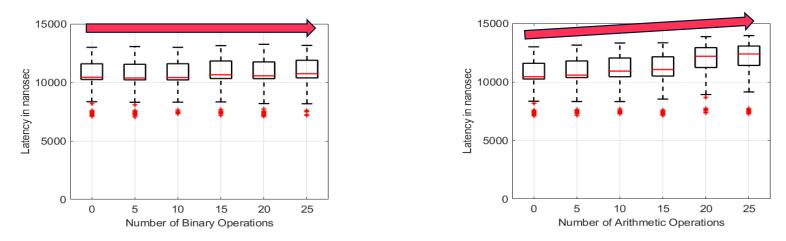
Experiments:


- 1) Modifying a single field of a header versus modifying multiple fields.
- 2) Executing arithmetic and binary operations in P4 actions.
- 3) Parsing and modifying a different number of headers.
- 4) Adding more tables into P4 pipeline.



Results Header Fields Modification

• **Design Objective:** Study the effect of modifying a different number of fields of the same header.



Results Operations Execution

- Design Objective: Study the latency cost of applying binary and arithmetic operations.
- Observation: The latency of binary operations can always be neglected while that of arithmetic operations should be considered only if a significant number of operations is applied.

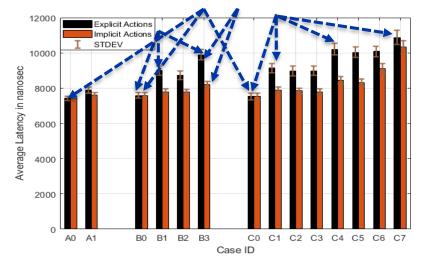
NOKIA Bell Labs

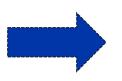
Results

Headers Parsing and Modification

- **Design Objective:** Study the impact of header parsing and header modification on the processing latency.
- Case ID : A 1
 Parsing Case Header Modification
- Headers modification was examined within explicit and implicit actions.

	Case	Parsed Headers			Modified Headers		
	ID	Eth	IPv4	UDP	Eth	IPv4	UDP
Eth	AO	+	-	-	-	-	-
Parsing	A1	+	-	-	+	-	-
	BO	+	+	-	-	-	-
Eth+IPv4		+	+	-	+	-	-
Parsing	B2	+	+	-	-	+	-
	B3	+	+	_	+	+	- 7
	CO	+	+	+	-	-	-
	C1	+	+	+	+	-	-
	C2	+	+	+	-	+	-
Eth+IPv + UDP	+ C3	+	+	+	-	-	+
Parsing	C4	+	+	+	+	+	-
	C5	+	+	+	+	-	+
	C6	+	+	+	-	+	+
	C7	+	+	+	+	+	+




Results

Headers Parsing and Modification

✓ Observations:

- ✓ The impact of parsing additional headers is negligible.
- ✓ Latency cost of modifying additional headers is clearly observable.
- ✓ With identical parsing blocks, the latency varies according to the number of modified headers.
- Explicit actions lead to more latency compared to implicit actions.

Number of Parsed Headers	1	2		3		
Number of Modified Headers	1	1	2	1	2	3
Explicit Latency (in ns)	7900	8900	9900	9000	10100	10900
Implicit Latency (in ns)	7600	7800	8200	7800	8600	10300

Table1: Average measured latency as a function of the number of parsed and modified headers.

NOKIA Bell Labs

Results Tables Scaling

Design Objective: Quantify the latency ٠ Measured Avg. Latency φ cost of adding tables into a P4 pipeline. 6000 Fitted Curve ✓ Observations: ✓ Latency increases as more tables are added to the pipeline. ✓ $f(\gamma) = 22.44 \times \gamma^2 + 311.6 \times \gamma$ for $\gamma = 0, ..., 10$ 0 10 2 6 8 0 4 (Eq.1) Number of Tables where f (.) is the additional latency in ns, and γ is the number of added tables.

Estimation Method

Given a P4 program:

1) Extract the following parameters:

- i. α : The number of parsed headers.
- ii. β : The number of modified headers.

1

1

7900

7600

iii. γ : Number of tables minus one.

α β

Explicit Latency (in ns)

Implicit Latency (in ns)

2) Read the estimated latency due to headers parsing and modification from Table 1.

2

2

9900

(8200)

1

9000

7800

3)	valuate the estimated latency due to adding tables based on equation 1	

1

8900

7800

$f(\gamma) = 22.44 \times \gamma^2 + 311.6 \times \gamma$ for $\gamma = 0, ..., 10$ (Eq.1)

3

3

10900

10300

2

10100

8600

4) The estimated average latency equals the sum of latencies evaluated in steps (2) and (3).

Example: L3_Forwarding

ii. β=2

- iii. γ=0
- 2) L1=8200 ns
- 3) f(0)=0 ns

4)
$$\hat{L} = 8200 + 0 = 8200$$
 ns

Estimation Method Validation

- Network Functions:
 - L3_forwarding: α =2, β =2, and γ =0.
 - L3_forwarding + UDP-based Firewall: α =3, β =2, and γ =1.

Network Function	Estimated Average Latency	Measured Average Latency	ΔL	
L3_Fwd	8200 ns	8387 ns	187 ns	
L3_Fwd+Firewall	8957 ns	9022 ns	65 ns	

Conclusion & Future Work

Conclusion

- Identified a relationship between P4 pipeline complexity and packet latency.
- Derived influential parameters:
 - Number of parsed headers
 - Number of modified headers
 - Number of tables
- Proposed a method for estimating the packet latency and validated it.

Future Work

- Study the impact of other P4 constructs such as adding/removing headers, etc.
- Perform measurements on other P4 targets such as software switch, etc.

Thank you for your attention!

14 © 2019 Nokia

