

Closing the Network Control Loop

Jennifer Rexford, Princeton University

Programmability From Top-to-Bottom and End-to-End

What Will Network Owner's Do?

 What will network owners *do* with this new flexibility?

• We believe they will want to run their networks better!

Adding New "Dials"

- Traffic
- Performance
- Cyberattacks
- Failures

- Signal strength
- <Your measurement here>

Adding New "Knobs"

- Drop
- Mark
- Rate-limit
- Reroute
- Hand-off
- <your knob here>

Closed-Loop Control

Example #1: Microbursts

- Small timescale traffic bursts
 - Long queues caused by incast, attacks, etc.
 - Lead to high packet delay and loss
 - ... despite low average link utilization

Example #1: Microburst Measurement

- Data-plane measurement and analysis
 - Backlog in the queue
 - A flow's own contribution to the queue

ConQuest: "Fine-grained queue measurement in the data plane" in CoNEXT'19.

Example #1: Microburst Mitigation

- Data-plane adaptation
 - Drop or mark an arriving packet probabilistically
 - Based on its flow's contribution to the queue

Example #2: Distributed Denial-of-Service Attacks

DDoS attacks DNS reflection attack SYN flooding HTTP flooding Slowloris attack Attacker Overwhelm the victim Exhausting network and server resources

•

•

Example #2: DDoS Detection

- Data-plane measurement and analysis
 - Identify suspected victim destinations (key DstIP)
 - ... receiving traffic from distinct senders (attribute SrcIP)
 - ... in excess of a threshold (threshold T)

BeauCoup: <u>"Answering many network traffic queries, one memory update at a time"</u> in SIGCOMM'20

Example #3: DDoS Mitigation

- Data-plane adaptation
 - Drop or rate-limit packets to suspected victims
 - Run stateful firewall for suspected victims
 - Pushback upstream toward the senders

Example #3: Path Performance

Network path diversity

- Load balancing to achieve good performance
 - Track the performance (load, loss, delay) of paths
 - Split traffic effectively over the multiple paths

Example #3: Path Performance Monitoring

- Tracking the best path by some metric
 - E.g., lowest maximum link utilization
 - E.g., minimum end-to-end latency or loss

Example #3: Performance-Aware Load Balancing

- Directing traffic over the best path
 - Sending packets in the forward direction
 - ... along the path with the best performance

Contra: "A programmable system for performance-aware routing" (NSDI'20)

Enabler: Programmable Data Planes

Stages

Challenges: Resource Limitations

Stages

Solution: Compact Data Structures

- Approximate analysis is fine
 - Microbursts: size estimate for just the large flows
 - DDoS: rough count for large #s of distinct sources
 - Path performance: rough estimates for best paths

- Data structures can fit in data-plane registers
 - Sketch (e.g., Bloom filter, count-min sketch, etc.)
 - Small hash table (e.g., cache of the popular keys)

Grand Challenge

5G Connected Edge Cloud for Industry 4.0 Transformation

Thank You

jrex@cs.princeton.edu https://www.cs.princeton.edu/~jrex/