
1

Gianni Antichi
gianni.antichi@cl.cam.ac.uk

University of Cambridge

in collaboration with:
J.Kucera, D.A.Popescu, J.Korenek and A.W.Moore

Enabling Event Triggered Monitoring of Traffic 
Clusters



2

The importance of finding high-volume traffic
clusters has been widely recognized in the past
to improve network management practices

1



3

The importance of finding high-volume traffic
clusters has been widely recognized in the past
to improve network management practices

2



4 3

Let’s first create a common ground



5 4

Heavy Hitters (HH): a prefix that
contribute with a traffic volume
larger than a given threshold T
during a fixed time interval t .

Hierarchical Heavy Hitter
(HHH): a prefix that exceeds a
threshold T after excluding the
contribution of all its HHH
descendants.

(Hierarchical) Heavy Hitters



6 5

Changes in traffic patterns

Identifying the flows that
contribute the most for the
changes in the traffic patterns
over two consecutive time
intervals.



7 6

A host that contacts at least a
given number of distinct
destinations over a short time
period.

Superspreaders



8 7
HHH and change detection: packets or bytes per second. 
Superspreaders: flows per second.

All those network events can be seen as a 
traffic cluster detection problem



9 8

Can we leverage dataplane programmability to assist in 
the detection of those events?



10 9

Can we leverage dataplane programmability to assist in 
the detection of those events?



11

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. 
Rexford. In ACM SOSR 2017.

10

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 

Can we leverage dataplane programmability to assist in 
the detection of those events?



12

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. 
Rexford. In ACM SOSR 2017.

11

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 
Focus on heavy hitter only.

Can we leverage dataplane programmability to assist in 
the detection of those events?



13

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. 
Rexford. In ACM SOSR 2017.
[2] One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon,  Z. Liu, A. Manousis, G. Vorsanger, 
V. Sekar, V. Braverman. In ACM SIGCOMM 2016. 12

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 

Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics. 

Can we leverage dataplane programmability to assist in 
the detection of those events?



14

[1] Heavy-Hitter Detection Entirely in the Data Plane, V. sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, J. 
Rexford. In ACM SOSR 2017.
[2] One Sketch to Rule Them All: Rethinking Network Flow Monitoring with UnivMon,  Z. Liu, A. Manousis, G. Vorsanger, 
V. Sekar, V. Braverman. In ACM SIGCOMM 2016. 13

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 

Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics. 
The actual detection is performed in the control plane.

Can we leverage dataplane programmability to assist in 
the detection of those events?



15 14

HashPipe [1]: calculate within the dataplane the top-k heavy hitters at fixed intervals. 
Focus on heavy hitter only.

Univmon [2]: assist the controller by exporting smart representation of aggregated statistics. 
The actual detection is performed in the control plane.

Can we leverage dataplane programmability to assist in 
the detection of those events?

Wait a minute. Is this a problem?



16 15

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000 60000 70000 80000

Av
er
ag
e
tim

e
(s
ec
on
ds
)

Number of hardware counters

IBM RackSwitch G8264
NoviSwitch 1132

Retrieving a large number of counters from hardware is 
time consuming!!!

Note: probabilistic data structures (i.e., sketches) require large amount of counters to lower 
false positive ratio.



17 16

0
1
2
3
4
5
6
7
8
9
10

0 5000 10000 15000 20000 25000 30000

Av
er
ag
e
tim

e
(s
ec
on
ds
)

Number of rules

IBM RackSwitch G8264
NoviSwitch 1132

Note: having large chunk of forwarding updates is a pretty common case during blackholing.

Updating forwarding state and statistic retrieval are two 
competing operations that are commonly run sequentially



18 17

Can we leverage dataplane programmability to assist in 
the detection of those events?



19 18

Can we leverage dataplane programmability to enable in-
network detection of those events?

Can we leverage dataplane programmability to assist in 
the detection of those events?



