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P4 history and status

22 XILINX




y o

Programming Protocol-independent Packet Processors

> Language first appeared in paper published in July 2014
>> QOriginal version and early evolution now known as P4,,
>> Revised version known as P4, released in May 2017

> Three goals:
>> Reconfigurability in the field — reprogramming of networking equipment
>> Protocol independence — not tied to any specific networking protocols
>> Target independence — not tied to any specific networking hardware

> P4 Language Consortium (P4.org) set up in 2015
>> Xilinx was a founding member of P4.org
>> Now has >100 members
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' P4 language features ... in one slide

Parsers

Controls

Expressions

Data Types

State Machines,

bit-field extraction

Match-Action Tables,
control flow statements

Basic operations
and operators

Bit-strings, headers,
structures, arrays

Architecture

Extern Libraries
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' Diverse targets (P4,)
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'Complex control planes
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'Rich applications
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' P4 ecosystem

User-developed

Data plane: P4

Application Application and
Control plane: C, Python, etc.

Application Application

Community-developed Vendor-supplied

P4 P4 Core Library Architecture Extern P4
Language Definition Libraries Compiler

L A
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'Xilinx (P4) SDNet product (www.xilinx.com/sdnet)

X|I|nX LabS prOtOtype (May 2017) 0% sdnet example.p4
* First-ever P4,, compiler

Xilinx P4 Compiler

« 100G line rate
Production version (Dec 2018):
* 50% less latency and resources

example.sv
A 4
! VIVADO
Verification Environment HLx Editions

v A v \4 .
' i ; example.bit
Top level Verilog I;/rfr:lr?gs System Verilog || High level C++ P4 Runtime J P
wrapper 9 Testbench Testbench drivers
(Encrypted) [— :
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' SDNet-supported research community today:

00 institutions In 22 countries

Poland: 1
Romania: 1
Russia: 1
Serbia: 1

Bosnia: 1
.- France: 2
"'l.@l ,,,-{r = Germany: 4
bt Ireland: 1
Canada: 2 Italy: 3
-~ USA: 13
North T
America
& 5. Atlantic
“~. Pacific 3L _ . Ocean
Ccean p}
o . South
- America
Brazil: 3
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Spain: 3

Sweden: 1

Switzerland: 2

UK: 4
China: 7
India: 1
Israel: 1

| Japan: 1

Taiwan: 5

South Korea: 2
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' Status of P4

"Our whole networking industry stands to
benefit from a language like P4 that
unambiguously specifies forwarding

> Industry Momentum behavior, with dividends paid in software

>> Diverse collection of P4-enabled targets developer productivity, hardware
interoperability, and furthering of open

>> GI‘OWIng number Of P4'based pI’OdUC'[S Systems and customer choice."
>> Real-world deployments — Tom Edsall, Cisco

> Academic Interest
>> Research papers at top conferences
>> New courses at leading universities

> Open Source Community
>> Vibrant technical working groups
>> Powerful set of P4 tools
>> P4.org joined Linux Foundation this year
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Portable NIC Architecture

P4 community desire
New P4.org Architecture sub-group
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Switch vs. NIC: Superficially similar ...

> Switch-style architecture

Ingress

Ingress

Manager p At Parser
Ethernet
Switch fabric Ports
Egress Egress
Egress M%tch- S T?affic
Parser Action Deparser Manager
> NIC-style architecture
Ingress Ingress
Manager P S Parser
Ethernet
Host CPU Ports

Egress Egress

Deparser

Traffic
Manager
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'Xilinx Labs Smart NIC prototype (evolved 2015-2018)

Virtual Machines hosted on CPU

DPDK
1 11
PCle/SRIOV
Ingress Application Egress

datapath e function g datapath
offload mp acceleration g offload

P4 C/C++ P4

I Memory l

40/50G Ethernet MAC/PHY

I l FPGA
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'Xilinx NICs and Barefoot switch:

In-band Network Telemetry (INT) inter-operability
Demonstrated at MWC 2018 and OFC 2018

owered by Barefoot Tofino
4 Programmable

E\ventec switch

Dell R730
DPDK 4 Transit 4 Sink
packet nction unction

t ¥ e 2 0
gen App ort to 4 Transit 4 Transit 5
2 witch e - ]
{ \ e e Barefoot Deep Insight // k

