Extending the range of
P4 programmabillity

Gordon Brebner
Xilinx Labs, San Jose, USA

P4EU Keynote, Cambridge, UK
24 September 2018

XILINX.

P4 history and status

Portable NIC Architecture (PNA)
Programmable Target Architecture (PTA)
Programmable Traffic Manager (PTM)

Towards open reference platforms

XILINX.

P4 history and status

22 XILINX

y o

Programming Protocol-independent Packet Processors

> Language first appeared in paper published in July 2014
>> QOriginal version and early evolution now known as P4,,
>> Revised version known as P4, released in May 2017

> Three goals:
>> Reconfigurability in the field — reprogramming of networking equipment
>> Protocol independence — not tied to any specific networking protocols
>> Target independence — not tied to any specific networking hardware

> P4 Language Consortium (P4.org) set up in 2015
>> Xilinx was a founding member of P4.org
>> Now has >100 members

>>41 £ XILINX.

' P4 language features ... in one slide

Parsers

Controls

Expressions

Data Types

State Machines,

bit-field extraction

Match-Action Tables,
control flow statements

Basic operations
and operators

Bit-strings, headers,
structures, arrays

Architecture

Extern Libraries

>> 40

Programmable blocks
and their interfaces

Support for specialized
components

- AddaEE

Packet processing pipeline

- AR

& XILINX

'Original perspective (P4,,) m

g

* Language Design WG

000

R

vy
HEHH

>> 39 & XILINX.

' Diverse targets (P4,)

.Ol‘s

* Language Design WG
» Architecture WG

L -

Portable Switch Architecture (PSA)

/ NN\
- <

N2

==
% FE = 12 L3 ACL
FPGAs, Programmable Fixed-function Software
NPUs switch ASICs switch ASICs switches

>> 38 & XILINX

'Complex control planes

ol

™9
* Language Design WG

e Architecture WG
« APIWG

>> 37 £ XILINX.

'Rich applications

00

&)

| S

> s

—

&

In-band

Network — ‘

Telemetry

INT
(INT) \

09

L2

L3

ACL

.Ol‘s

* Language Design WG
» Architecture WG

« APIWG

* Applications WG

& XILINX

>> 35

In-Band /'
Network

Telemetry

P4Runt|me

),

8|

Portable Switch Architecture

&

A

ACL

P

.Ol‘s

» Language Design WG
» Architecture WG

« APIWG

* Applications WG

» Education WG

& XILINX

' P4 ecosystem

User-developed

Data plane: P4

Application Application and
Control plane: C, Python, etc.

Application Application

Community-developed Vendor-supplied

P4 P4 Core Library Architecture Extern P4
Language Definition Libraries Compiler

L A

>> 34 £ XILINX.

'Xilinx (P4) SDNet product (www.xilinx.com/sdnet)

X|I|nX LabS prOtOtype (May 2017) 0% sdnet example.p4
* First-ever P4,, compiler

Xilinx P4 Compiler

« 100G line rate
Production version (Dec 2018):
* 50% less latency and resources

example.sv
A 4
! VIVADO
Verification Environment HLx Editions

v A v \4 .
' i ; example.bit
Top level Verilog I;/rfr:lr?gs System Verilog || High level C++ P4 Runtime J P
wrapper 9 Testbench Testbench drivers
(Encrypted) [— :

>> 33 £ XILINX.

