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Let’s first create a common ground
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Heavy Hitters (HH): a prefix that
contribute with a traffic volume
larger than a given threshold T
during a fixed time interval t .

Hierarchical Heavy Hitter
(HHH): a prefix that exceeds a
threshold T after excluding the
contribution of all its HHH
descendants.

(Hierarchical) Heavy Hitters
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Changes in traffic patterns

Identifying the flows that
contribute the most for the
changes in the traffic patterns
over two consecutive time
intervals.
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A host that contacts at least a
given number of distinct
destinations over a short time
period.

Superspreaders
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HHH and change detection: packets or bytes per second. 
Superspreaders: flows per second.

All those network events can be seen as a 
traffic cluster detection problem
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Can we leverage dataplane programmability to assist in 
the detection of those events?
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HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 
Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics. 
The actual detection is performed in the control plane.

Can we leverage dataplane programmability to assist in 
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Wait a minute. Is this a problem?
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Retrieving a large number of counters from hardware is 
time consuming!!!

Note: probabilistic data structures (i.e., sketches) require large amount of counters to lower 
false positive ratio.
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Note: having large chunk of forwarding updates is a pretty common case during blackholing.

Updating forwarding state and statistic retrieval are two 
competing operations that are commonly run sequentially
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Can we leverage dataplane programmability to assist in 
the detection of those events?
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Can we leverage dataplane programmability to enable in-
network detection of those events?

Can we leverage dataplane programmability to assist in 
the detection of those events?
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As soon as you detect you can take pre-defined actions. 
Good for network reactiveness.

Because if you have in-network detection..
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As soon as you detect you can take pre-defined actions. 
Good for network reactiveness.

You can directly export the detection result to the control plane. 
Control plane does not have to receive lot of data and understand what is going on.

Because if you have in-network detection..
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Because if you have in-network detection..
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• Prefix tree that grows or collapses: focus on who account for a large share of the traffic. 

• Starting condition: a single node corresponding with zero-length prefix *.

• Each node consists of three elements: (1) left child counter, (2) right child counter, (3) 
node timestamp.

• Use timeouts to detect heavy prefixes and to grow or collapse the trie
(i.e., if in the time interval t, prefix A exceeds a threshold, then refine the prefix)

22

Elastic Trie in a nutshell
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- counter-Left 
- timestamp 
- counter-Right 

23
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Elastic Trie in action
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***

1** 0**

Both counterL and 
counterR exceed 
threshold in T1

Elastic Trie in action
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Elastic Trie in action
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11*

Elastic Trie in action

Packet timestamp 
>>

Node timestamp
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Elastic Trie in action
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• The dataplane iteratively refine the responsible IP prefixes: 
the controller can receive a flexible granularity information.

• Each prefix tree layer can have a different timeout:
trade-off between trie building process and memory consumption.

• By looking at the growing rate of the trie it is possible to: 
identify changes in the traffic patterns.

Elastic Trie implications
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• LPM classification: the prefix tree

• Control logic: the brain

• Main memory: where all the per-node 
information are stored

Elastic Trie in P4
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Elastic Trie in P4: LPM classification

• We cannot modify entries in the dataplane itself

• A hash table for each prefix length

• Each hash table implemented as register array

• Hash extern API with CRC32
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Elastic Trie in P4: main memory

• The hash value of the LPM is the address to 
access a register that stores the node 
information
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Elastic Trie in P4: control logic

• We compare node timestamp and packet 
timestamp

• It implements the node update logic, and the 
push-based mechanic with a digest message



35 34

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500

Tr
ie
de
pt
h

Time (seconds)

Datacenter 1%
Datacenter 5%
Datacenter 10%

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500

Av
er
ag
e
tri
e
de
pt
h

Time (seconds)

CAIDA 1%
CAIDA 5%
CAIDA 10%

ISP Datacenter

Elastic Trie in action



36

Elastic Trie in action
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37 36Changes can be spotted!!!
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• Elastic Trie enables in-network detection of traffic aggregates

• Push-based monitoring approach

• Suitable for HH, HHH, Superspreader and Change detection.

• Low memory footprint!
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Conclusions