Flow Analytics
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'Use Case 1/3: Basic NIC ingress and egress

> Example:

>> 40Gb/s IP packet forwarding
>> 1 CPU core needed instead of 6 CPU cores
>> Full line rate with 64-byte packets

Application
function
- acceleration -

Ingress C/C++

offload Memory

0/50G Ethernet MAC/P
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'Use Case 2/3: Direct egress to ingress bridging

> Example:

>> NFV Service Function Chaining (SFC)
— Offload of NSH protocol used for SFC
>> 5x reduction in VM-to-VM latency
>> Throughput matches the PCle bandwidth

>> 25

Virtual Virtual
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'Use Case 3/3: Bump-in-wire acceleration

> CPU out of main processing loop
>> Just used for configuration and exceptions

> Example:
>> Video Transcoding appliance
>> Accelerate video coding
>> 25X better frames/second per Watt

>> 24

Virtual Mac ied on CPU
1 11 }
PCle/SRIOV
| I |

Ingress Application Egress
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Payload
extract
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'Some Portable NIC Architecture (PNA) discussions

> Expect there to be separate ingress and egress pipelines
>> What are the standard components of each pipeline? Are there pipeline variants?
>> Which components are P4-programmable?
>> |s direct interaction between ingress and egress, and egress and ingress, allowed?

> How Is host CPU interface modelled?
>> Differentiate data plane CPU roles, and control plane CPU roles
>> |mpact on P4Runtime

> Beyond packet forwarding (future steps — of general P4 interest)
>> |s protocol (e.g., TCP) termination covered?
>> |s “Type 3’ NIC covered — payload processing as well?

>> 23 £ XILINX.



Programmable Target Architecture E

Stanford, Xilinx Labs
Now In discussion with Barefoot, Cornell, VMware Research
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'Examples of the many possible target architectures

V1 Model

Output

Portable Switch Architecture (PSA)
Parser Deparser Deparser Output
Queues

Custom in-line processing

Parser | bIock : Deparser
>> 21 . _
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' Programmable Target Architecture (PTA)

> Motivations

> Extend P4 (“P4+") to allow description of target architectures: components and connectivity
>> End-to-end P4 program verification relative to particular architectures
>> EXxplore performance tradeoffs of various architectures

> Three actors

(1) Target architecture designer (2) P4 programmer (3) Runtime programmer
Implements: Implements: Implements:
« Externs in target architecture » P4-programmable * Runtime controller for

* In-line (packet processing) “holes” in the target P4-populated target

» Look-aside (header processing) architecture architecture

 P4Runtime+ API for externs

Provides:
* P4+ architecture description

>> 20 £ XILINX.



' Example: Custom target architecture

Logical P4 pipeline view:

Parser

Match-
Action

Internal design view:

A 4

Invisible

Match-Action

Parser
“admean || Engne
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Deparser Parser

Deparser

vy

v

Engine

A\ A

Deparser
Engine
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Legend

— Packet stream

— Standard metadata

=== Headers 1
=P Headers 2

A 4

Invisible

Parser »| Match-Action < | packetout
Engine . > Deparser P
—p Engine > .
Engine
» Invisible
Parser Match-Action >
Engine Engine || Deparser —>[ packetou _

Engine

std meta out
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Custom architecture description using experimental P4+

#define NUM PORTS 2
std meta t {...}

// Define (header processing) externs

// Define Architectural Elements
Parser<i>( p_in,

*headers, // * distinguishes between headers and metadata
std meta_t std meta,

.p_out); // . indicates that port is hidden (i.e. invisible at this pipeline stage)

Pipe<H>( *headers,
std_meta_t std meta,
-P);
Deparser<H> ( p_out,
*headers,
std_meta_t std meta,
.p_in);
o o in, P4+ code:
std meta t std meta in, .
: Written by target
p_out,

std_meta_t std meta

) *NUM_PORTS) ; // * operator indicates replicated ports Eir(:t]ltEBC:tLjree
Example<H1, > (Parser<H1> pl, deSI U ner

Pipe<H1> mapl,

Deparser<H1> dl,

T™M tm,

Parser<H2> p2,

Pipe<H2> map2,

Deparser<io> d2) {

I // * operator indicates forked replication I
= {pl, mapl, dl, tm, (.PZ, map2, d2)*NUM PORTS}

}

>>18 £ XILINX.