' SDNet-supported research community today:

00 institutions In 22 countries

Poland: 1
Romania: 1
Russia: 1
Serbia: 1

Bosnia: 1
.- France: 2
"'l.@l ,,,-{r = Germany: 4
bt Ireland: 1
Canada: 2 Italy: 3
-~ USA: 13
North T
America
& 5. Atlantic
“~. Pacific 3L _ . Ocean
Ccean p}
o . South
- America
Brazil: 3

£

Spain: 3

Sweden: 1

Switzerland: 2

UK: 4
China: 7
India: 1
Israel: 1

| Japan: 1

Taiwan: 5

South Korea: 2

()

Southern
Ocean '_,._.H_W Antamﬂnaﬂ'—_

>> 32

. ﬁ:_&q A e
-Fmt‘a

=

e

& XILINX

' Status of P4

"Our whole networking industry stands to
benefit from a language like P4 that
unambiguously specifies forwarding

> Industry Momentum behavior, with dividends paid in software

>> Diverse collection of P4-enabled targets developer productivity, hardware
interoperability, and furthering of open

>> GI‘OWIng number Of P4'based pI’OdUC'[S Systems and customer choice."
>> Real-world deployments — Tom Edsall, Cisco

> Academic Interest
>> Research papers at top conferences
>> New courses at leading universities

> Open Source Community
>> Vibrant technical working groups
>> Powerful set of P4 tools
>> P4.org joined Linux Foundation this year

>>31 £ XILINX.

Portable NIC Architecture

P4 community desire
New P4.org Architecture sub-group

22 XILINX

Switch vs. NIC: Superficially similar ...

> Switch-style architecture

Ingress

Ingress

Manager p At Parser
Ethernet
Switch fabric Ports
Egress Egress
Egress M%tch- S T?affic
Parser Action Deparser Manager
> NIC-style architecture
Ingress Ingress
Manager P S Parser
Ethernet
Host CPU Ports

Egress Egress

Deparser

Traffic
Manager

>> 29 £ XILINX.

'Xilinx Labs Smart NIC prototype (evolved 2015-2018)

Virtual Machines hosted on CPU

DPDK
1 11
PCle/SRIOV
Ingress Application Egress

datapath e function g datapath
offload mp acceleration g offload

P4 C/C++ P4

I Memory l

40/50G Ethernet MAC/PHY

I l FPGA

>> 28 & XILINX

'Xilinx NICs and Barefoot switch:

In-band Network Telemetry (INT) inter-operability
Demonstrated at MWC 2018 and OFC 2018

owered by Barefoot Tofino
4 Programmable

E\ventec switch

Dell R730
DPDK 4 Transit 4 Sink
packet nction unction

t ¥ e 2 0
gen App ort to 4 Transit 4 Transit 5
2 witch e -]
{ \ e e Barefoot Deep Insight // k

Flow Analytics

>> 27 £ XILINX.

'Use Case 1/3: Basic NIC ingress and egress

> Example:

>> 40Gb/s IP packet forwarding
>> 1 CPU core needed instead of 6 CPU cores
>> Full line rate with 64-byte packets

Application
function
- acceleration -

Ingress C/C++

offload Memory

0/50G Ethernet MAC/P

>> 26 . AILNX.

'Use Case 2/3: Direct egress to ingress bridging

> Example:

>> NFV Service Function Chaining (SFC)
— Offload of NSH protocol used for SFC
>> 5x reduction in VM-to-VM latency
>> Throughput matches the PCle bandwidth

>> 25

Virtual Virtual

VI Machine ines hO Machine U
DPDK

1 1
PCle/SRIOV

1

Application
- functlop
acceleration

Ingress
offload classifier

40/50G Ethernet MAC/PHY

I |

\X.

'Use Case 3/3: Bump-in-wire acceleration

> CPU out of main processing loop
>> Just used for configuration and exceptions

> Example:
>> Video Transcoding appliance
>> Accelerate video coding
>> 25X better frames/second per Watt

>> 24

Virtual Mac ied on CPU
1 11 }
PCle/SRIOV
| I |

Ingress Application Egress
datasnz funetion =

Payload
extract

0/50G Ethernet MAC/P

\X.

'Some Portable NIC Architecture (PNA) discussions

> Expect there to be separate ingress and egress pipelines
>> What are the standard components of each pipeline? Are there pipeline variants?
>> Which components are P4-programmable?
>> |s direct interaction between ingress and egress, and egress and ingress, allowed?

