
Gordon Brebner

Xilinx Labs, San Jose, USA

P4EU Keynote, Cambridge, UK

24 September 2018

Extending the range of

P4 programmability

What this talk is about

˃P4 history and status

˃Portable NIC Architecture (PNA)

˃Programmable Target Architecture (PTA)

˃Programmable Traffic Manager (PTM)

˃Towards open reference platforms

P4 history and status

P4
Programming Protocol-independent Packet Processors

˃ Language first appeared in paper published in July 2014

Original version and early evolution now known as P414

Revised version known as P416 released in May 2017

˃ Three goals:

Reconfigurability in the field – reprogramming of networking equipment

Protocol independence – not tied to any specific networking protocols

Target independence – not tied to any specific networking hardware

˃ P4 Language Consortium (P4.org) set up in 2015

Xilinx was a founding member of P4.org

Now has >100 members

>> 41

P4 language features … in one slide

>> 40

Architecture

Extern Libraries

Programmable blocks

and their interfaces

Support for specialized

components

Data Types
Bit-strings, headers,

structures, arrays

Controls
Match-Action Tables,

control flow statements

Parsers

Expressions
Basic operations

and operators

State Machines,

bit-field extraction

Packet processing pipeline

Original perspective (P414)

• Language Design WG

>> 39

FPGAs,

NPUs

Programmable

switch ASICs

Software

switches

Fixed-function

switch ASICs

Diverse targets (P416)

>> 38

L2 L3 ACL

Portable Switch Architecture (PSA)

• Language Design WG

• Architecture WG

Complex control planes

>> 37

L2 L3 ACL

P4Runtime

• Language Design WG

• Architecture WG

• API WG

Rich applications

>> 36

L2 L3 ACL

In-band

Network

Telemetry

(INT)

• Language Design WG

• Architecture WG

• API WG

• Applications WG

Education

>> 35

L2 L3 ACL

In-Band

Network

Telemetry

P4Runtime

Portable Switch Architecture

• Language Design WG

• Architecture WG

• API WG

• Applications WG

• Education WG

P4 ecosystem

>> 34

Community-developed

P4

Language

P4 Core Library

Vendor-supplied

Extern

Libraries

Architecture

Definition

P4

Compiler

User-developed

Application Application

Application Application

Data plane: P4

and

Control plane: C, Python, etc.

Xilinx (P4) SDNet product (www.xilinx.com/sdnet)

>> 33

Xilinx P4 Compiler

% sdnet example.p4

example.sv

example.bit

Verification Environment

System Verilog

Testbench

High level C++

Testbench

P4 Runtime

drivers
Top level Verilog

wrapper

Verilog

Engines

(Encrypted)

Example target: Xilinx P4-Smart NIC card

Xilinx Labs prototype (May 2017):

• First-ever P416 compiler

• 100G line rate

Production version (Dec 2018):

• 50% less latency and resources

SDNet-supported research community today:
60 institutions in 22 countries

Canada: 2

USA: 13

Brazil: 3

China: 7

India: 1

Israel: 1

Japan: 1

South Korea: 2

Taiwan: 5

Bosnia: 1

France: 2

Germany: 4

Ireland: 1

Italy: 3

Poland: 1

Romania: 1

Russia: 1

Serbia: 1

Spain: 3

Sweden: 1

Switzerland: 2

UK: 4

>> 32

Status of P4

˃ Industry Momentum

Diverse collection of P4-enabled targets

Growing number of P4-based products

Real-world deployments

˃ Academic Interest

Research papers at top conferences

New courses at leading universities

˃ Open Source Community

Vibrant technical working groups

Powerful set of P4 tools

P4.org joined Linux Foundation this year

>> 31

"Our whole networking industry stands to

benefit from a language like P4 that

unambiguously specifies forwarding

behavior, with dividends paid in software

developer productivity, hardware

interoperability, and furthering of open

systems and customer choice."

