A Framework for Network Intelligence

June 5, 2018

Ken Duell, Ph.D AT&T Labs

Motivation for Intelligent Networks

Network Platform Evolution

Business Support Systems

Operations Support Systems

OEM Network OS

OEM Hardware

Proprietary Monolithic AI & ML Business Support Systems

Open Network Automation Platform

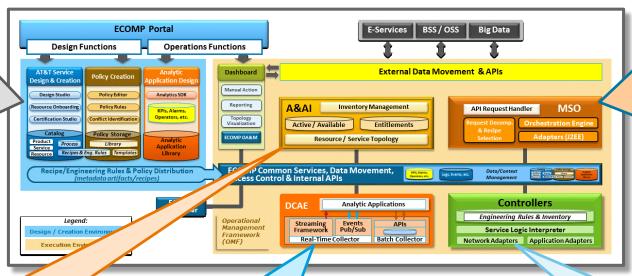
Open Source Network OS

Open Hardware & Hardware Abstraction

Open Flexible Modular

Drivers

- Agility
- Cycle time
- Interoperability
- Optimization
- Cost
- Ecosystem
- Innovation



ONAP Architecture

ONAP project brings together over 50 of the largest network and cloud operators and technology providers from around the globe–representing more than 60% of the world's mobile subscribers

Design Platform

- Service Design: Rich catalog-driven environment to construct and maintain service and resource definitions, constraints and management processes & policies (recipes)
- Policy Creation: Associate anomalous and actionable conditions with automated remedy actions
- Analytic App Design: Design capabilities for creation of analytic applications

Master Service Orchestrator (MSO)

- Orchestrates and manages the delivery, modification or removal of networks & services
- Provides cross domain orchestration to optimize the utilization of resources or take broad corrective action
- Interacts with various applications to collect data to determine network facing parameters

Active & Available Inventory (A&AI)

- Real-time topology map with context views of virtual networks, services and applications
- Relationship context between components and the network fabric & infrastructure in which they operate
- Uses the network resources as the database of record due to their dynamic nature
- Provides a registration method used to discover and maintain services and resources

Data Collection, Analytics & Events (DCAE)

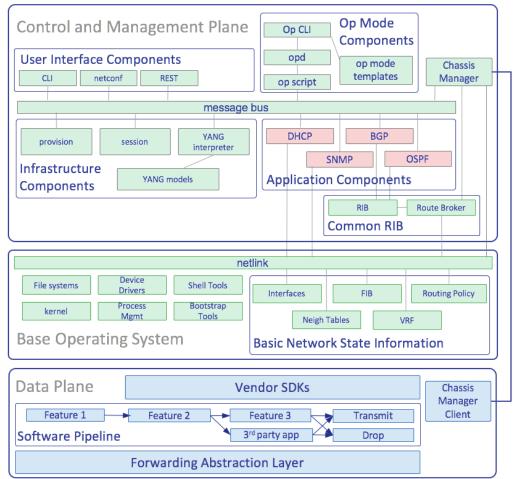
- Collects Data & Events necessary to manage and evolve D2.0 networks and services
- Makes collected data available to real-time apps
- Provides framework for analytics apps to identify patterns/anomalies and publish events to drive closed-loop control
- Provides these functions at all layers in the architecture

Controllers

- Network: Instantiates, configures & manages the lifecycle of Transport VNFs, infrastructure networking (e.g. leaf, spine & virtual switches) & WANs
- **Service/App:** Instantiates, configures & manages the lifecycle of Service VFs
- Infrastructure: Instantiates, configures & manages the lifecycle of infrastructure (compute, storage, etc.)

DANOS Open Source Network OS Architecture

Linux/DevOps friendly


- Easy integration for existing applications
- Supports native Linux networking APIs, daemons, shells and tools
- DevOps ready, scripting API support

Network engineer friendly

- Familiar router interface and ops model
- Multiple simultaneously installed images
- Image rollback, global config file, etc

Completely Modular

- Package level modularity for application vendors
- Customizable to your specific use case
- Lightweight control plane infrastructure API
- Modular vector based software forwarding pipeline
- Modular hardware abstraction interface

 Automated, differential product builds from module manifests and packages

Modern scalable distributed build and test environment

Distributed forwarding abstraction layer

- Physical separation between control plane and data plane(s)
- Manage multiple distributed software and hardware data planes, including P4

Fully featured software data plane

- Forwarding/Firewall/NAT/QoS/VPN
- Programmable vector based pipeline

Hardware data plane abstraction layer

Multi-vendor merchant silicon support

Virtualization ready

- Bare-metal and VNF, private/public clouds
- Host OS support for VNFs in VMs and containers
- High speed L2/L3/stateful services between VNFs

Framework for Intelligent Networks

Framework Implementation

Acumos AI & ML¹

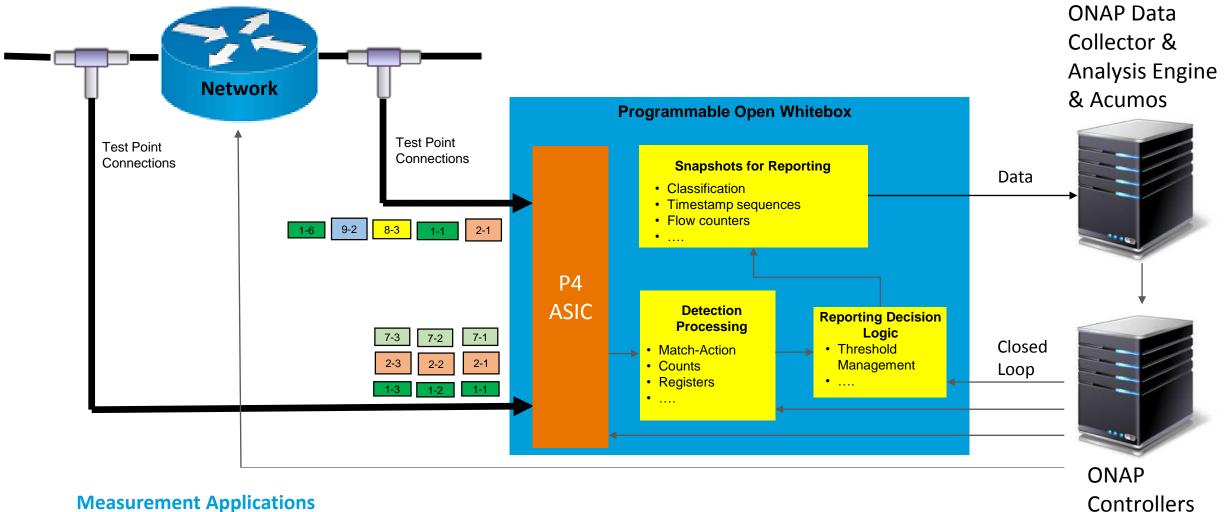
ONAP²

DANOS³

Whitebox & Hardware Abstraction⁴

Framework

- Whitebox as the base
- Acumos AI & ML at the top
- DANOS & ONAP tie Acumos & Whitebox together
- Open Source
- Provides unprecedented ecosystem opportunity for zero touch automation


¹ www.acumos.org

² www.onap.org

³ about.att.com/story/dnos_software_framework_into_open_source.html

⁴ <u>www.opencompute.org</u>; <u>www.p4.org</u>

P4 Based Measurement Toolkit/Framework

Measurement Applications

- Anomaly Detection & Traffic Classification (Microbursts, Ingress/Egress Anomalies)
- **Statistical Traffic Modeling**
- Traffic Matrix Characterization