20 19

As soon as you detect you can take pre-defined actions. 
Good for network reactiveness.

Because if you have in-network detection..



21 20

As soon as you detect you can take pre-defined actions. 
Good for network reactiveness.

You can directly export the detection result to the control plane. 
Control plane does not have to receive lot of data and understand what is going on.

Because if you have in-network detection..



22 21

Because if you have in-network detection..



23

• Prefix tree that grows or collapses: focus on who account for a large share of the traffic. 

• Starting condition: a single node corresponding with zero-length prefix *.

• Each node consists of three elements: (1) left child counter, (2) right child counter, (3) 
node timestamp.

• Use timeouts to detect heavy prefixes and to grow or collapse the trie
(i.e., if in the time interval t, prefix A exceeds a threshold, then refine the prefix)

22

Elastic Trie in a nutshell



24

- counter-Left 
- timestamp 
- counter-Right 

23

time

T1

T2

0***

Elastic Trie in action



25 24

***

1** 0**

Both counterL and 
counterR exceed 
threshold in T1

Elastic Trie in action

time

T1

T2

0



26 25

***

1** 0**

11*

counterL exceeds 
threshold in T2

Elastic Trie in action

time

T1

T2

0



27 26

***

1** 0**

11*

Elastic Trie in action

Packet timestamp 
>>

Node timestamp



28 27

***

1** 0**

11*

Elastic Trie in action

Packet timestamp 
>>

Node timestamp



29 28

***

1**

11*

Elastic Trie in action



30 29

• The dataplane iteratively refine the responsible IP prefixes: 
the controller can receive a flexible granularity information.

• Each prefix tree layer can have a different timeout:
trade-off between trie building process and memory consumption.

• By looking at the growing rate of the trie it is possible to: 
identify changes in the traffic patterns.

Elastic Trie implications

time

T1

T2

0



31 30

• LPM classification: the prefix tree

• Control logic: the brain

• Main memory: where all the per-node 
information are stored

Elastic Trie in P4



32 31

Elastic Trie in P4: LPM classification

• We cannot modify entries in the dataplane itself

• A hash table for each prefix length

• Each hash table implemented as register array

• Hash extern API with CRC32



33 32

Elastic Trie in P4: main memory

• The hash value of the LPM is the address to 
access a register that stores the node 
information



34 33

Elastic Trie in P4: control logic

• We compare node timestamp and packet 
timestamp

• It implements the node update logic, and the 
push-based mechanic with a digest message



35 34

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500

Tr
ie
de
pt
h

Time (seconds)

Datacenter 1%
Datacenter 5%
Datacenter 10%

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500

Av
er
ag
e
tri
e
de
pt
h

Time (seconds)

CAIDA 1%
CAIDA 5%
CAIDA 10%

ISP Datacenter

Elastic Trie in action



36

Elastic Trie in action

35

Precision

0

20

40

60

80

100

0 36 72 108 144
Memory (KB)

Pe
rc
en
ta
ge

(%
)

Elastic Trie (fxed)
Elastic Trie (variable)

HashPipe

600 700 800 900 1000

UnivMon

0

20

40

60

80

100

0 36 72 108 144
Memory (KB)

Pe
rc
en
ta
ge

(%
)

Elastic Trie (fxed)
Elastic Trie (variable)

HashPipe

600 700 800 900 1000

UnivMon

Recall



37 36Changes can be spotted!!!

-2

-1

0

1

2

3

4

5

6

7

500 1000 1500 2000 2500 3000 3500

Av
er
ag
e
nu
m
be
ro
ft
rie

no
de

ch
an
ge
s

Time (seconds)

DoS attack
Scan attack

Normal condition

Elastic Trie in action



38

• Elastic Trie enables in-network detection of traffic aggregates

• Push-based monitoring approach

• Suitable for HH, HHH, Superspreader and Change detection.

• Low memory footprint!

37

Conclusions


