

Toward Self-Driving Networks

Jennifer Rexford

Self-Driving Network

- Examples
 - Direct traffic over the best performing path
 - Block or slow the heavy-hitter flows
- Possible now in the data plane!

A Constrained Computational Model

HULA

Hop-by-Hop Utilization-aware Load-balancing Architecture

Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer Rexford

http://conferences.sigcomm.org/sosr/2016/papers/sosr_paper67.pdf

HULA Multipath Load Balancing

- Load balancing *entirely* in the data plane
 - Collect real-time, path-level performance statistics
 - Group packets into "flowlets" based on time & headers
 - Direct each new flowlet over the current best path

Path Performance Statistics

Best-hop table

- Using the best-hop table
 - Update the best next-hop upon new probes
 - Assign a new flowlet to the best next-hop

Flowlet Routing

Flowlet table

- Using the flowlet table
 - Update the next hop if enough time has elapsed

6

- Update the timestamp to the current time
- *Forward* the packet to the chosen next hop

Heavy Hitter Detection Entirely in the Data Plane

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan, and Jennifer Rexford

https://conferences.sigcomm.org/sosr/2017/papers/sosr17-heavy-hitter.pdf

Heavy-Hitter Detection

- Heavy hitters
 - –The k largest trafic flows
 - -Flows exceeding threshold T
- Space-saving algorithm
 - -Table of (key, value) pairs
 - -Evict the key with the New minimum value

Approximating the Approximation

- Evict minimum of *d* entries
 - Rather than minimum of all entries
 - E.g., with d = 2 hash functions

Multiple memory accesses

Approximating the Approximation

- Divide the table over *d* stages
 - One memory access per stage
 - Two different hash functions

Approximating the Approximation

- Rolling min across stages
 - Avoid recirculating the packet
 - ... by carrying the minimum along the pipeline

P4 Prototype and Evaluation

High accuracy with overhead proportional to # of heavy hitters

Conclusion

- Self-driving networks
 - Integrate measure, analyze, and control
 - Distribute across the network devices
- Enabled by programmable switches

 Parsing, processing, and state
- Approximate data structures
 - Limited memory for storing state
 - Limited processing per packet