'Custom architecture Interface (auto-generated)

struct std meta_t (...}
// Define (header processing) externs ...

// Define Architectural Elements
parser Parser<H>(packet in p in,
out H headers,

inout std meta t std meta); Standard P4 COde:
e PiPe<H>(iEZEt I.:tgi::i:iilz std meta); I m ported by P4
control Deparser<H> (packet_out p_out, p rO g ram m e r

in H headers,
inout std meta t std_meta);

package Example<H1l, H2> (Parser<Hl> pl,
Pipe<Hl1l> mapl,
Deparser<H1> dl,
Parser<i2> p2,
Pipe<iH2> map2,
Deparser<H2> d2) ;

Prototype P4+ workflow being

demonstrated at P4EU today

>>17 £ XILINX.



Programmable Traffic Manager %

MIT, NYU, Stanford, Xilinx Labs
New P4.org Architecture sub-group
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'What Is Traffic Management?

> Policing: compliance with agreed rate

> Drop policy: how to avoid/deal with congestion

> Replication: cloning and multicasting packets

> Packet buffering: temporary storage of packets

> Packet scheduling: determining order of transmission

> Traffic shaping: forcing rate and pace

> Associated with Classification — mapping packet flows to egress ports and queues

>>15 £ XILINX.



'Why should we care about Traffic Management?

> Lots of different types of traffic with different characteristics and requirements
>> Characteristics: burstiness, packet sizes, flow sizes, flow rates
>> Requirements: throughput, latency, loss, jitter, reordering, flow completion time, pacing

> Network operators have a wide range of objectives
>> Meet all Service Level Agreements
>> Maximize network utilization
>> Achieve fairness, while prioritizing certain traffic

> Network devices are acquiring more TM functionality

>> About 50% of a modern programmable switch chip is dedicated to traffic management and
buffering — but this part is currently not programmable

> Particular programmability benefits, alongside general P4 benefits
>> Network operators can fine-tune for performance
>> Small menu of standard algorithms to choose from today
>> ... Many possible algorithms that can be expressed

>>14 £ XILINX.



'Programmable Traffic Manager (PTM) architecture

Programmable
scheduling and
shaping

Buffering and
gueueing for each
egress port

May have many
associated queues
per port

Non-
programmable
packet storage

Programmable

2 Non-
classification and

programmable
packet replication

policing & drop
policy

Egress port
selection
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'The Push-In-First-Out (PIFO) model [SIGCOMM 2016]

> What is a PIFO?

Programmable

Programmable

I > scheduling and
rank computation

0 I shaping

7014]3

1
-

Fixed PIFO

> Why is the PIFO a good model for scheduling and shaping?
>> QOrdering decision made at time of enqueue - helps relax timing pressure at output ports
>> Clear separation between programmable part and fixed part

> Can implement existing algorithms, for example:

>> Start Time Fair Queueing (STFQ), Least Slack-Time First (LSTF), Stop-and-Go Queueing,
Minimum rate guarantees, fine grained priority scheduling, Service-Curved Earliest Deadline
First (SC-EDF), Rate-Controlled Service Disciplines (RCSD)

>> Token bucket rate limiting

> Can implement new algorithms using programmable rank computation

>>12 £ XILINX.



' Prototype implemented on FPGA for 4x10G line rate
NYU+Stanford+Xilinx Labs demonstration at P4 Workshop, June 2018

PIFO-based scheduler

7

s

413

descriptor and rank

descriptor and metadata

Input

Packet
Classification

0 F
rank
computation

descriptor

Buffer N

Output
Packet

Packet storage

>> 11

PIFO implemented using parallel skip lists

Load
Balancer Insertion
( Register \I ( Register \I ( Register \I
I| Cache I| Cache I| Cache =
i I I | i I Register
1| skipList |V 1| skip List |! 1| skip List |! Seleils
\ ! N ] \ ]
\/ |
Selector Removal
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Example: Possible P4 pipeline extension for TM

parser Parser<H, M>(packet in b,
out H hdr,
out M user_meta,
inout std meta t std meta);

control Ingress<H, M, D>(inout H hdr,
out D sched meta,
inout M user meta,

User defined
scheduling

metadata

scheduler MyScheduler<D>(in D sched meta) ; I

inout std meta t std meta);