— Tom Edsall, Cisco

Portable NIC Architecture

P4 community desire

New P4.org Architecture sub-group

Switch vs. NIC: Superficially similar …

˃ Switch-style architecture

˃ NIC-style architecture

>> 29

Ingress

Match-

Action

Ingress

Parser

Egress

Deparser

Egress

Match-

Action

Ingress

Deparser

Egress

Parser

Host CPU
Ethernet

Ports

Ingress

Traffic

Manager

Egress

Traffic

Manager

Ingress

Match-

Action

Ingress

Parser

Egress

Deparser

Egress

Match-

Action

Ingress

Deparser

Egress

Parser

Ethernet

Ports

Ingress

Traffic

Manager

Egress

Traffic

Manager

Switch fabric

Xilinx Labs Smart NIC prototype (evolved 2015-2018)

>> 28

40/50G Ethernet MAC/PHY

Ingress

datapath

offload

P4

Application

function

acceleration

C/C++

PCIe/SRIOV

Virtual Machines hosted on CPU
DPDK

Egress

datapath

offload

P4

Memory

FPGA

Xilinx NICs and Barefoot switch:
In-band Network Telemetry (INT) inter-operability
Demonstrated at MWC 2018 and OFC 2018

>> 27

Use Case 1/3: Basic NIC ingress and egress

˃ Example:

40Gb/s IP packet forwarding

1 CPU core needed instead of 6 CPU cores

Full line rate with 64-byte packets

>> 26

Ingress

offload
Egress

offload

CPU

(DPDK)

Use Case 2/3: Direct egress to ingress bridging

˃ Example:

NFV Service Function Chaining (SFC)

‒ Offload of NSH protocol used for SFC

5x reduction in VM-to-VM latency

Throughput matches the PCIe bandwidth

>> 25

Ingress

offload
Egress

classifier

Virtual

Machine

2

Virtual

Machine

1

Use Case 3/3: Bump-in-wire acceleration

˃ CPU out of main processing loop

Just used for configuration and exceptions

˃ Example:

Video Transcoding appliance

Accelerate video coding

25x better frames/second per Watt

>> 24

Payload

extract

Header

update

CPU

Video

codec

Some Portable NIC Architecture (PNA) discussions

˃ Expect there to be separate ingress and egress pipelines
What are the standard components of each pipeline? Are there pipeline variants?

Which components are P4-programmable?

Is direct interaction between ingress and egress, and egress and ingress, allowed?

˃ How is host CPU interface modelled?
Differentiate data plane CPU roles, and control plane CPU roles

Impact on P4Runtime

˃ Beyond packet forwarding (future steps – of general P4 interest)
Is protocol (e.g., TCP) termination covered?

Is ‘Type 3’ NIC covered – payload processing as well?

>> 23

Programmable Target Architecture

Stanford, Xilinx Labs

Now in discussion with Barefoot, Cornell, VMware Research

Examples of the many possible target architectures

>> 21

M/AParser DeparserM/ATM
Output

Queues

V1 Model

DeparserM/AParser DeparserM/AParserTM
Output

Queues

Portable Switch Architecture (PSA)

M/AParser DeparserM/A
My

block

Output

Queues

Custom in-line processing

Programmable Target Architecture (PTA)

˃ Motivations

Extend P4 (“P4+”) to allow description of target architectures: components and connectivity

End-to-end P4 program verification relative to particular architectures

Explore performance tradeoffs of various architectures

˃ Three actors

(1) Target architecture designer (2) P4 programmer (3) Runtime programmer

>> 20

Implements:

• Externs in target architecture

• In-line (packet processing)

• Look-aside (header processing)

• P4Runtime+ API for externs

Provides:

• P4+ architecture description

Implements:

• P4-programmable

“holes” in the target

architecture

Implements:

• Runtime controller for

P4-populated target

architecture

Example: Custom target architecture

>> 19

Deparser
Match-

Action
Parser

Match-

Action
ParserDeparser TM

Logical P4 pipeline view:

Invisible

Match-Action

Engine
Parser

Engine

Deparser

Engine

Parser

Engine

Invisible

Match-Action

Engine

Legend

Packet stream

Standard metadata

Headers 1

Headers 2

Deparser

Engine
TM

Deparser

Engine

Parser

Engine

Invisible

Match-Action

Engine

packet in

std meta in

packet out

std meta out

packet out

std meta out

Internal design view:

Custom architecture description using experimental P4+
#define NUM_PORTS 2

struct std_meta_t {...}

// Define (header processing) externs ...