> How Is host CPU interface modelled?
>> Differentiate data plane CPU roles, and control plane CPU roles
>> |mpact on P4Runtime

> Beyond packet forwarding (future steps — of general P4 interest)
>> |s protocol (e.g., TCP) termination covered?
>> |s “Type 3’ NIC covered — payload processing as well?

>> 23 £ XILINX.

Programmable Target Architecture E

Stanford, Xilinx Labs
Now In discussion with Barefoot, Cornell, VMware Research

XILINX.

'Examples of the many possible target architectures

V1 Model

Output

Portable Switch Architecture (PSA)
Parser Deparser Deparser Output
Queues

Custom in-line processing

Parser | bIock : Deparser
>> 21 . _

Output
Queues

& XILINX

' Programmable Target Architecture (PTA)

> Motivations

> Extend P4 (“P4+") to allow description of target architectures: components and connectivity
>> End-to-end P4 program verification relative to particular architectures
>> EXxplore performance tradeoffs of various architectures

> Three actors

(1) Target architecture designer (2) P4 programmer (3) Runtime programmer
Implements: Implements: Implements:
« Externs in target architecture » P4-programmable * Runtime controller for

* In-line (packet processing) “holes” in the target P4-populated target

» Look-aside (header processing) architecture architecture

 P4Runtime+ API for externs

Provides:
* P4+ architecture description

>> 20 £ XILINX.

' Example: Custom target architecture

Logical P4 pipeline view:

Parser

Match-
Action

Internal design view:

A 4

Invisible

Match-Action

Parser
“admean || Engne
>> 19

Deparser Parser

Deparser

vy

v

Engine

A\ A

Deparser
Engine

™

Legend

— Packet stream

— Standard metadata

=== Headers 1
=P Headers 2

A 4

Invisible

Parser »| Match-Action < | packetout
Engine . > Deparser P
—p Engine > .
Engine
» Invisible
Parser Match-Action >
Engine Engine || Deparser —>[packetou _

Engine

std meta out

& XILINX

Custom architecture description using experimental P4+

#define NUM PORTS 2
std meta t {...}

// Define (header processing) externs

// Define Architectural Elements
Parser<i>(p_in,

*headers, // * distinguishes between headers and metadata
std meta_t std meta,

.p_out); // . indicates that port is hidden (i.e. invisible at this pipeline stage)

Pipe<H>(*headers,
std_meta_t std meta,
-P);
Deparser<H> (p_out,
*headers,
std_meta_t std meta,
.p_in);
o o in, P4+ code:
std meta t std meta in, .
: Written by target
p_out,

std_meta_t std meta

) *NUM_PORTS) ; // * operator indicates replicated ports Eir(:t]ltEBC:tLjree
Example<H1, > (Parser<H1> pl, deSI U ner

Pipe<H1> mapl,

Deparser<H1> dl,

T™M tm,

Parser<H2> p2,

Pipe<H2> map2,

Deparser<io> d2) {

I // * operator indicates forked replication I
= {pl, mapl, dl, tm, (.PZ, map2, d2)*NUM PORTS}

}

>>18 £ XILINX.

'Custom architecture Interface (auto-generated)

struct std meta_t (...}
// Define (header processing) externs ...

// Define Architectural Elements
parser Parser<H>(packet in p in,
out H headers,

inout std meta t std meta); Standard P4 COde:
e PiPe<H>(iEZEt I.:tgi::i:iilz std meta); I m ported by P4
control Deparser<H> (packet_out p_out, p rO g ram m e r

in H headers,
inout std meta t std_meta);

package Example<H1l, H2> (Parser<Hl> pl,
Pipe<Hl1l> mapl,
Deparser<H1> dl,
Parser<i2> p2,
Pipe<iH2> map2,
Deparser<H2> d2) ;

Prototype P4+ workflow being

demonstrated at P4EU today

>>17 £ XILINX.