Classification and
policing & drop Policy

Ingress
match-
action

Ingress
parser

>> 10

Programmable
scheduling and
shaping

Non P4-
programmable
packet storage

control Egress<H, M>(inout H hdr,
inout M user meta,
inout std meta t std meta);

control Deparser<H, M>(packet out b,
in H hdr,
in M user_meta,
inout std meta t std meta);

Egress
match-
action

Egress
deparser

& XILINX



Example: Possible P4 extension for scheduler/shaper

MyScheduler ( sched meta t sched meta) strict

/* Define PIFO tree nodes */
/* root scheduling node */
strict priority {
= scheduling;
pifo<rank t>(2048) p;
= { .}
= { .}

~—~—
[mm—————————————

/* shaping node */

token_b;ckgt { WFQ WFQ

= shaping;

pifo<rank t, sched meta t>(2048) p; HEREE HHEEN
{ ..}

{ ..}

/* Define the shape of the scheduling/shaping tree */
myTree { strict priority(), {wfg(), {token bucket(), {wfq()} } }
find path { .. }
{

find path. 0
// apply the scheduling algorithm defined by the tree
myTree. (leaf node) ;

>>9 £ XILINX.



Towards open reference platforms O\
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'Software platform: P4 toolchain for BMv2 simulation

Program-independent
CLI and Client
TCP Socket

(Thrift)

Program-independent
Control Server

test.json ﬁ Iﬂ

Packet

generator sniffer

simple_switch (BMv2)

>> '/
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'Hardware platform: NetFPGA (= Networked FPGA)

> Line-rate, flexible, open networking hardware for teaching and research
> Begun in 2007 by Stanford and Xilinx Labs, now anchored at Cambridge

> NetFPGA systems deployed at over 150 institutions in over 40 countries

Four elements: NetFPGA-1G-CML

> Community: NetFPGA.org 4x1G ports
> Low-cost board family

> Tools and reference designs

NetFPGA-SUME

> Contributed projects 4x10G ports

>> 6
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' Hardware platform: P4->NetFPGA workflow

https://qithub.com/NetFPGA/P4-NetFPGA-public/wiki

NetFPGA SUME reference switch design

= (B 8 |B| |B

10GE 10GE 10GE 10GE
RxQ RXQ RxQ RxQ DMA

See flier in your P4EU registration

P4 Program

' Input Arbiter
l M w
i Output Port 5
- . . Lookup
Xilinx P4-SDNet Drop-in substitute 1
l SBEEHE

Output Queues \\

DMA

Parser Deparser

Match-
action
pipeline

4x10G Ethernet switch, with
‘ > CPU slow path as 5™ port
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https://github.com/NetFPGA/P4-NetFPGA-public/wiki

'Possible future P4 open reference platform collection

NIC style
(PNA)

Switch style
(PSA)

Two architecture types

with

Software
(simulation)

Hardware

Two implementation types (FPGA)

>> 4 & XILINX



Conclusion
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'Research directions

> Language: Extend coverage of P4
>> Programmable Traffic Management (MIT + NYU + Stanford + Xilinx Labs + P4.org)
>> Programmable Target Architectures (Cornell + Stanford + VMWare Research + Xilinx Labs)

> Infrastructure: Open source hardware reference platform for P4
>> Complement existing software reference platform
>> Cover NIC-style architectures as well as switch-style architectures

> Applications
>> Congestion control; In-band network telemetry
>> |n-network computing
>> Programmable networking novelty
>> ... your ideas here

>>2 £ XILINX.



'Call to action

> Become a member of P4.org
>> No fee, and simple membership agreement
>> Code and data under Apache 2.0 license

> Participate in working groups, and their ad hoc sub-groups (e.g., PNA, PTM)

>> Activities are open to all members

>>

Anyone with a good idea can help shape the future of P4

> Contribute to evolving open source provision

>> 1

>>

>>

>>

>>

>>

>>

>>

Compiler (p4c) — common front end and mid ends, and target-specific backends
Software reference switch (bmv2) — and future open platforms

Control plane API (P4Runtime)

Tutorials

Documentation

Standard applications

New applications
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The
End
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