// Define Architectural Elements

parser Parser<H>(packet_in p_in,

out H *headers, // * distinguishes between headers and metadata

inout std_meta_t std_meta,

packet_out .p_out); // . indicates that port is hidden (i.e. invisible at this pipeline stage)

control Pipe<H>(inout H *headers,

inout std_meta_t std_meta,

packet_inout .p);

control Deparser<H>(packet_out p_out,

in H *headers,

inout std_meta_t std_meta,

packet_in .p_in);

extern TM(packet_in p_in,

in std_meta_t std_meta_in,

(

packet_out p_out,

out std_meta_t std_meta

)*NUM_PORTS); // * operator indicates replicated ports

package Example<H1, H2> (Parser<H1> p1,

Pipe<H1> map1,

Deparser<H1> d1,

TM tm,

Parser<H2> p2,

Pipe<H2> map2,

Deparser<H2> d2) {

// * operator indicates forked replication

arch = {p1, map1, d1, tm, (p2, map2, d2)*NUM_PORTS}

}

>> 18

P4+ code:

Written by target

architecture

designer

Custom architecture Interface (auto-generated)

struct std_meta_t {...}

// Define (header processing) externs ...

// Define Architectural Elements

parser Parser<H>(packet_in p_in,

out H headers,

inout std_meta_t std_meta);

control Pipe<H>(inout H headers,

inout std_meta_t std_meta);

control Deparser<H>(packet_out p_out,

in H headers,

inout std_meta_t std_meta);

package Example<H1, H2> (Parser<H1> p1,

Pipe<H1> map1,

Deparser<H1> d1,

Parser<H2> p2,

Pipe<H2> map2,

Deparser<H2> d2);

>> 17

Standard P4 code:

Imported by P4

programmer

Prototype P4+ workflow being

demonstrated at P4EU today

Programmable Traffic Manager

MIT, NYU, Stanford, Xilinx Labs

New P4.org Architecture sub-group

What is Traffic Management?

˃ Policing: compliance with agreed rate

˃ Drop policy: how to avoid/deal with congestion

˃ Replication: cloning and multicasting packets

˃ Packet buffering: temporary storage of packets

˃ Packet scheduling: determining order of transmission

˃ Traffic shaping: forcing rate and pace

˃ Associated with Classification – mapping packet flows to egress ports and queues

>> 15

Why should we care about Traffic Management?

˃ Lots of different types of traffic with different characteristics and requirements

Characteristics: burstiness, packet sizes, flow sizes, flow rates

Requirements: throughput, latency, loss, jitter, reordering, flow completion time, pacing

˃ Network operators have a wide range of objectives

Meet all Service Level Agreements

Maximize network utilization

Achieve fairness, while prioritizing certain traffic

˃ Network devices are acquiring more TM functionality

About 50% of a modern programmable switch chip is dedicated to traffic management and
buffering – but this part is currently not programmable

˃ Particular programmability benefits, alongside general P4 benefits

Network operators can fine-tune for performance

Small menu of standard algorithms to choose from today

… Many possible algorithms that can be expressed

>> 14

Programmable Traffic Manager (PTM) architecture

>> 13

Programmable

classification and

policing & drop

policy

Non-

programmable

packet replication

Buffering and

queueing for each

egress port

May have many

associated queues

per port

Non-

programmable

packet storage

Programmable

scheduling and

shaping

Egress port

selection

Non-

programmable

packet storage

Programmable

scheduling and

shaping

Non-

programmable

packet storage

Programmable

scheduling and

shaping

The Push-In-First-Out (PIFO) model [SIGCOMM 2016]

˃ What is a PIFO?

˃ Why is the PIFO a good model for scheduling and shaping?

Ordering decision made at time of enqueue  helps relax timing pressure at output ports

Clear separation between programmable part and fixed part

˃ Can implement existing algorithms, for example:

Start Time Fair Queueing (STFQ), Least Slack-Time First (LSTF), Stop-and-Go Queueing,
Minimum rate guarantees, fine grained priority scheduling, Service-Curved Earliest Deadline
First (SC-EDF), Rate-Controlled Service Disciplines (RCSD)

Token bucket rate limiting

˃ Can implement new algorithms using programmable rank computation

>> 12

03478

Fixed PIFO

Programmable
rank computation

2

Programmable

scheduling and

shaping

Prototype implemented on FPGA for 4x10G line rate
NYU+Stanford+Xilinx Labs demonstration at P4 Workshop, June 2018

>> 11
Packet storage

Input
Packet

rank
computation

Buffer 1

Buffer i

Buffer N

. . .

. . .

03478

Classification

descriptor and metadata

descriptor and rank

descriptor

PIFO-based scheduler

Output
Packet

Load

Balancer

Selector

Register

Cache

Skip List

Register

Cache

Skip List

Register

Cache

Skip List

Register

Cache

. . .