Programmable Traffic Manager %

MIT, NYU, Stanford, Xilinx Labs
New P4.org Architecture sub-group

XILINX.

'What Is Traffic Management?

> Policing: compliance with agreed rate

> Drop policy: how to avoid/deal with congestion

> Replication: cloning and multicasting packets

> Packet buffering: temporary storage of packets

> Packet scheduling: determining order of transmission

> Traffic shaping: forcing rate and pace

> Associated with Classification — mapping packet flows to egress ports and queues

>>15 £ XILINX.

'Why should we care about Traffic Management?

> Lots of different types of traffic with different characteristics and requirements
>> Characteristics: burstiness, packet sizes, flow sizes, flow rates
>> Requirements: throughput, latency, loss, jitter, reordering, flow completion time, pacing

> Network operators have a wide range of objectives
>> Meet all Service Level Agreements
>> Maximize network utilization
>> Achieve fairness, while prioritizing certain traffic

> Network devices are acquiring more TM functionality

>> About 50% of a modern programmable switch chip is dedicated to traffic management and
buffering — but this part is currently not programmable

> Particular programmability benefits, alongside general P4 benefits
>> Network operators can fine-tune for performance
>> Small menu of standard algorithms to choose from today
>> ... Many possible algorithms that can be expressed

>>14 £ XILINX.

'Programmable Traffic Manager (PTM) architecture

Programmable
scheduling and
shaping

Buffering and
gueueing for each
egress port

May have many
associated queues
per port

Non-
programmable
packet storage

Programmable

2 Non-
classification and

programmable
packet replication

policing & drop
policy

Egress port
selection

>>13 £ XILINX.

'The Push-In-First-Out (PIFO) model [SIGCOMM 2016]

> What is a PIFO?

Programmable

Programmable

I > scheduling and
rank computation

0 I shaping

7014]3

1
-

Fixed PIFO

> Why is the PIFO a good model for scheduling and shaping?
>> QOrdering decision made at time of enqueue - helps relax timing pressure at output ports
>> Clear separation between programmable part and fixed part

> Can implement existing algorithms, for example:

>> Start Time Fair Queueing (STFQ), Least Slack-Time First (LSTF), Stop-and-Go Queueing,
Minimum rate guarantees, fine grained priority scheduling, Service-Curved Earliest Deadline
First (SC-EDF), Rate-Controlled Service Disciplines (RCSD)

>> Token bucket rate limiting

> Can implement new algorithms using programmable rank computation

>>12 £ XILINX.

' Prototype implemented on FPGA for 4x10G line rate
NYU+Stanford+Xilinx Labs demonstration at P4 Workshop, June 2018

PIFO-based scheduler

7

s

413

descriptor and rank

descriptor and metadata

Input

Packet
Classification

0 F
rank
computation

descriptor

Buffer N

Output
Packet

Packet storage

>> 11

PIFO implemented using parallel skip lists

Load
Balancer Insertion
(Register \I (Register \I (Register \I
I| Cache I| Cache I| Cache =
i I I | i I Register
1| skipList |V 1| skip List |! 1| skip List |! Seleils
\ ! N] \]
\/ |
Selector Removal

& XILINX

Example: Possible P4 pipeline extension for TM

parser Parser<H, M>(packet in b,
out H hdr,
out M user_meta,
inout std meta t std meta);

control Ingress<H, M, D>(inout H hdr,
out D sched meta,
inout M user meta,

User defined
scheduling

metadata

scheduler MyScheduler<D>(in D sched meta) ; I

inout std meta t std meta);

Classification and
policing & drop Policy

Ingress
match-
action

Ingress
parser

>> 10

Programmable
scheduling and
shaping

Non P4-
programmable
packet storage

control Egress<H, M>(inout H hdr,
inout M user meta,
inout std meta t std meta);

control Deparser<H, M>(packet out b,
in H hdr,
in M user_meta,
inout std meta t std meta);