Insertion

Removal

PIFO implemented using parallel skip lists

Example: Possible P4 pipeline extension for TM

parser Parser<H, M>(packet_in b,

out H hdr,

out M user_meta,

inout std_meta_t std_meta);

control Ingress<H, M, D>(inout H hdr,

out D sched_meta,

inout M user_meta,

inout std_meta_t std_meta);

>> 10

scheduler MyScheduler<D>(in D sched_meta);

control Egress<H, M>(inout H hdr,

inout M user_meta,

inout std_meta_t std_meta);

control Deparser<H, M>(packet_out b,

in H hdr,

in M user_meta,

inout std_meta_t std_meta);

Ingress

match-

action

Ingress

parser
Egress

deparser

Egress

match-

action

Programmable

scheduling and

shaping

Non P4-

programmable

packet storage

Classification and

policing & drop Policy

User defined

scheduling

metadata

Example: Possible P4 extension for scheduler/shaper

scheduler MyScheduler(in sched_meta_t sched_meta)

{

/* Define PIFO tree nodes */

/* root scheduling node */

node strict_priority {

type = scheduling;

pifo<rank_t>(2048) p;

enqueue = { … }

dequeue = { … }

}

/* shaping node */

node token_bucket {

type = shaping;

pifo<rank_t, sched_meta_t>(2048) p;

enqueue = { … }

dequeue = { … }

}

/* Define the shape of the scheduling/shaping tree */

tree myTree { strict_priority(), {wfq(), {token_bucket(), {wfq()} } }

table find_path { … }

apply {

find_path.apply();

// apply the scheduling algorithm defined by the tree

myTree.apply(leaf_node);

}

}

>> 9

strict

WFQ WFQ

token bucket

Towards open reference platforms

Software platform: P4 toolchain for BMv2 simulation

simple_switch_CLI

Program-independent

CLI and Client

TCP Socket

(Thrift)

Packet
sniffer

Packet
generator

s
im

p
le

_
s
w

it
c
h

(B
M

v
2
)

Program-independent

Control Server

E
g
re

s
s

In
g
re

s
s

PRE

Parser Deparser

Port Interface

L

o

g

test.p4

test.json

test.jsontest.json

p4c-bm2-ss

Linux Kernel
veth0..n

D

e

b

u

g

P4

Debugger

>> 7

Hardware platform: NetFPGA (= Networked FPGA)

˃ Line-rate, flexible, open networking hardware for teaching and research

˃ Begun in 2007 by Stanford and Xilinx Labs, now anchored at Cambridge

˃ NetFPGA systems deployed at over 150 institutions in over 40 countries

Four elements:

˃ Community: NetFPGA.org

˃ Low-cost board family

˃ Tools and reference designs

˃ Contributed projects

>> 6

NetFPGA-1G-CML

4x1G ports

NetFPGA-SUME

4x10G ports

Hardware platform: P4NetFPGA workflow

>> 5

P4 Program

Xilinx P4-SDNet

NetFPGA SUME reference switch design

Drop-in substitute

4x10G Ethernet switch, with

CPU slow path as 5th port

https://github.com/NetFPGA/P4-NetFPGA-public/wiki

See flier in your P4EU registration

https://github.com/NetFPGA/P4-NetFPGA-public/wiki

Possible future P4 open reference platform collection

>> 4

Two architecture types

Two implementation types

NIC style

(PNA)

Switch style

(PSA)

Hardware

(FPGA)

Software

(simulation)

with

Conclusion

Research directions

˃ Language: Extend coverage of P4

Programmable Traffic Management (MIT + NYU + Stanford + Xilinx Labs + P4.org)

Programmable Target Architectures (Cornell + Stanford + VMWare Research + Xilinx Labs)

˃ Infrastructure: Open source hardware reference platform for P4

Complement existing software reference platform

Cover NIC-style architectures as well as switch-style architectures

˃ Applications

Congestion control; In-band network telemetry

In-network computing

Programmable networking novelty

… your ideas here

>> 2

Call to action

˃ Become a member of P4.org

No fee, and simple membership agreement

Code and data under Apache 2.0 license

˃ Participate in working groups, and their ad hoc sub-groups (e.g., PNA, PTM)

Activities are open to all members

Anyone with a good idea can help shape the future of P4

˃ Contribute to evolving open source provision

Compiler (p4c) – common front end and mid ends, and target-specific backends

Software reference switch (bmv2) – and future open platforms

Control plane API (P4Runtime)

Tutorials

Documentation

Standard applications

New applications

>> 1

The

End