Egress
match-
action

Egress
deparser

& XILINX

Example: Possible P4 extension for scheduler/shaper

MyScheduler (sched meta t sched meta) strict

/* Define PIFO tree nodes */
/* root scheduling node */
strict priority {
= scheduling;
pifo<rank t>(2048) p;
= { .}
= { .}

~—~—
[mm—————————————

/* shaping node */

token_b;ckgt { WFQ WFQ

= shaping;

pifo<rank t, sched meta t>(2048) p; HEREE HHEEN
{ ..}

{ ..}

/* Define the shape of the scheduling/shaping tree */
myTree { strict priority(), {wfg(), {token bucket(), {wfq()} } }
find path { .. }
{

find path. 0
// apply the scheduling algorithm defined by the tree
myTree. (leaf node) ;

>>9 £ XILINX.

Towards open reference platforms O\

22 XILINX

'Software platform: P4 toolchain for BMv2 simulation

Program-independent
CLI and Client
TCP Socket

(Thrift)

Program-independent
Control Server

test.json ﬁ Iﬂ

Packet

generator sniffer

simple_switch (BMv2)

>> '/

& XILINX

'Hardware platform: NetFPGA (= Networked FPGA)

> Line-rate, flexible, open networking hardware for teaching and research
> Begun in 2007 by Stanford and Xilinx Labs, now anchored at Cambridge

> NetFPGA systems deployed at over 150 institutions in over 40 countries

Four elements: NetFPGA-1G-CML

> Community: NetFPGA.org 4x1G ports
> Low-cost board family

> Tools and reference designs

NetFPGA-SUME

> Contributed projects 4x10G ports

>> 6

& XILINX

' Hardware platform: P4->NetFPGA workflow

https://qithub.com/NetFPGA/P4-NetFPGA-public/wiki

NetFPGA SUME reference switch design

= (B 8 |B| |B

10GE 10GE 10GE 10GE
RxQ RXQ RxQ RxQ DMA

See flier in your P4EU registration

P4 Program

' Input Arbiter
l M w
i Output Port 5
- . . Lookup
Xilinx P4-SDNet Drop-in substitute 1
l SBEEHE

Output Queues \\

DMA

Parser Deparser

Match-
action
pipeline

4x10G Ethernet switch, with
‘ > CPU slow path as 5™ port

>>5 £ XILINX.

https://github.com/NetFPGA/P4-NetFPGA-public/wiki

'Possible future P4 open reference platform collection

NIC style
(PNA)

Switch style
(PSA)

Two architecture types

with

Software
(simulation)

Hardware

Two implementation types (FPGA)

>> 4 & XILINX

Conclusion

22 XILINX

'Research directions

> Language: Extend coverage of P4
>> Programmable Traffic Management (MIT + NYU + Stanford + Xilinx Labs + P4.org)
>> Programmable Target Architectures (Cornell + Stanford + VMWare Research + Xilinx Labs)

> Infrastructure: Open source hardware reference platform for P4
>> Complement existing software reference platform
>> Cover NIC-style architectures as well as switch-style architectures

> Applications
>> Congestion control; In-band network telemetry
>> |n-network computing
>> Programmable networking novelty
>> ... your ideas here

>>2 £ XILINX.

'Call to action

> Become a member of P4.org
>> No fee, and simple membership agreement
>> Code and data under Apache 2.0 license

> Participate in working groups, and their ad hoc sub-groups (e.g., PNA, PTM)

>> Activities are open to all members

>>

Anyone with a good idea can help shape the future of P4

> Contribute to evolving open source provision

>> 1

>>

>>

>>

>>

>>

>>

>>

Compiler (p4c) — common front end and mid ends, and target-specific backends
Software reference switch (bmv2) — and future open platforms

Control plane API (P4Runtime)

Tutorials

Documentation

Standard applications

New applications

& XILINX

The
End

22 XILINX

